多孔淀粉的制备及其在食品领域的应用研究进展
2023-10-19尧梅香荣利远王诚远韩秀英谢建华
尧梅香,荣利远,王诚远,,韩秀英,井 莹,谢建华
(1.江中食疗科技有限公司,江西九江 330000;2.南昌大学食品科学与资源挖掘全国重点实验室,江西南昌 330047)
淀粉是应用最广泛的天然生物聚合物之一,为人类的生命活动提供了大部分能量,具有安全、便宜、可生物降解等多种优良特性[1]。由于其优异的天然特性,淀粉在食品工业中被广泛用作食品稳定剂、增稠剂、胶凝剂和保水剂[2]。随着食品科技的发展,食品加工对淀粉原料有了更高的要求。天然淀粉存在老化、热稳定性差、水不溶性和pH 敏感性等缺点,严重限制了其在食品工业中的实际应用[3]。因此,国内外学者通过物理法[4]、化学法[5]和生物酶法[6]对淀粉进行改性,从而获得理化性能更好的改性淀粉。Liu 等[7]发现中国木瓜籽胶通过包裹淀粉颗粒和影响直链淀粉的相互作用防止了淀粉老化,增加了胶/虎果块茎淀粉混合物的冻融稳定性。Lin 等[8]报道黄原胶和魔芋胶显著提高了绿豆淀粉凝胶的K 值和动态模量(G′,G″),降低了酶解速率。
天然淀粉较小的比表面积和孔隙体积限制了其作为吸附剂的应用,多孔淀粉的开发能有效改善该缺陷[9]。多孔淀粉,又称有孔淀粉或微孔淀粉,是指在淀粉表面和内部含有孔洞结构的一类淀粉[10]。相比于天然淀粉,多孔淀粉的表面出现明显的空洞(图1)[11],其表面孔洞由表面向中心延伸,1.0~1.5 μm的微孔均匀或不均匀地分布于淀粉颗粒表面[12]。李敏等[13]发现生物酶法制备的多孔淀粉孔径大小从5.39 nm 提升至11.13 nm,比表面积从1.57 m2/g 提升至3.91 m2/g,高比表面积和孔体积赋予了其优良的吸附和缓释特性。包尕红[14]报道经过溶剂交换法改性后,木薯多孔淀粉的吸油率从91.87%增加至174.33%,吸水率从83.00%显著增加到895.77%。目前,多种改性方法已被应用于制备多孔淀粉,且多孔淀粉的生产效率和理化性质与其制备方法息息相关,因此不同制备方法之间对比也是本文的研究重点之一。近年来,多孔淀粉在食品领域的应用也得到广泛关注,其被用于食品营养物质运载、脂肪替代和食品保鲜等领域。Zhao 等[15]设计了植酸-壳聚糖包裹的多孔淀粉载体材料用于口服给药,该递送体系实现了疏水性紫杉醇在结肠内持续释放,有效提升了其生物利用度。通过喷雾干燥法将红薯多孔淀粉和阿拉伯胶制备成粉末黄油,其可以替代传统的食用黄油,从而改善传统黄油因脂肪含量高而易氧化变质,影响产品质量和货架期的缺陷[16]。Lei 等[17]将紫甘薯多孔淀粉基微胶囊应用于橄榄油的负载,结果表示该负载材料具有良好的橄榄油负载率和氧化稳定性,且工艺易于规模化,有潜力成为一种新兴的食品工业油保护方法。
图1 玉米淀粉(A)和微孔玉米淀粉(B)的SEM 照片(500×)[11]Fig.1 The SEM pictures of core starch (A) and porous core starch (B) (500×)
为了进一步促进多孔淀粉在食品工业的实际应用,本文通过对比物理、化学和生物酶法制备多孔淀粉中存在的优势及不足,提出多孔淀粉在制备方法中亟需改进的工艺优化建议。本文综述了多孔淀粉在食品领域的应用现状及其前景,主要包括多孔淀粉在食品营养物质运输、脂肪替代物制备以及食品活性包装领域的应用。本综述提供的信息将有助于人们了解多孔淀粉在食品领域应用中的潜力,以及拓展改性淀粉在食品工业中的实际应用。
