APP下载

番茄WRKY转录因子功能的研究进展

2023-08-14陈娜邵勤李晓鹏

江苏农业科学 2023年13期
关键词:生长发育番茄

陈娜 邵勤 李晓鹏

摘要:WRKY转录因子是近20多年来发现的植物特有的最大的转录因子家族之一。WRKY的名称来源于基因中最显著的氨基酸序列特征WRKY结构域。WRKY结构域是一个高度保守的区域,由60个氨基酸组成,在其N端有1个保守的七肽段WRKYGQK,然后是1个分子式为C2H2或C2HC的锌指基序。目的基因中保守的WRKY结构域同源结合位点称为W box(C/TTGACT/C),几乎所有WRKY转录因子都优先结合该位点。越来越多的研究证实,WRKY转录因子在植物生长发育过程中扮演着重要角色。本文简要介绍了WRKY转录因子家族的分子结构特征及分类,并综述了番茄WRKY转录因子在响应生物与非生物逆境胁迫、调控生长发育、激素信号转导等方面的生物学功能,以期为进一步研究番茄 WRKY基因家族的调控机制提供理论基础与研究思路。

关键词:番茄;WRKY转录因子;生物和非生物胁迫;生长发育;激素信号转导

中图分类号:S641.201  文献标志码:A

文章编号:1002-1302(2023)13-0006-11

番茄(Solanum lycopersicum L.)是茄科茄属一年生或多年生草本植物,原产于墨西哥,是世界上最重要的蔬菜作物之一,也是中国北方、南方普遍栽培的重要蔬菜[1-2]。2019年全球产量超过1.8×108 t,收获面积略高于5×106 hm2。1999—2019年,全球番茄收获面积增加了27%,产量增加了66%[3]。番茄富含维生素A、维生素C和维生素E,还含有大量水及钙、烟酸等营养物质[4],这些营养物质可以降低患癌症、心血管疾病和骨质疏松病的风险[5-6]。由此可见,番茄是一种重要的高营养蔬菜作物。

植物可以在复杂环境中调节自身的代谢和生长发育过程,而在这些生长发育过程往往会受到转录因子的调控。有研究证实,bZIP、NAC、MYB、WRKY和其他转录因子家族在植物生长发育过程中发挥着重要作用,参与了各种胁迫应答响应过程[7-8]。WRKY转录因子广泛分布于陆生植物中,是植物中最大的特异转录因子家族之一,它们具有多种生物学功能,包括参与植物生长发育、非生物和生物胁迫的响应过程、植物次生生长和植物激素信号转导过程等[9-13]。第1个WRKY基因是从甘薯(Ipomoea batatas)中分离得到的[14],随着植物(特别是模式植物)全基因组测序工作的推进,更多WRKY基因得到鉴定,其中大豆(Glycine max)中有182个WRKY转录因子被发现[15],小麦(Triticum aestivum)中有171个WRKY基因被发现[16],玉米(Zea may)中有120个WRKY基因被发现[17],水稻(Oryza sativa)中有103个WRKY基因被发现[18],马铃薯(Solanum tuberosum)中有79个WRKY基因被发现[19],拟南芥(Arabidopsis thaliana)有72个WRKY基因被发现[20],黄瓜(Cucumis sativus)中有57个WRKY基因被发现[21],油菜(Brassica napus)中有46个WRKY基因被发现[22]。随着番茄全基因组序列的公布,Huang等在番茄中鉴定到81个WRKY转录因子,此外,有研究发现,番茄WRKY基因在不同发育过程中及对各种生物、非生物胁迫的响应过程中表现出不同的時空表达模式[23-24]。

1 植物WRKY转录因子的结构和分类

WRKY结构域是WRKY转录因子最显著的结构特征,该结构域在其N末端有1个高度保守的WRKYGQK七肽序列,在其C末端有1个锌指基序,该锌指基序可以是C2H2型(CX4~5CX22~23HXH),也可以是C2HC型(CX7CX23HXC)[25-26]。根据WRKY结构域的数量和锌指基序的类型,WRKY蛋白可分为3种系统发育不同的族:GroupⅠ的WRKY蛋白包含2个WRKY结构域和1个CX4~5CX22~23HXH锌指基序;GroupⅡ的WRKY蛋白包含1个WRKY结构域和1个CX4-5CX22-23HXH锌指基序;Group Ⅲ的WRKY蛋白包含1个WRKY结构域和1个CX7CX23HXC锌指基序。此外,通过系统发育分析发现,GroupⅡ的WRKY蛋白又可分为5个亚类:GroupⅡa、GroupⅡb、GroupⅡc、GroupⅡd和GroupⅡe[25-28]。

Huang等报道,番茄中有81个WRKY转录因子,并且除了第11号染色体,其他11条染色体中均有WRKY转录因子的分布[23-24]。其中5号染色体上分布的WRKY转录因子最多,有16个,而9号染色体上分布的WRKY转录因子最少,仅有4个[23-24]。番茄的81个WRKY转录因子中有15个成员属于GroupⅠ,55个成员属于GroupⅡ,这55个成员中又细分为GroupⅡa、GroupⅡb、GroupⅡc、GroupⅡd和GroupⅡe,分别有6、9、17、6、8个成员,最后9个成员属于Group Ⅲ[24]。

2 番茄WRKY转录因子的生物学功能

有研究发现,番茄WRKY转录因子参与了植物生长发育、生物与非生物逆境胁迫及激素信号转导过程,但是只有少数WRKY基因功能被验证,绝大多数基因功能还尚待研究。下文综述了番茄 WRKY家族相关基因在植物生长发育、生物和非生物逆境下及激素信号转导过程的研究进展。

