水体浊度不同测量原理的对比分析
2023-10-30鲍玉海贺秀斌
李 红,鲍玉海,贺秀斌†
(1.中国科学院、水利部成都山地灾害与环境研究所,610299,成都;2.中国科学院大学,100049,北京)
欧美等国家都将水体浊度作为饮用水卫生标准和水质安全检测重要参数[1-2]。我国大多数自来水厂都将浊度列为出厂水必须测量的指标[3]。水体浊度不仅是水质监测与评价的重要指标,也常作为水体泥沙含量的替代性指标[4-5]。随着浊度测量仪器的不断完善,浊度在水质、泥沙、微生物、饮料、油品等质量检测方面会有更广泛的应用[6-7]。浊度是一种光学效应[8],是光线与溶液中的悬浮物等相互作用的结果,水体浊度反映水体中悬浮颗粒物、胶体、浮游生物和微生物等物质的特征与数量[9-10],通常可通过测量水体中散射光的量或透射光的量来表达[11]。影响浊度的因素包括物理因素、化学因素、生物因素和其他环境因子等[12]。浊度的测量方法较多[13],因测试环境与目的不同而各具优势。浊度计作为测定浊度的专用仪器,由于测量方法与原理不同,市场上呈现出不同种类、测量精度、测量范围的浊度计,但各类浊度计的适用条件与应用范围尚未有系统梳理,导致难以选择适当的浊度计[14-15]。笔者在了解浊度基本概念的基础上,论述浊度的测量原理,系统比较各原理的适用性与优劣势,提出不同场景与环境下对浊度计的选择依据,以期为水质监测与评价提供参考。
1 浊度计光源的选择
浊度是水体透明度的量度,反映光在水体中受阻碍的程度,表现为一种光学效应,测量浊度的浊度计是一种光学测量仪器[16]。在测量光源的选择上,常见的有峰值波长在400~600 nm卤素钨灯和峰值波长在(860±30)nm红外LED,美国颁布的USEPA180.1标准和国际标准化组织颁布的ISO7027[17]标准中对二者的特征有详细介绍(表1)。波长 400~600 nm的卤素钨灯光源,对水体中小颗粒的散射较灵敏,由于散射作用对可见光中蓝光(波长400~500 nm)较敏感,受水体色度影响较大,导致测量结果偏小;波长在(860±30)nm左右的红外LED光源,浊度测量基本不受水体色度影响,且无需复杂的光学校正,稳定性较好。
表1 浊度计光源的比较
2 浊度的测量方法
浊度测量的方法主要有间接推算法和直接测量法(图1)。间接推算法包括推算法、遥感反演法、类比法。推算法是测量水体中的泥沙、叶绿素等特定悬浮物的浓度,通过建立悬浮物浓度与浊度之间的经验关系,进而推算水体浊度[18]。遥感反演法是利用遥感光谱特征通过经验模型、半经验模型或理论模型反演水体浊度[19-21]。类比法包括色度计法和烛光浊度计法,色度计法是利用色度直接代替浊度的方法;烛光浊度计法则是配置一定浓度的硅藻土标准溶液,放置烛光上观测,通过对比标准液和待测液高度,获取浊度的方法。直接测量法包括比浊法、光电探测法。比浊法包括目测比浊法和分光光度计法,2种方法是采用肉眼观测并与标准液比色的方式得出浊度值。光电探测法是通过光电探测浊度计测量浊度,是当前水环境质量评价实际工作中常用的一种方法[22-27],按光路测量原理入射光分为透射光、散射光和透射散射光(表2)。
图1 水体浊度的测量方法
2.1 透射光法
透射光法也称衰减光法,其测量原理是当一束入射光通过被测水体时,由于水中悬浮物等有阻拦、反射或吸收作用,使得透过水体的光强减弱,其减弱的程度与水中悬浮物数量等特征成一定相关性,可换算成浊度值[28]。根据朗伯-比尔定律[29],水体浊度与透光率的负对数呈线性关系,可通过测量透过被测水体的光强,来得到浊度值。
2.2 散射光法
散射光法是测量光束通过被测水体时产生的散射光强度,根据散射光强度与浊度的关系换算成浊度值[30],两者关系一般表现为瑞利公式[31]。按测量散射光与入射光的方向与方位,可将散射法分为90°散射法、后方散射法、前方散射法、表面散射法、水下散射法等(图2)。
图2 浊度计测量原理示意图
2.3 透射散射光法
透射散射光法是同时测量光源通过待测水样时的透射光和散射光强度,并按两者光强度比值确定浊度值的大小[32]。透射散射光法能同时测出透射光和散射光强度,有效地提高测量的准确度和适应性。