1 多孔淀粉的制备方法
1.1 物理法制备多孔淀粉
物理法是指利用物理手段通过破坏淀粉结构产生孔洞,常见方法有:机械挤压法、微波法、超声波法、湿热处理法和冻融等。机械挤压法通常由混合、搅拌、加热、喷涂和膨胀几个步骤对淀粉进行改性,在淀粉糊喷涂过程中采取强大的压力差快速蒸干水分,从而使淀粉中形成疏松的孔洞结构[18]。机械挤压法制备的多孔淀粉的孔隙率与含水率呈负相关,与温度呈正相关。然而,机械挤压法制备多孔淀粉具有孔径不均匀的缺点,制备效率不高。
微波法具有高效、环保的特点,其制备效率主要受微波功率、处理时间和淀粉用量的影响[19]。微波的热效应促使淀粉颗粒在交变磁场中通过分子摩擦形成多孔结构。如图2A 所示,排列有序的淀粉颗粒在微波产生的交变磁场作用下发生高频振动。高频振动产生的热能促使淀粉粒中的水分迅速蒸发,在淀粉粒内部产生高压,从而导致淀粉颗粒膨胀并破裂,形成孔隙[21]。微波法制备多孔淀粉简单经济,但具有一定的局限性,其不适用于制备细孔淀粉。类似于微波处理,超声处理具有低能耗、操作便利等特点,如图2B,超声导致液体中出现气泡,在不停的声波刺激中,气泡体积膨胀直至破裂,破裂产生的冲击波导致周围的淀粉颗粒表面出现孔洞[22]。超声波处理时间、功率和频率是影响多孔淀粉孔径大小的重要因素,Hu 等[23]报道与单频超声(20 kHz 或25 kHz)处理相比,双频超声(20 kHz+25 kHz)处理更能有效制备多孔淀粉。另外,微波和超声波处理常用于辅助酶解法制备多孔淀粉,有效提高酶解多孔淀粉得率,制备的多孔淀粉孔径、孔深和孔数目与对照组相比效果更好,表现出较好的吸油率和吸附特性[24]。
图2 微波法(A)、超声法(B)、溶剂置换法(C)和酶解法(D)制备多孔淀粉机理[20]Fig.2 Preparation mechanism of porous starch by (A) microwave method (A),ultrasonic method (B),solvent exchange and (C)enzymatic hydrolysis (D)
湿热处理是指在较低的水分含量(35%以下),和较高温度(100 ℃以上)下对淀粉进行改性处理,湿热处理能有效改善多孔淀粉的理化性质,但是其一般不单独应用于多孔淀粉的制备[25]。张倩倩等[26]发现与普通酶法相比,湿热处理辅助酶法制备多孔淀粉其酶解时间缩短一半便可达到同等的吸附效果,有效提高了酶解制备多孔淀粉的效率。冻融处理是将淀粉颗粒进行冷冻和解冻循环的一个过程,多次的冻融循环能促使淀粉分子内部相分离和冰晶生长,从而影响淀粉的微观结构和理化性质,该方法常被用于辅助酶处理制备多孔淀粉[27]。由于冻融处理后淀粉颗粒中出现孔洞,增强了淀粉对酶解的敏感性,因此冻融辅助酶处理淀粉比单独酶处理产生更多的孔隙,经联合处理后的多孔淀粉对水、油的吸附能力、溶胀能力和溶解度均有所提高[28]。
物理法具有操作便捷、安全、无化学残留、经济等优势,但是物理法制备多孔淀粉往往会由于水分的不均匀分布导致多孔淀粉的孔径分布不均,而且物理法加工伴随的较高温度也会破坏淀粉结构,不利于多孔淀粉的工业推广和应用[29]。因此,物理加工方法常被应用于化学和生物酶改性的预处理手段,经物理加工处理后的天然淀粉颗粒对化学法和生物酶法改性更加敏感,提高了其生产效率和改性效果[30-31]。
1.2 化学法制备多孔淀粉