2.1 番茄WRKY转录因子参与了植物的生长发育过程

大量基因的有序表达构成了控制植物生长发育的基础,其中转录因子充当协调基因表达的“开关”。WRKY转录因子在植物生长发育中发挥着重要作用[29-32]。此外,WRKY转录因子也参与了番茄植株的生长发育。Spyropoulou等报道,番茄SlWRKY78在叶片、毛状体、根和花中表达,SlWRKY28是毛状体的特异性基因,SlWRKY73在毛状体、根和果实中表达,并参与调控萜烯生物合成的过程[33]。Li等发现,沉默SlWRKY17延迟了弱光诱导的花脱落,并且能够与SlIDL6的启动子结合[34]。Singh等从番茄中鉴定到1个主要在根中表达的WRKY转录因子SlWRKY23,通过研究发现,转SlWRKY23基因植株的叶片数量更多,但莲座更小。转基因株系的开花时间缩短了,这些植株也显示出更多的花序分枝、角果和种子。此外,这些植物的角果较长,并紧密充满种子,但种子在尺寸上较小。与对照相比,转SlWRKY23基因拟南芥在收获时的根系生物量下降了25%。有研究表明,SlWRKY23在植物生长调控中扮演着重要角色[35]。

叶片衰老是植物一个重要的生理过程,它可以支持氮和其他营养物质的循环利用,促进包括种子、叶片和果实在内的新器官的生长发育。由此可见,调控植物衰老对野生种群的适合度和提高作物产量具有重要意义。WRKY转录因子已被证实参与到植物的衰老过程中[36-39]。有研究发现,一些WRKY转录因子参与了番茄叶片的衰老过程。王璐通过研究发现,番茄WRKY转录因子SlWRKY16/17/22/23/25/31/33/53/54在番茄叶片中的表达量变化趋势与叶片的成熟度呈正相关,在叶片进入衰老状态时表达量最高,表明上述SlWRKY可能与叶片衰老相关[40]。Wang等报道,茉莉酸甲酯(methyl jasmonate,MeJA)和暗处理(dark)均显著诱导了茉莉酸(jasmonic,acid,JA)信号中番茄SlWRKY37和SlMYC2基因的表达水平。SlMYC2直接结合到SlWRKY37的启动子上,激活其表达。敲除SlWRKY37可以抑制JA、dark诱导的叶片衰老。转录组分析和生化试验结果表明,SlWRKY53和SlSGR1 (S. lycopersicum衰老诱导叶绿体保持绿色蛋白1)是SlWRKY37调控叶片衰老的直接转录靶点。此外,SlWRKY37与含有VQ基序的蛋白SlVQ7互作,该互作促进了SlWRKY37蛋白的稳定性和下游靶基因的转录激活。研究结果揭示了SlWRKY37在叶片衰老过程中的生理和分子功能,并提供了1个靶基因,通过降低JA、dark等外部衰老信号的敏感性来延缓叶片黄化[41]。

WRKY转录因子也参与调控植物果实的成熟[42-44]。贾宁通过研究得出,番茄WRKY转录因子SlWRKY16/17/53/54基因与番茄后熟过程紧密相关,同时SlWRKY17/53基因受到后熟重要转录因子的调控,参与后熟调控过程并起重要作用[45]。Liu等对紫番茄靛蓝玫瑰的果皮、果肉进行了转录组比较分析,发现2个与花青素相关的WRKY基因(SlWRKY53和SlWRKY54)仅在成熟绿色阶段的果皮和果肉之间存在显著差异表达[46]。王璐通过研究发现,番茄SlWRKY16/17/22/23/25/31/33/53/54在番茄果实成熟过程中具有一定的时序性表达特性,但都在后熟阶段显著上调表达。进一步研究发现,WRKY 转录因子可能从多个途径(叶绿素降解、番茄红素合成、果实成熟衰老相关的转录因子ERF/RIN等)参与番茄果实成熟衰老的调控[40]。Yuan等报道,SlWRKY35为番茄中类胡萝卜素生物合成的正调控因子。进一步研究得出,SlWRKY35可直接激活1-脱氧-D-木酮糖5-磷酸合酶(SlDXS1)基因的表达,将代谢重编程为2-C-甲基-D-赤藓糖醇4-磷酸(MEP)途径,从而增强类胡萝卜素的积累。主调节因子SlRIN在番茄果实成熟过程中直接调节SlWRKY35的表达。与SlLCYE过表达系相比,SlWRKY35和SlLCYE的共表达可以进一步提高转基因番茄果实中叶黄素的产生量。以上研究结果表明,SlWRKY35通过正向调控MEP途径衍生的过程,如叶绿素、类胡萝卜素的生物合成进而参与番茄代谢的新型调节因子[47]。Arhondakis等从番茄中鉴定到1个WRKY转录因子SlWRKY22-like,通过研究发现,SlWRKY22-like可能参与了6种钙传感基因表达的协调调控,从而调控番茄果实成熟[48]。Wang等从23个番茄SlWRKYs(这些基因是与其他植物响应乙烯相似或在果实成熟期间显示上调的WRKY基因)中发现12个SlWRKYs在果實成熟过程中被乙烯处理上调表达,因此被命名为SlER-WRKYs。通过进一步研究得出,12个SlER-WRKYs中有8个可能直接调节与颜色变化相关的4个基因(SlPAO、SlPPH、SlPSY1和SlPDS)。以上研究结果表明,WRKY转录因子在果实成熟过程中起作用,特别是在颜色变化中起作用,并且与其他成熟调控因子的复杂调控网络相关[49]。

以上研究结果表明,番茄WRKY转录因子参与了植物的生长发育过程,主要涉及根系生长、植株开花、叶片衰老及果实成熟等一系列过程,但相关研究较少,在生长发育的其他方面,如种子发育、次生壁形成等方面的研究仍是空白,因此其他番茄WRKY基因的功能仍有待探究,后续应开展番茄WRKY转录因子在调控植物生长发育方面作用的研究。

