理解概念本质 构建数学模型
——《路程,时间和速度》教学实录
2023-09-01项荣花
文|项荣花 孙 慧
【教学内容】
人教版四年级上册第53 页。
【教学过程】
一、回忆生活,唤醒经验
师:大家在生活中遇到过比快慢的情况吗?你们是怎样比的?
生:跑步比赛,先到终点的人跑得快。
生:1 分钟口算,谁算对的题目多,谁快。
二、结合情境,初建模型
师:四(1)班组织游学活动,想预约一辆开得快一些的车。你有办法帮助他们吗?
根据学生建议,课件依次演示:
两辆汽车在同一起点出发,看哪一辆率先到达终点。
小结:路程相同,比时间,时间越短,车开得越快。
两辆汽车同时出发,半小时后,看谁行得较远。
小结:时间相同,比路程,行驶的路程越长,车开得越快。
师:但是旅游公司不打算让这两辆车特意比赛一场,他们提供了一份过去的行驶记录。
车型时间路程大巴车6:30~9:30150 千米中巴车8:00~10:00120 千米
师:你能从表中得到哪些数学信息?根据这些信息能判断哪辆车开得快吗?
生:我看到大巴车3 小时行驶了150 千米。中巴车2 小时行驶了120 千米。
生:大巴车开的时间长,行得也远。
生:行的时间和路程都不一样,要算一算才能知道快慢。
师:好的,那大家算一算,把自己的想法记录在《学习单》上。
师:老师这里收到一个方案,大家看看,觉得怎么样?
方法一:
生:这位同学的想法和我一样,中巴车2 小时行120 千米。照这样计算,乘以3,中巴车6 小时可以行360 千米;同样道理,大巴车3 小时行150 千米,乘以2,6小时行300 千米。大家都行6 小时,中巴车行驶的路程多,所以中巴车行得快。
师:这位同学将题目转化成——时间相同比路程。
师:那我们可以把路程变得相同吗?
方法二:
生:我们可以假设路程都是600 千米,600÷150=4(个),600 千米里面有4 个150 千米,需要4个3 小时,也就是大巴车行600千米需要12 小时;同样道理,600÷120=5(个),2×5=10(小时),中巴车行600 千米只要10 小时。中巴车行得快。
师:还有不同的想法吗?
生:我不需要转化,可以直接计算。
师:能看懂他的方法吗?
生:他是用路程÷时间。
生:我知道路程÷时间的结果叫“速度”。
生:大巴车3 小时行150 千米,150÷3=50,大巴车每小时行50千米;120÷2 就是中巴车每小时行60 千米。这样也可以比出中巴车开得更快一些。
根据学生回答,边演示课件线段图,边引导分析:
师:已知条件是大巴车3 小时行150 千米,中巴车2 小时行120 千米——
师:我们可以把150 千米按3小时平均分,把120 千米按2 小时平均分——
师:大巴车的情况,平均每小时对应的路程是——50 千米,平均每时行50 千米,2 小时行100千米,3 小时行150 千米。
师:“中巴车的情况——”谁能像老师这样说一说?
生:按2 小时平均分成2 份,平均每小时行60 千米,2 小时行120 千米。
师:说得真好。我们把时间和路程同步平均分,求出了车的——“速度”!能说说你现在对速度的理解吗?
生:速度就是路程÷时间算出来的。
生:我们把路程和时间对应地平均分,分出来看每小时行多少路程就是速度是多少。
小结:像这样,根据已知的时间和路程,算出平均每小时行驶多少千米,就是我们经常说的“速度”。(板书:路程÷时间=速度)
三、细化模型,深化理解
师:同学们真了不起,在时间和路程都不同的情况下,创造了计算“速度”来比快慢的方法。“速度”就是一个专门用来刻画快慢的数学概念。试着在练习纸上算一算我们身边常见的速度。
(学生自主作业,集体反馈)
师:和他一样的同学请举手。不算不知道,原来他们的速度都是8 米,他们都一样快啊!
生:老师,尽管他们的速度都是8 米,但他们的速度不一样。
生:孙老师的8 米是平均每秒跑8 米;蜗牛的8 米是平均每时爬8 米;海龟是平均每分爬了8米。都是8 米,但用的时间不一样。
师:有什么办法“改造”一下?让别人一眼就能看出他们的速度是不一样的。
生:我们都按照1 小时来算。蜗牛1 小时行8 米,孙老师每秒跑8 米,就是1 分钟跑480 米,就是1 小时跑……
生:我还有一个想法,把孙老师的速度算成每小时的话,我觉得不太合理,因为孙老师短时间可以跑到这个速度,长时间可能会越跑越慢。
生:我觉得可以在答案后面添省略号。8 米……每秒;8 米……每时;8 米……每分。
师:你们怎么看?这样写能表达出各自的速度信息吗?看得出谁快谁慢吗?