化学法通过酸、交联剂和酯化剂等化学试剂的处理使淀粉颗粒表面出现由外向内延伸的孔洞[32]。化学法主要包括溶剂交换法、乳液交联法和酸水解法等,溶剂交换法是利用淀粉水凝胶网络中的水与溶剂(如乙醇、丙酮)进行交换,避免水凝胶结构在直接风干下坍塌和收缩[14]。如图2C 所示,水溶性直链淀粉凝胶化后形成网状结构,淀粉凝胶网络之间吸收了大量的水分子。随后,用乙醇取代凝胶网络中的水,并通过真空干燥去除乙醇得到多孔淀粉。溶剂交换法制备的多孔淀粉的结构受溶剂浓度和干燥条件的影响[33]。溶剂交换法制备的多孔淀粉颗粒表面存在大量的空洞,呈珊瑚状,且溶剂交换处理没有改变淀粉的结晶类型,制备过程未产生新的官能团[14]。
乳液交联法也是实验室常用于制备多孔淀粉的方法之一,该方法将淀粉溶液作为水相分散于油相中,在水相中发生交联反应从而制备具有多孔结构的淀粉颗粒。乳液交联法降低了淀粉分子间的相互作用力,制备的多孔淀粉表面结构丰富,比表面积大,表现出良好的吸附能力。乳液交联法解决了多孔淀粉结构易碎的缺陷,其制备工艺简单,不需要价格昂贵的酶,降低成本,有利于在工业中推广。在污水净化中有较好的应用前景[34]。魏晓岩等[35]发现N,N-亚甲基双丙烯酰胺交联的多孔淀粉表面粗糙,存在大量的空洞,吸附性能力明显增强,能有效吸附废水中的有害物质。
酸水解法则是在保持淀粉颗粒完整性的基础上,利用盐酸使天然淀粉部分水解,从而在淀粉颗粒表面形成孔洞结构。酸水解是从淀粉颗粒的表面逐渐向颗粒内部进行,从在表面形成的凹痕逐步水解扩大形成凹坑和孔洞,最终反应进行到颗粒中心,淀粉核被反应成空腔结构,且空腔与孔洞之间有微细通道连接。与生物酶法相比,酸水解法有极高的价格优势,但是其反应速率较慢,随机性强,难以形成稳定有效的孔洞,目前仍停留在实验室阶段[36]。酸法醇介质则是在酸水解法的基础上,利用乙醇作为介质改进酸水解的效率,该方法具有工艺过程简单,容易控制的特点。乙醇介质的存在可以影响水分子进入淀粉颗粒内部与淀粉的糖苷键发生的反应和速度,因此通过控制乙醇浓度可以将淀粉在高于水介质中糊化温度的情况下发生水解反应,并保持淀粉颗粒的基本结构,进而有效加快淀粉水解的速率,缩短反应时间,降低生产成本[37]。
近年来,多种新型化学法被应用于制备多孔淀粉。分子插入法是通过致孔剂结合酸间接处理来制备多孔淀粉,Pourjavadi 等[38]选择碳酸钙颗粒作为致孔剂处理天然淀粉,然后利用盐酸去淀粉颗粒中存在的碳酸钙颗粒,从而获得多孔淀粉。该天然淀粉制备的水凝胶作为亚甲基蓝吸附剂,吸附量达到714.29 mg·g-1。另外,有研究发现巯基琥珀酸能与淀粉形成分子间氢键,相比于盐酸,巯基琥珀酸处理有利于形成更多的多孔结构[39]。化学法相对于物理法和生物酶法具有设备要求低,耗能小,生产成本低等优势,但化学方法制备过程中容易造成化学残留,随机性强,孔隙度低等缺陷,不利于其在食品工业中的推广应用。
1.3 生物酶法制备多孔淀粉
生物酶法是利用酶对淀粉分子结构的水解作用,从而催化淀粉颗粒的内部和表面产生孔隙,该方法具有反应条件温和,催化效率和底物特异性高等特点[40]。经研究发现,α-淀粉酶和糖化酶水解淀粉具有良好的效果,被广泛应用于多孔淀粉的制备。单一酶的作用效果有限,因此往往需结合多种酶共同作用来制备多孔淀粉[41-42]。Zhang 等[43]和吴季勤等[44]利用α-淀粉酶和糖化酶成功制备多孔淀粉,并评估了其吸附性能。在酶解过程中,多孔淀粉的孔洞是沿着非还原性末端逐渐形成的,孔隙的尺寸随着水解程度变深变大,从而允许水渗透到淀粉颗粒内部[45]。