2.2 番茄WRKY转录因子参与非生物胁迫的响应过程

植物在其生长发育过程中经常受到高/低温、盐、干旱等非生物胁迫,这就要求植物在生理上适应和抵抗一系列条件。植物基因表达变化、信号转导过程、生理生化变化等响应机制是一个复杂的过程,WRKY转录因子在这些过程中发挥着重要作用。近年来,越来越多的WRKY转录因子被研究,重点是它们在非生物胁迫响应中的调控作用[50-56]。许多研究也探讨了WRKY基因在番茄植物非生物胁迫中的作用,其中盐、干旱是影响番茄植株生长发育的主要非生物胁迫因素,番茄SlWRKY53、SlWRKY23、SlWRKY1、SlWRKY3、SlWRKY44、SlWRKY39、WRKY12和WRKY13、SlWRKY4、SlWRKY81被报道在植株抵抗盐、干旱胁迫的响应中具有重要作用[57-67]。例如,孙晓春等用盐胁迫处理3个独立的转SlWRKY23基因株系(WRKY23-1、WRKY23-5和WRKY23-7)后发现,转基因植株表现出明显的抗盐表型,同时逆性相关基因SlRD22、SlDREB2A的表达量显著高于野生型。该结果表明,SlWRKY23基因在番茄抗盐胁迫过程中具有正调控作用,并通过上调逆性相关基因的表达量来增强番茄植株的抗逆性[58]。张凝等通过克隆得到番茄SlWRKY1基因,通过研究发现,过表达SlWRKY1植株对盐胁迫表现出抗逆性,在胁迫条件下,转基因植物中积累了大量脯氨酸(proline,Pro),推测SlWRKY1基因可能通过参与番茄Pro代谢调控过程从而调控植株对盐胁迫的抗性[59]。Birhanu等通过研究发现,番茄WRKY12、WRKY13在番茄耐盐胁迫中起负调控作用。SOS1在WRKY13_RNAi中上调,可能导致低Na+积累并有助于耐盐性。APX在WRKY12和WRKY13_RNAi中的表达量上调,可能有助于这2种基因型的耐盐机制[64]。Ahammed等通过研究得出,番茄SlWRKY81通过抑制SlRBOH1衍生的过氧化氢(hydrogen peroxide,H2O2)积累量来负调控气孔关闭,从而减弱植物对干旱的耐受性。进一步研究得出,干旱诱导了SlWRKY81的表达并降低了植物的光合能力。并通过光学显微镜、生化分析和共聚焦激光扫描显微镜等研究发现,SlWRKY81可能通过抑制硝酸还原酶(nitrate reductase,NR)编码的NR基因的转录来抑制保卫细胞中一氧化氮(nitric oxide,NO)的积累以应对干旱,从而最终抑制气孔关闭并减弱番茄的耐旱性[66-67]。

高/低温也是番茄生长发育过程中的主要胁迫因素,在很大程度上影响了番茄的品质和产量。Zhou等通过研究发现,沉默番茄WRKY33基因降低了番茄的耐热性,降低了热诱导自噬相关基因(autophagy-related gene,ATG)的表达量和自噬小体的积累量[68]。Chen等从番茄基因组中鉴定出80个WRKY基因,转录分析结果显示,番茄中有10个WRKY在低温胁迫下被强烈诱导2倍以上。该结果能为以后深入研究番茄WRKY转录因子调控冷胁迫的分子机制奠定基础[69]。Zhou等通过分子互补和基因沉默试验证实,番茄2个WRKY基因(SlWRKY33A和SlWRKY33B)在植物对耐热的胁迫响应中发挥了关键作用[70]。王梦琪通过研究发现,番茄WRKY6参与了番茄调控低温抗性的过程[71]。王艺璇等通过研究发现,番茄81个WRKY转录因子中有27个能够被低温显著诱导,进一步研究推测,转录因子可能参与了CBFs (C-repeat binding factors)介导的低温响应途径[72]。周靖翔从番茄中筛选到1个冷应激反应过程中的关键抗冷因子SlWRKY45,并通过病毒诱导的基因沉默(virus-induced gene silencing,VIGS)技术沉默该基因,使得番茄果实的冷害症状加重,初步表明SlWRKY45在番茄果实的冷害中起着一定作用[73]。此外Guo等研究发现,番茄WRKY33与冷敏感性相关[74]。

另外,Ye等通过研究发现,SlWRKY42负调控番茄果实的苹果酸含量和铝(Al)抗逆性[75]。Wang等通过研究发现,6个SlWRKY基因(SlWRKY3、SlWRKY6、SlWRKY16、SlWRKY37、SlWRKY39和SlWRKY71)可能参与了JA对铝胁迫下番茄根系生长抑制的调控[76]。王茹等利用RT-PCR技术从番茄中克隆得到1个WRKY转录因子SlWRKY6,通过实时荧光定量 PCR分析得出,SlWRKY6基因的表达量在3种重金属(CdCl2、CuCl2、HgSO4)胁迫下均上调,研究结果可为筛选番茄中响应重金属胁迫功能基因的研究提供基础[77]。以上研究结果表明,番茄WRKY转录因子在响应铝、重金属方面也有重要作用。