强调:速度里面包含着两个信息,一个是路程,一个是时间,我们看速度,要兼顾时间和路程。所以,在数学上,速度单位可以这样写:8 米/秒、8 米/时、8 米/分。
师:(指8 米/秒)这个读作8米每秒,表示平均每秒跑了8 米。
师:第二个、第三个谁来读一读、说一说?
生:8 米/时读作8 米每时,表示平均每时爬了8 米。
生:8 米/分读作8 米每分,表示平均每分爬了8 米。
师:解决了这个问题,你对速度有什么新的认识吗?
生:路程÷时间=速度,速度不是简单的一个数,这个数里面既有路程又有时间。
生:速度的单位和我们以前学的应用题里的单位不一样,既要显示路程,又要显示时间。
小结:平均每时、每分、每秒行驶的路程,也就是“单位时间”所行“路程”的情况,称作“速度”。“速度”这个数量不简单,它表示着路程和时间之间的关系,所以它的单位是:长度单位/时间单位。
四、融入生活,感受速度
师:我们知道了人、蜗牛和海龟的行进速度,你们还知道其他事物的速度信息吗?
生:我们家里的网速现在可以达到18 兆/秒。
生:水从食道到胃速度大约是6~8 厘米/秒。喝一口水,5 秒钟就可以到胃部。
师:大家真是见多识广呀。老师也收集了一些信息。
师:看了这些数据,你有什么想说的吗?
生:高铁运行的最高速度大约为350 千米/时,表示高铁平均每小时行驶350 千米。那从上海到丽水,大约需要2 个半小时。上海到龙泉的铁路距离有875 千米。
生:高铁运行的最高速度是350 千米/时,一般不会达到这个最高速度。我坐高铁的时候看到电子屏上经常显示的是200 千米/时、180 千米/时。
生:飞机飞行的速度大约是12千米/分,那也就是720 千米/时,飞机的速度大约是高铁的2 倍。
生:光传播的速度大约为30万千米/秒,声音的传播速度大约为340 米/秒。光速比音速快很多,所以我们先看到闪电,再听到雷声。
生:唾沫传播的最快速度大约是50 米/秒,表示唾沫平均每秒就能传播50 米。一眨眼的功夫,唾沫就横穿了5、6 个教室。
五、自主作业,反思拓展
1.布置书面作业,学生独立完成,教师巡回批改。
(1)兔子和乌龟哪个速度快?他们的速度分别是多少?
兔子3 分钟跑了240 米;乌龟2 小时爬了160 米。
(2)这段路总长180 千米,老师想用2 小时开完这一段路。会超速吗?
2.集体反馈。
师:第(1)题大家做得都很好,我们重点看看第(2)题。图中的“60”是什么意思?
生:速度不能超过60 千米/时。
生:最快只能开到60 千米/时。
师:老师收集到三份方案,你们看看,能看懂这几位同学分别是怎么想的吗?
生:第一种,是比速度。2 小时行完180 千米,意味着速度要达到90 千米/时,超过了60 千米/时。
师:他的速度是怎么计算的?
生:路程÷时间=速度。
生:我是第二种,比路程。按60 千米/时的速度,2 小时最多只能行使120 千米,实际路程有180千米,不超速不能走完。
师:你们的路程是怎样算出来的?
生:路程=速度×时间。
(板书:速度×时间=路程)
生:第三种,比时间。180÷60=3(时),正常需要3 小时行完。只有超速才能2 小时行完。
师:时间又可以怎么计算?
生:路程÷速度=时间。
(板书:路程÷速度=时间)
小结:路程、时间、速度三个量,只要知道其中两个量,就可以求出第三个量。同一个问题,可以从不同角度,计算不同的数量,进行比较、解决。
六、全课总结
师:通过今天的学习,你有什么收获?
生:通过今天的学习,我知道了路程÷时间=速度,算出速度的大小,可以代表行车的快慢。
生:路程、时间与速度三个量,我们只要知道其中的两个量,就能求出第三个量。
生:速度很特别,一个数里藏着两个数量,既有路程又有时间,它的单位是双重的。
生:光速、网速、飞沫传播的速度都很快。