其机理如图2D 所示,淀粉颗粒的不规则内部和无定型区域被葡萄糖淀粉酶水解,然后酶沿着淀粉分子的非还原端水解。此外,由于淀粉的水膨胀,α-淀粉酶更容易进入淀粉颗粒内部进行随机内切,从而为糖化酶提供了新的非还原端,使水解不断深入淀粉分子内部,最后在酶的作用下,淀粉的表面和内部形成中空结构。酶用量、反应环境等因素都不同程度地影响酶解效率和多孔淀粉的吸附效果,其影响效果排序为:酶用量>反应时间>pH>酶配比>反应温度>淀粉浓度[10]。另外,生物酶制备多孔淀粉的过程中改变了淀粉颗粒的结构,其理化性质也随之改变,α-淀粉酶和糖化酶酶解处理能明显降低淀粉的糊化粘度和提高其糊化温度和相对结晶度[46]。
生物酶法制备多孔淀粉的生产成本较高,且单一使用酶制备多孔淀粉存在局限性。近年来,研究人员开始将其他加工技术应用到酶法制备多孔淀粉中。最常见的就是结合物理加工方法来辅助酶解制备多孔淀粉,利用物理预处理加工对淀粉颗粒的破坏作用,能有效提高淀粉颗粒对酶的敏感性,从而节约酶的用量以及酶解时间,提高多孔淀粉的制备效率。干热预处理可明显破坏淀粉的表面结构,促进了酶解反应的进行,有效提高了酶解效率,其制备的多孔淀粉比表面积和总孔容积显著增大,表现出更强的吸附能力。吴丽荣等[47]发现超声预处理有助于复合酶法制备多孔淀粉,超声波处理的淀粉表面出现皱褶、裂缝和凹陷,酶解后的淀粉表面出现了多而深且较大的孔。生物酶法结合化学改性也是提高酶解效率的有效手段之一,董芝宏等[48]发现三偏磷酸钠(Sodium trimetaphosphate,STMP)交联可以提高酶解淀粉颗粒的稳定性,提高用酶量,使颗粒多孔增加,从而提高吸附率。OSA 改性的多孔淀粉则是表现出更好的精油保留能力,因为OSA 中的长链烯基与精油分子形成范德华力,减小了精油挥发程度,提高缓释效果。相对于物理法和化学法制备多孔淀粉,生物酶法制备多孔淀粉具有独特的优势,表现在安全,工艺简单,酶制剂易得,工艺条件易控制等。然而,生物酶法制备多孔淀粉在食品工业的大规模应用往往受其较高的生产成本所限制,因此探究如何降低酶用量,提高酶解效率是生物酶法制备多孔淀粉的重要研究方向,如将生物酶法结合物理法、化学法等其他方法是提高酶解效率的有效手段。
2 多孔淀粉在食品领域的应用
天然淀粉具有安全无毒、易降解等特点,经改性后的多孔淀粉具有高比表面积和孔体积,表现出优良的吸附和缓释特性。近年来,多孔淀粉在食品领域的应用受到广泛的关注[49],其主要应用在营养物质运载、脂肪替代以及食品活性包装上。
2.1 食品营养物质运载
随着食品科技的发展,人们对功能性食品的需求一直在增长,具有特殊功能的食品营养物质可以有效影响人体的身体机能,在心理疾病,慢性疾病的预防和发展中发挥重要作用,以及对于具有特殊饮食要求的人群具有重要意义,如病人、老人、儿童、特殊工作者等[50]。然而,常见的营养物质或生物活性化合物很容易被热疗、光束和氧气降解,或者在胃肠道中被消化酶水解失活。因此,国内外学者往往将食品营养物质进行包埋递送,从而改善其生物利用度[51]。