除此之外,番茄WRKY转录因子在盐与干旱、盐与低温、干旱、盐和寒冷等复合胁迫的响应过程中也扮演着重要角色[78-87]。例如,Li等利用同源克隆法从番茄中分离到SlWRKY基因,半定量 RT-PCR 分析结果表明,盐和干旱处理能够诱导SlWRKY的表达量上调。在烟草中过表达该基因,会使转基因植株比野生型植株生长得旺盛,并通过提高抗氧化酶活性,降低电导率(EC)和丙二醛(malondialdehyde,MDA)含量,降低氧化损伤,从而使转基因植株对盐、干旱胁迫的耐受性提高。此外,Li等观察到SlWRKY蛋白能够调控下游基因,增加防御相关PR1、PR2基因的表达量[79]。Li等报道,盐和干旱均能诱导番茄SpWRKY1基因的表达,在烟草中过表达SpWRKY1能够显著提高植株对盐、干旱胁迫的耐受性。进一步研究发现,SpWRKY1可通过提高防御酶的活性、促进渗透调节物质的积累、调节相关信号途径及抗性基因的表达,以正向调控方式参与番茄的防卫反应[80-81]。Gao等报道,番茄SlWRKY8能够被干旱、盐和寒冷等非生物胁迫诱导,过表达SlWRKY8的转基因植物在干旱、盐胁迫下表现出较轻的萎蔫或褪绿表型,具有更高水平的胁迫诱导的渗透物质(如Pro)和更高的胁迫响应基因SlAREB、SlDREB2A和SlRD29的转录水平。与野生型植株相比,转基因植物在干旱胁迫下的气孔孔径较小,叶片中的水分含量较高。此外,用H2O2和MDA浓度表示的氧化压力在转基因植物中也降低了,在胁迫下的抗氧化酶活性更高,表明SlWRKY8在植物对干旱和盐胁迫的响应中起着正调控的作用[87]。

以上研究结果表明,影响番茄的主要非生物胁迫因素有干旱、盐碱、高/低温、水分亏缺、冷害、重金属等,而番茄WRKY转录因子调控这些非生物胁迫的作用机制还有待深入解析,因此,关于番茄的相关研究工作还有待深入。

2.3 番茄WRKY转录因子参与生物胁迫的响应过程

除了各种非生物胁迫,在整个生命周期中,植物还经常受到病原体的攻击,如细菌、真菌和病毒。因此,植物在长期进化过程中逐渐形成了复杂的抗病机制,而WRKY转录因子在这些机制中发挥着重要作用[88-94]。关于番茄WRKY转录因子参与生物胁迫抗性的研究也有报道。有研究发现,番茄LeWRKY1、Sl-WRKY1、LeWRKY2、SlDRW1、SlWRKY33A和SlWRKY33B、SlWRKY3、SlWRKY46、SlWRKY31参与了植株对灰霉菌(Botrytis cinerea)抗性的响应过程[71,95-102]。孙清鹏等通过研究得出,番茄B. cinerea可以诱导LeWRKY2基因的表达,且在接种后4 h时其表达量达到最高值。用JA处理番茄幼苗后,LeWRKY2基因的相对含量在处理后 0~60 min与JA处理时间成正比;在处理后60~150 min 则与JA处理时间成反比,表明LeWRKY2是一种参与番茄防御反应的早期快速反应基因[97]。Liu等通过研究得出,B. cinerea能够显著诱导SlDRW1的表达,而假单胞杆菌(Pseudomonas syringae pv. tomato DC3000,Pst DC3000)不诱导SlDRW1的表达。沉默SlDRW1基因会导致B. cinerea的严重程度增加,但不影响Pst DC3000引起的病害表型。此外,SlDRW1的沉默也导致其对氧化胁迫的耐受性下降,但不影响其对干旱胁迫的耐受性。SlDRW1基因沉默后感染B. cinerea,引起防御相关基因的表达,从而减弱植株的防御反应。上述研究结果表明,SlDRW1是番茄抗B. cinerea和氧化胁迫防御反应的正向调节因子[98]。蔡俊通过对TPK1b(Tomato Protein Kinase 1b)啟动子的酵母单杂交钓库试验,筛选并鉴定到1个能够负调控番茄对B. cinerea抗性的WRKY蛋白SlWRKY3,进一步对SlWRKY3的抗性调控机制进行初步解析,得出SlWRKY3能够负调控TPK1b基因的表达,进而影响水杨酸(salicylic acid,SA)、ROS等信号,最终实现对番茄抗灰霉病抗性的调控[100]。Huang等研究发现,番茄中的SlJAZ相互作用蛋白SlVQ15与SlWRKY31相互作用,以协同、正向方式调控JA介导的番茄对B. cinerea的防卫响应过程[102]。

孙晓春等对3个独立的转SlWRKY23株系(WRKY23-1、WRKY23-5和WRKY23-7)接Pst DC3000后发现,转基因植株表现明显的抗病表型,抗病防御相关基因SlPR1、SlPR1a1的表达量显著高于野生型,从而推测番茄中的SlWRKY23基因可能通过上调防御相关基因的表达量来调控在番茄对Pst DC3000的抗性[58]。除了SlWRKY23转录因子,SlWRKY80、SlWRKY1、SlWRKY39、SlWRKY8、SlWRKY22和SlWRKY25也被证实参与了番茄调控Pst DC3000的抗性响应过程[59,87,103-105]。Sun等研究发现,番茄SlWRKY39可能通过激活致病相关基因SlPR1、SlPR1a1和胁迫相关基因SlRD22、SlDREB2A的表达来调控植株对Pst DC3000的抗性[104]。Gao等研究得出,过表达番茄SlWRKY8能够增强植株对Pst DC3000的抗性,同时与病原相关的2个基因SlPR1a1、SlPR7的转录水平提高。上述结果表明,SlWRKY8可能通过调控病原相关基因的表达,从而在植物对病原体的防卫响应中起到正调控作用[87]。