2.4 高浊度稀释法
基于浊度的测定原理,目前市售浊度计的测定上限为9 999 NTU。当水样浊度>1万NTU时,为满足应急检测的需要,可利用台式实验室浊度计(量程为0~9 999 NTU)对高浊度水样进行稀释测定。其具体操作步骤如下:
1)取原水置于锥形瓶中,加入一定体积比例(n)的稀释用蒸馏水,摇匀。
2)取混匀后的稀释水样清洗样品瓶,摇匀后迅速在台式浊度计上进行测定,读取稀释后水样浊度值(s)。
3)原水体浊度(Y)=稀释后浊度(s)×稀释比例(n)×经验系数(ɑ)。
3 不同测量方法的应用
在测量光源的选择上,常见的有峰值波长在400~600 nm卤素钨灯和峰值波长在(860±30)nm红外LED,两者各具特色,红外LED在色度上受影响小,发光稳定性好,无需配置复杂光学系统。卤素钨灯光强强,分辨力好,对小颗粒敏感。
浊度测量的方法主要有推算法、遥感反演法、类比法、比浊法和光电探测法。随着科技的发展,如今光电探测法被广泛使用,通常采用浊度计来获取浊度。浊度计的光路测量原理分别是透射光法、散射光法、透射散射光法。透射光法根据朗伯-比尔定律。散射光法的入射光和散射光强的关系表现为瑞利公式[35],根据入射和散射光的角度可分为90°散射法、后方散射法、前方散射法、表面散射法等。透射散射光法是测量透射光和散射光强度,按两者光强度比值确定浊度值。目前市售浊度计的测定上限为9 999 NTU,在暴雨季河流水体浊度通常>1万NTU,为满足应急检测的需要,可对超高浊度水样进行稀释测定。
影响水体浊度的因素众多,浊度的变化范围大,仅依照一种光学测量原理与方法很难达到实际精度和实时环境要求。因此实际应用中通常需按水样情况和水体环境,选择不同测量方法的浊度计及方案。当水体浊度较小时,大部分入射光都直接透射了,衰减的光强很弱,浊度小幅度的变化引起的透射光变化也很小,故利用透射光法测定低浊度会产生较大误差,且对监测仪器光电接收,稳定性和放大器件的分辨率的要求非常高,所以透射光法不适用于低浊度的测量,更适用于高浊度监测[35]。在低浊度水体中,散射光对悬浮微粒的散射作用明显,并且散射光曲线线性较好,散射光法在低浊度测量时显示出较高的灵敏度和准确度。但当水体浊度超过一定值时,会发生多次散射。此时散射光强快速下降,导致散射光强不能准确反映水体的实际浊度。因此散射光适用于中、低浊度的测量。透射散射光法能同时测出透射光和散射光强度,不仅保持透射光法和散射光法方法各自的优点,而且消除老化光源对测量值准确度的影响,有效提高测量的准确度和灵敏度,但由于透射光和散射光比值只在一定范围成呈线性关系,故测量范围有一定的局限性,且设备成本较高,故尚未广泛推广。在表3和表4中对各测量原理进行优劣势的分析,并列举出应用场景和代表性浊度计。
表3 不同测量方法浊度测定方法的优劣势比较
表4 不同应用场景浊度计的特征
4 结论
1)浊度计的光源有多种选择,常见的有峰值波长在400~600 nm卤素钨灯和峰值波长在(860±30)nm红外LED。浊度计的3种测量原理中透射光法、散射光法和透射散射光法对应测量原理和环境有所不同。
2)透射光法浊度计适用于浊度>2 000 NTU的水体,测量范围大,但测量精度偏低,受水样色度影响大。90°散射光法浊度计则对浊度<2 000 NTU的水体测量十分具有优势,对光源和电路稳定性要求低,受水体色度影响小。后向散射光法浊度计对10~4 000 NTU范围内的测量精确度高,不易受环境影响,适用于泥沙分布较均匀、含沙量低于 1.0 kg/m3的水体。水下散射光法浊度计测量精度高,稳定性好,但操作复杂。表面散射光法浊度计适用于<1 000 NTU的水体,其探测器窗口不受污垢干扰,但在线测量易导致误差。透射散射光法灵敏度高,适用性广,抗干扰能力强,但成本高,测量范围有一定的局限性。
3)针对不同浊度计的适用场景而言,实验室式精度较高,量程最高,但难以进行连续监测。现场在线式测量精度次于实验室式,可连续监测,在野外普遍使用。便携式浊度计便于移动测量,成本较低,但精度较低,测量量程也较小。