多孔淀粉的多孔隙结构能将食品营养物质束缚在淀粉孔隙中,多孔淀粉的包覆能避免被运载营养物质被外界环境所干扰,从而达到营养物质的保护作用[52]。近年来,多孔淀粉由于其良好的生物相容性、可降解性、吸附性和价格低廉等优点已经被广泛应用于食品营养物质的负载[9,53],包括日常食品[16]、维生素[54-55],多酚[56],益生菌[57]及其他生物活性物质[58]等。传统食用黄油由于脂肪含量高容易氧化变质,严重影响其感官品质和货架期,傅新征等[16]以红薯多孔淀粉和阿拉伯胶为壁材包覆的粉末黄油具有良好的抗氧化性,且易于使用和储运。维生素、多酚和益生菌等生物活性物质在保健食品领域发挥重要的作用[59-60],这些活性物质在食品工业中的实际应用受到其吸收率低和生物利用度差的限制,多孔淀粉可以为这些活性物质提供强保护以应对应激环境,如酸、盐和热环境(图3)。多孔淀粉通过化学吸附或强表面络合多酚类物质,在保持多酚生物活性不被破坏的基础上提高了其在人体内的生物可及性[61]。多孔淀粉的气孔、通道和空腔结构为益生菌提供了生存空间,具有较高的益生菌装载效率,多孔淀粉负载可以避免益生菌受胃肠道环境的影响,促进人体胃肠健康[57]。另外,食品加工过程容易导致食品风味物质的损失,严重影响食品的感官品质,风味物质的封装可以防止风味物质发生不必要的化学反应[62],延长其储存时间[63]。Belingheri 等[62]评估了多孔淀粉作为风味物质运输的潜在可能性,然而多孔淀粉对于风味物质的运载还鲜有报道,在未来的研究中进一步探究其对风味物质的运输具有重要意义。
图3 多孔淀粉对生物活性物质的保护功能示意图Fig.3 Schematic diagram of the protective effect of porous starch on bioactive substances
2.2 食品脂肪代替
脂肪是人类生存不可或缺的营养物质[64],但脂肪的过量摄入会导致各种健康问题,如肥胖、高血压和心血管等慢性疾病,甚至会提高患癌症风险[65]。食品的脂肪含量也关系到消费者对于该产品的购买欲望。近年来,国内外学者发现多孔淀粉经交联、酯化或醚化等处理后与脂肪具有类似的口感和质地,可以作为脂肪的替代物。目前,多孔淀粉的脂肪替代物主要被应用于制备低脂肉制品[66]、人造黄油[67]及蛋黄酱[68]等。钱和等[69]利用多孔淀粉替代贡丸中的部分脂肪,改善了低脂贡丸的质构特性,降低了贡丸的总热量及生产成本。传统的食用黄油因为脂肪含量高易氧化变质,严重影响其产品质量和货架期,研究人员发现多孔淀粉经改性处理可优化其流变学和感官性质,制备的淀粉基脂肪替代物拟脂拟油性较好,可替代传统黄油为食品提供润滑性以及黏稠度。吴珊等[70]通过工艺优化制备的交联氧化酯化多孔淀粉比普通淀粉具备更强的粘稠性和乳化性,有利于作为脂肪替代物应用于沙拉酱的制作中。总之,多孔淀粉形成的网络凝胶结构可以截留大量的水分子,从而具有一定的流动性,赋予淀粉基脂肪替代物类似脂肪的质感和口感[71]。多孔淀粉基脂肪替代物由于其热量低、来源广、产量高和生物相容性好等特点,被认为是理想的脂肪替代物。多孔淀粉基脂肪替代物能保持脂肪的优良特性,并缓解脂肪对人体健康的不利影响[72],可以很好地满足特定消费人群对于低脂和健康饮食的需求,在保健食品领域具有良好的应用前景。
2.3 食品包装
在食品包装中添加具有抗菌或抗氧化的活性成分,可以延缓食源性病原体和氧化引起的食品质量恶化[73]。多孔淀粉经过喷雾干燥或冷冻干燥微胶囊化可以保护这些活性抗氧抗菌成分不受恶劣环境的影响,调节其释放行为。因此多孔淀粉可以作为这些活性成分的缓释或控释材料,从而延长其在活性包装膜的作用时间或满足特定的保存要求。Miao 等[74]发现多孔淀粉对茶多酚具有良好的吸附能力,以玉米淀粉/茶多酚负载的多孔淀粉为材料铸造的可降解食品包装膜成分分布均匀,具有良好的机械性能、防紫外线性能、热稳定性和抗氧化性能。