致病疫霉(Phytophthora infestans)也是番茄中比较重要的病害,前人研究发现,番茄SpWRKY2、WRKY1、SpWRKY6、SpWRKY3、SpWRKY6均是植株对P. infestans抗性响应的正调控因子[80-81,106-110]。如Cui等对接种、不接种P. infestans的番茄进行了转录组比较分析,发现SpWRKY3能够被P. infestans显著诱导,进一步研究发现,SpWRKY3能够通过诱导PR基因的表达并减少活性氧(reactive oxygen,ROS)積累以防止细胞膜损伤,从而增强了植株对P. infestans的抗性[108]。Hong等用VIGS方法沉默番茄SpWRKY6,可以降低番茄对P. infestans的抗性。相比而言,过表达SpWRKY6的番茄植株对P. infestans的抗性增强,并伴有坏死细胞数量、病变大小和疾病指数的下降。此外,过表达SpWRKY6的转基因番茄植株感染P. infestans后,其PR基因的表达量显著高于野生型植株,而坏死细胞数量和ROS积累量较少且较低。上述研究结果表明,SpWRKY6通过调节ROS水平、PR基因的表达水平来减轻细胞膜损伤,是番茄抗P. infestans侵染的正向调控因子[109]。

除此之外,番茄WRKY基因(LpWRKY1、SlWRKY16、SlWRKY1/11/39/53/70、SlWRKY23、SaWRKY1、WRKY40与WRKY53、WRKY2229和WRKY33等)还被报道参与其他生物胁迫(如枯萎病、卷叶病、早疫病、青枯病等)的响应过程[60,111-119]。另外,Huang等从番茄中鉴定到6个能够响应番茄黄叶卷曲病病毒(tomato yellow leaf curly virus,TYLCV)的WRKY转录因子(SolyWRKY41、SolyWRKY42、SolyWRKY53、SolyWRKY54、SolyWRKY80和SolyWRKY81),在SolyWRKY41和SolyWRKY54沉默后的抗性番茄叶片中,番茄TYLCV的含量显著低于对照,表明SolyWRKY41和SolyWRKY54负调控番茄TYLCV的侵染。进一步研究发现,上述转录因子还可以通过与其他基因启动子区域中存在的顺式元件结合来与其他蛋白质相互作用,从而调节病原体相关基因的表达[120]。Aamir等通过全基因组计算分析发现,在番茄枯萎病病菌(Fusarium oxysporum f. sp. lycopersici,Fol)侵染期间,WRKY基因家族中有16个不同成员参与其中,其中只有4个WRKY基因(SolyWRKY4、SlWRKY31、SolyWRKY33和SolyWRKY37)的表达差异显著,并伴随着H2O2的产生和积累以及木质化组织的增强[121-122]。Gharsallah等研究发现,植株接种番茄黄化曲叶病(tomato yellow leaf curl disease,TYLCD)病毒后,抗病材料中SlWRKY8、SlWRKY31和SlWRKY39的表达水平均显著上调,而在TYCLD和盐联合胁迫下的表达水平有所降低。进一步通过建立WRKY转录因子的相互作用网络得出,SlWRKY39、SlWRKY8和SlWRKY33似乎是相互关联的。此外,SlWRKY39、SlWRKY8与植物防御反应的正向调控因子MPK3 (丝裂原活化蛋白激酶)互作,SlWRKY31与MAPK7共表达。同时发现NAC1与SlWRKY31、SlWRKY39存在共同表达。值得注意的是,SlWRKY39和SlWRKY8似乎与CNGIC基因相互作用。CNGIC是1个环核苷酸门控离子通道1型基因,可能与环腺苷酸(cyclic adenosine monophosphate,camp)诱导的钙进入细胞有关,是植物胁迫反应信号转导的一部分。SlERF通过与其他蛋白质相互作用参与不同的功能途径。SlERF16连接SlWRKY31和MAPK3。SlERF80与HSFA3(热应激因子A3)相关,而SlERF9与热应激因子共表达。由此可见,转录因子通过复杂的调控网络提高对非生物、生物胁迫的抗性[123]。

番茄WRKY转录因子除了在病害方面具有调控作用外,在虫害的调控响应中也有相关作用。如Bhattarai等报道,拟南芥转录因子AtWRKY72的2个番茄直系同源物SlWRKY72a、SlWRKY72b在由R基因Mi-1介导的抗性期间转录水平上调。在番茄中沉默这2个基因会导致Mi-1介导的抗性及对根结线虫(root-knot nematodes,RKN)和马铃薯蚜虫的基础防御能力明显降低,表明SlWRKY72a、SlWRKY72b在这些防御调控过程中具有重要作用[124]。Atamian等利用VIGS技术沉默SlWRKY70后,减弱了Mi-1介导的对马铃薯蚜虫、根结线虫RKN的抗性,表明SlWRKY70是Mi-1功能所必需的。此外,还发现SlWRKY70转录物可诱导响应蚜虫侵染和RKN接种。Mi-1介导的对害虫的识别调节了这种转录反应。如之前关于AtWRKY70的研究发现,SlWRKY70转录水平被SA上调并被MeJA抑制,表明WRKY70调控的某些方面在远亲真双子叶植物中是保守的[125]。Chinnapandi等发现,根结线虫能够显著诱导番茄SlWRKY45的表达,同时WRKY45受到特定植物激素的高度诱导,包括细胞分裂素、生长素和防御信号分子SA,而不是JA。进一步研究发现,SlWRKY45可能通过激素信号途径调控根结线虫在根组织中的发育过程[126]。Birhanu等发现,沉默番茄WRKY5会导致坏死病变、膜渗漏增加和细胞凋亡标记基因的表达量增加,从而推测WRKY5可能是细胞死亡的负调控因子[64]。

目前,番茄WRKY转录因子家族在生物胁迫方面的研究主要集中在枯萎病、灰霉病、致病疫霉、卷叶病、早疫病和丁香假单胞菌等病害胁迫方面。此外,番茄植株在其生长发育过程中还受到晚疫病病原、黄萎病病原、绵疫病病原、细菌性溃疡病病原、猝倒病病原等生物病害的影响,有关番茄WRKY转录因子在生物胁迫方面的作用仍需要更系统、更深入研究。

2.4 番茄WRKY转录因子参与激素信号的转导过程

植物激素在细胞分裂和伸长、组织器官分化、开花和结果、成熟和衰老、休眠和萌发及离体组织培养等方面调节植物的生长发育和分化。因此,植物激素对植物的生长发育具有重要的调控作用。WRKY转录因子可以通过调控与脱落酸(abscisic acid,ABA)、JA、SA、乙烯(ethylene,ET)等植物激素的合成来调控植物的生长发育或抗逆性[127-131]。有研究发现,番茄B. cinerea及JA能够诱导LeWRKY1的表达,而SA对该基因没有明显的诱导作用,从而推测番茄LeWRKY1可能是通过JA依赖而SA非依赖的信号途径参与番茄对番茄B. cinerea防御反应的应答,且LeWRKY1的表达不依赖生物体内JA的从头合成[95,99,132-133]。Atamian等通过研究发现,番茄SlWRKY70是Mi-1介导的抗蚜虫、根结线虫所必需的,SlWRKY70转录水平被SA上调并被MeJA抑制,表明SlWRKY70可能通过激素信号途径来调控番茄对Mi-1介导的抗性[125]。Mandal等通過研究发现,SA处理增加了SlWRKY16SlTRN1(对细胞扩张、静脉形成很重要的基因)的转录水平。进一步研究得出,SA通路的激活会诱导SlWRKY16的表达,进而调节SlTRN1基因的转录,从而调控番茄植株对番茄卷叶病(tomato leaf curl disease)的抗性[112]。Lindo等通过试验,从番茄中鉴定到1个WRKY40转录因子,且该转录因子在存在麦角甾醇、角鲨烯的情况下负调控SA相关基因并正调控ET、JA相关基因,从而参与调控植物的生长和防卫过程[134]。周涛等通过研究表明番茄SlWRKY6转录因子可能通过参与ABA途径来响应非生物胁迫[135]。Singh等从番茄中鉴定到1个主要在根中表达的基因SlWRKY23,通过研究发现,当用ET、细胞分裂素BAP和SA处理后,番茄WRKY转录因子SlWRKY23的转录水平上调,而用生长素(indoleacetic acid,IAA)处理后则抑制了其转录水平。转基因拟南芥中SlWRKY23的表达影响了植株对ET、JA和IAA的敏感性,转基因植株表现出对ET、JA和IAA介导的主根生长抑制的敏感性。这种超敏与介导对这些激素响应的ERF1、ARF5的高度表达相关。有研究结果表明,SlWRKY23可能通过调控与激素响应相关的基因来调控植物生长[35]。Shu等报道,SlWRKY46可能通过抑制抗氧化剂、抗病酶的活性,调节SA、JA信号通路及调节ROS稳态,在B. cinerea感染中发挥负调控作用[101]。Zhao等报道,番茄WRKY32能够与YELLOW FRUITED-TOMATO 1 (YFT1)启动子调控区域中的W-box、W-box-like基序结合并诱导其表达,而YFT1已证实是ET信号转导途径中的重要组成部分。进一步利用RNAi技术沉默WRKY32后,番茄果实中的ET信号传导减弱,从而导致ET释放受到抑制,染色质发育延迟,类胡萝卜素积累减少,果实表型呈黄色。有研究发现,番茄WRKY32转录因子是通过调控ET信号转导的核心成分YFT1来影响番茄果实颜色的[136]。Wang等通过研究发现,番茄SlWRKY37在叶片衰老中具有重要的作用,并通过降低对外部衰老信号(如JA和dark)的敏感性来延缓叶片变黄[137]。Rosado等报道,番茄在避阴响应(shade-avoidance response,SAR)过程中,遮阴诱导的WRKY26/45/75基因和ET重组基因在根中的表达会限制其生长发育[13]。

以上研究结果表明,番茄WRKY家族基因对激素的响应过程都是通过一系列信号传导途径及非常复杂的调控网络来加以实现的,因此在后续研究中还有待深入探究其各个信号通路之间的机制及相关的生理代谢调控过程,从而为后期更好地研究番茄WRKY基因功能提供有效的信息资源。

3 展望

植物特异性的WRKY转录因子家族成员已在数十种植物中被发现,对其结构、表达特性和生物学功能的研究也越来越多。经过十几年时间,番茄中WRKY转录因子家族的研究也取得了一定进展。部分基因的生物学功能得到鉴定,一些基因的分子机制也得到解析,这些研究结果能够为后续研究提供一定的基础。但是,番茄大部分WRKY基因的功能还有待研究,且基因的调控也不仅是单一的途径,而是复杂的动态网络,因此对番茄WRKY家族功能的解析仍然是具有挑战的重大任务。随着分子生物技术的发展,使基因工程技术能够对关键WRKY转录因子进行调控和转化,并可用于植物关键性状的改良。因此,不断挖掘和鉴定番茄中的WRKY转录因子,对番茄品种分子育种和改良的进展具有重要意义。

参考文献:

[1]王荣青,杨悦俭,周国治,等. 番茄抗青枯病筛选方法及其在抗青枯病育种中的应用[J]. 浙江农业学报,2007,19(2):89-92.

[2]孙 妍,陈思宇,肖 健,等. 不同果实形状番茄品种茎部内生细菌群落结构及代谢功能特征[J]. 西南农业学报,2021,34(12):2586-2595.

[3]Chitwood-Brown J,Vallad G E,Lee T G,et al. Breeding for resistance to Fusarium wilt of tomato:a review[J]. Genes,2021,12(11):1673.

[4]Olaniyi J O,Akanbi W B,Adejumo T,et al. Growth,fruit yield and nutritional quality of tomato varieties[J]. African Journal of Food Science,2010,4(6):398-402.