类似地,以负载茶多酚的多孔淀粉为芯材,麦芽糊精为壁材,采用冷冻干燥法制备微胶囊,并将其作为活性膜中茶多酚的缓释载体,该缓释活性膜具有抗氧化活性和缓释性能,可有效地延长食品的保质期[63]。由于淀粉良好的生物相容性,多孔淀粉的引入可以改善复合包装材料的延展性和热稳定性。Miao 等[75]添加负载茶多酚的多孔淀粉能将聚乙烯醇包装膜的拉伸强度从5.09 MPa增加到25.58 MPa,断裂延伸率从126%增加至346%。多孔淀粉作为良好的生物活性物质负载体,以及其良好的生物相容性,在可降解包装薄膜中具有极大的应用潜力。然而目前国内关于以负载抗氧化和抗菌物质的多孔淀粉为基的包装薄膜研究较少,探索利用多孔淀粉优良的负载特性负载具有抗氧化和抗菌等特性的精油或金属氧化物将是个有趣的研究方向。
2.4 其他
随着食品科技的发展,多孔淀粉在食品领域的研究也愈发深入。多孔淀粉较大的比容积和比表面积赋予了其良好的吸水、吸油能力。利用多孔淀粉优异的吸油能力,多孔淀粉被应用于功能性食用油的制备,江慧娟等[76]利用多孔淀粉包埋制得的粉末油脂能显著延长食用紫苏籽油的氧化时间,有效延长其保质期。邱英华等[77]以木薯多孔淀粉为芯材,吸附蚕蛹油制备的蚕蛹油微胶囊,可以直接食用并长期稳定贮存。食用精油具有挥发性强、稳定性差、香气不持久和携带不便等缺点,依赖于多孔淀粉的高吸油特性,多孔淀粉在食用精油的固定和缓释的应用具有潜力。固化后的杜香精油粉末比未固化精油的缓释持香效果更显著,以及表现出更好的热学稳定性[78]。付秋莹等[79]发现羧甲基壳聚糖和海藻酸钠包覆的百里香精油/多孔淀粉具有良好的缓释性能,可以延长百里香精油的主要成分麝香草酚在室温下的释放时间。另外,天然淀粉的多羟基的亲水结构导致其乳化效果较弱,多孔淀粉经丁酸酐改性后具备较好的乳化性和乳化稳定性,该乳液在食品和医药等行业的药物包埋和靶向释放中有很好的应用前景[79]。谢梦焕等[80]以3-氯-2 羟丙基三甲基氯化铵为醚化剂,采用碱催化干法制备了阳离子多孔淀粉,阳离子多孔淀粉能有效吸收部分卷烟烟气中的有害成分(小分子醛),从而降低烟气对人体的伤害。总之,多孔淀粉特殊的多孔结构赋予了其优异的吸附特性,结合吸附特性和可食用性,多孔淀粉在食品领域的应用具有较好的前景,在未来研究中亟需进一步探究。
3 结论与展望
多孔淀粉是一种经物理、化学或者生物酶法改性制备的一种具有蜂窝状多孔结构的改性淀粉,具有较大的比表面积和优良的吸附性能,兼具生物相容性好和生物可降解等优点。常用的多孔淀粉制备方法都存在不足之处,如物理法制备的多孔淀粉表面孔隙不均匀,化学法会导致化学残留,生物酶法则是制备成本高,经济效益差等,这些方法亟需进一步优化工艺以实现在食品工业的广泛推广。超声、微波等物理加工或者化学改性辅助酶制备多孔淀粉有效提高淀粉颗粒的酶解效率,降低生产成本,促进多孔淀粉在食品工业的大规模应用。多孔淀粉的多孔结构赋予了其极强的吸附缓释能力,在食品领域被广泛应用于生物活性物质和营养物质的负载缓释。例如,多孔淀粉负载的食品营养物质能受胃肠道环境中的干扰,提高其生物利用率。添加负载抗菌、抗氧化活性物质的多孔淀粉可提高食品活性包装的抗氧化和抗菌能力,从而延长食品的保质期。为了进一步促进多孔淀粉在食品工业的实际应用,未来有必要继续优化多孔淀粉的制备方法,改进多孔淀粉制备的效率以及成孔质量、孔隙率和孔隙稳定性。另外,不同来源的天然淀粉具有不同的结构特征,包括粒径、结晶结构和直/支链比例等,探究多孔淀粉的制备效率和吸附性能与天然淀粉来源之间的关系可能对多孔淀粉在食品工业中的推广具有重要意义。