[5]Bhowmik D,Kumar K P S,Paswan S,et al. Tomato-a natural medicine and its health benefits[J]. Journal of Pharmacognosy and Phytochemistry,2012,1(1):33-43.

[6]Sujeet K,Ramanjini G P H,Banashree S,et al. Screening of tomato genotypes against bacterial wilt (Ralstonia solanacearum) and validation of resistance linked DNA markers[J]. Australasian Plant Pathology,2018,47:365-374.

[7]Golldack D,Lüking I,Yang O. Plant tolerance to drought and salinity:stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports,2011,30(8):1383-1391.

[8]劉子刚,田佩耕,王 宁,等. 马铃薯StWRKY转录因子的克隆和生物信息学分析[J]. 西南农业学报,2022,35(2):432-437.

[9]Chen Y,Zhang H,Zhang M,et al. Salicylic acid-responsive factor TcWRKY33 positively regulates taxol biosynthesis in Taxus chinensis in direct and indirect ways[J]. Frontiers in Plant Science,2021,12:697476.

[10]Kang G J,Yan D,Chen X L,et al. HbWRKY82,a novel IIc WRKY transcription factor from Hevea brasiliensis associated with abiotic stress tolerance and leaf senescence in Arabidopsis[J]. Physiologia Plantarum,2021,171(1):151-160.

[11]Feng X,Abubakar A S,Yu C,et al. Analysis of WRKY resistance gene family in Boehmeria nivea (L.) Gaudich:crosstalk mechanisms of secondary cell wall thickening and cadmium stress[J]. Frontiers in Plant Science,2022,13:812988.

[12]Sun S S,Ren Y X,Wang D X,et al. A group I WRKY transcription factor regulates mulberry mosaic dwarf-associated virus-triggered cell death in Nicotiana benthamiana[J]. Molecular Plant Pathology,2022,23(2):237-253.

[13]Rosado D,Ackermann A,Spassibojko O,et al. WRKY transcription factors and ethylene signaling modify root growth during the shade-avoidance response[J]. Plant Physiology,2022,188(2):1294-1311.

[14]Ishiguro S,Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and pamylase from sweet potato[J]. Molecular and General Genetics,1994,244(6):563-571.

[15]Bencke-Malato M,Cabreira C,Wiebke-Strohm B,et al. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection[J]. BMC Plant Biology,2014,14(1):236.

[16]Ning P,Liu C C,Kang J Q,et al. Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition[J]. Peer J,2017,5:e3232.

[17]Zhang T,Tan D F,Zhang L,et al. Phylogenetic analysis and drought-responsive expression profiles of the WRKY transcription factor family in maize[J]. Agri Gene,2017,3:99-108.

[18]Ramamoorthy R,Jiang S Y,Kumar N,et al. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments[J]. Plant and Cell Physiology,2008,49(6):865-879.

[19]Zhang C,Wang D D,Yang C H,et al. Genome-wide identification of the potato WRKY transcription factor family[J]. PLoS One,2017,12(7):1-20.

[20]Dong J X,Chen C H,Chen Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Molecular Biology,2003,51(1):21-37.

[21]Ling J,Jiang W J,Zhang Y,et al. Genome-wide analysis of WRKY gene family in Cucumis sativus[J]. BMC Genomics,2011,12:471.

[22]Yang B,Jiang Y Q,Rahman M H,et al. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments[J]. BMC Plant Biology,2009,9(1):68.

[23]Huang S X,Gao Y F,Liu J K,et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum[J]. Molecular Genetics and Genomics,2012,287(6):495-513.

[24]張 红,姜景彬,许向阳,等. 番茄WRKY基因家族的生物信息学分析[J]. 分子植物育种,2016,14(8):1965-1976.

[25]Eulgem T,Rushton P J,Robatzek S,et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.

[26]Rushton P J,Somssich I E,Ringler P,et al. WRKY transcription factors[J]. Trends in Plant Science,2010,15(5):247-258.

[27]Wu K L,Guo Z J,Wang H H,et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Research,2005,12(1):9-26.

[28]Zhang Y J,Wang L J. The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology,2005,5:1-13.

[29]Yang L,Zhao X,Yang F,et al. PtrWRKY19,a novel WRKY transcription factor,contributes to the regulation of pith secondary wall formation in Populus trichocarpa[J]. Scientific Reports,2016,6:18643.

[30]Wang Y,Li Y,He S P,et al. A cotton (Gossypium hirsutum) WRKY transcription factor (GhWRKY22) participates in regulating anther/pollen development[J]. Plant Physiology Biochemistry,2019,141:231-239.

[31]Zhou T T,Yang X M,Wang G B,et al. Molecular cloning and expression analysis of a WRKY transcription factor gene,GbWRKY20,from Ginkgo biloba[J]. Plant Signaling & Behavior,2021,16(10):1930442.

[32]Zhang Y,Yang X Q,Nvsvrot T,et al. The transcription factor WRKY75 regulates the development of adventitious roots,lateral buds and callus by modulating hydrogen peroxide content in poplar[J]. Journal of Experimental Botany,2022,73(5):1483-1498.

[33]Spyropoulou E A,Haring M A,Schuurink R C. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters[J]. BMC Genomics,2014,15(1):402.

[34]Li R,Shi C L,Wang X,et al. Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission[J]. Plant Physiology,2021,186(2):1288-1301.

[35]Singh D,Debnath P,Roohi,et al. Expression of the tomato WRKY gene,SlWRKY23,alters root sensitivity to ethylene,auxin and JA and affects aerial architecture in transgenic Arabidopsis[J]. Physiology and Molecular Biology of Plants,2020,26(6):1187-1199.

[36]Gu L J,Dou L L,Guo Y N,et al. The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton (Gossypium hirsutum L.)[J]. BMC Plant Biology,2019,19(1):116.

[37]Doll J,Muth M,Riester L,et al. Arabidopsis thaliana WRKY25 transcription factor mediates oxidative stress tolerance and regulates senescence in a redox-dependent manner[J]. Frontiers in Plant Science,2020,10:1734.

[38]Li L,Li K,Ali A,et al. AtWAKL10,a cell wall associated receptor-like kinase,negatively regulates leaf senescence in Arabidopsis thaliana[J]. International Journal of Molecular Sciences,2021,22(9):4885.

[39]Cao Z Y,Wu P Y,Gao H M,et al. Transcriptome-wide characterization of the WRKY family genes in Lonicera macranthoides and the role of LmWRKY16 in plant senescence[J]. Genes Genomics,2022,44(2):219-235.

[40]王 璐. 番茄果實后熟与叶片衰老相关的S1WRKY转录因子功能分析[D]. 广州:华南农业大学,2016:31-46.

[41]Wang Z R,Gao M,Li Y F,et al. SlWRKY37 positively regulates jasmonic acid-and dark-induced leaf senescence in tomato[J]. Journal of Experimental Botany,2022,73(18):6207-6225.

[42]Cheng Y,Ahammed G J,Yu J H,et al. Corrigendum:Putative WRKYs associated with regulation of fruit ripening revealed by detailed expression analysis of the WRKY gene family in pepper[J]. Scientific Reports,2017,7:43498.

[43]Gan Z Y,Yuan X,Shan N,et al. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit[J]. Plant Science,2021,309:110948.

[44]Zhang W W,Zhao S Q,Gu S,et al. FvWRKY48 binds to the pectate lyase FvPLA promoter to control fruit softening in Fragaria vesca[J]. Plant Physiology,2022,189(2):1037-1049.

[45]贾 宁. 番茄后熟相关WRKY基因的表达调控[D]. 广州:华南农业大学,2018:31-54.

[46]Liu X X,Huang Y M,Qiu Z K,et al. Comparative transcriptome analysis of differentially expressed genes between the fruit peel and flesh of the purple tomato cultivar ‘Indigo Rose[J]. Plant Signaling Behavior,2020,15(6):1752534.

[47]Yuan Y,Ren S R,Liu X F,et al. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit[J]. New Phytologist,2022,234(1):164-178.

[48]Arhondakis S,Bita C E,Perrakis A,et al. In silico transcriptional regulatory networks involved in tomato fruit ripening[J]. Frontiers in Plant Science,2016,7:1234.

[49]Wang L,Zhang X L,Wang L,et al. Regulation of ethylene-responsive SlWRKYs involved in color change during tomato fruit ripening[J]. Scientific Reports,2017,7(1):16674.

[50]Shi W Y,Du Y T,Ma J,et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences,2018,19(12):4087.

[51]Dabi M,Agarwal P,Agarwal P K. Functional validation of JcWRKY2,a group Ⅲ transcription factor toward mitigating salinity Stress in transgenic tobacco[J]. DNA and Cell Biology,2019,38(11):1278-1291.

[52]Wang M Q,Huang Q X,Lin P,et al. The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis[J]. Frontiers in Plant Science,2020,10:1746.

[53]Gulzar F,Fu J Y,Zhu C Y,et al. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis[J]. International Journal of Molecular Sciences,2021,22(18):10080.

[54]Niu Y T,Li X T,Xu C,et al. Analysis of drought and salt-alkali tolerance in tobacco by overexpressing WRKY39 gene from Populus trichocarpa[J]. Plant Signaling Behavior,2021,16(7):1918885.

[55]Fei J,Wang Y S,Cheng H,et al. The Kandelia obovata transcription factor KoWRKY40 enhances cold tolerance in transgenic Arabidopsis[J]. BMC Plant Biology,2022,22(1):274.

[56]Yu S J,Lan X,Zhou J C,et al. Dioscorea composita WRKY3 positively regulates salt-stress tolerance in transgenic Arabidopsis thaliana[J]. Journal of Plant Physiology,2022,269:153592.

[57]劉 畅,牛向丽,刘继恺,等. 番茄转录因子SlWRKY53的分离及生物学功能鉴定[J]. 四川大学学报(自然科学版),2013,50(6):1347-1354.

[58]孙晓春,高永峰,李会容,等. 番茄SlWRKY23基因的克隆及其抗病性和耐盐性分析[J]. 中国农业科技导报,2014,16(5):39-46.

[59]张 凝,高永峰,孙晓春,等. 番茄SlWRKY1转录因子在植物生物和非生物胁迫中的调控[J]. 四川大学学报(自然科学版),2015,52(2):435-440.

[60]Kissoudis C. Genetics and regulation of combined abiotic and biotic stress tolerance in tomato[D]. Wageningen:Wageningen University,2016:32-54.

[61]Hichri I,Muhovski Y,iková E,et al. The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato[J]. Frontiers in Plant Science,2017,8:1343.

[62]樊 蕾,高志英. 番茄SlWRKY44基因的克隆及表达[J]. 北方园艺,2018(22):6-10.

[63]Albaladejo I,Egea I,Morales B,et al. Identification of key genes involved in the phenotypic alterations of res (restored cell structure by salinity) tomato mutant and its recovery induced by salt stress through transcriptomic analysis[J]. BMC Plant Biology,2018,18(1):213.

[64]Birhanu M W,Kissoudis C,van der Linden C G,et al. WRKY gene silencing enhances tolerance to salt stress in transgenic tomato[J]. Journal of Biology,Agriculture and Healthcare,2020,10(17):14-25.

[65]Karkute S G,Easwaran M,Gujjar R S,et al. Protein modeling and molecular dynamics simulation of SlWRKY4 protein cloned from drought tolerant tomato (Solanum habrochaites) line EC520061[J]. Journal of Molecular Modeling,2015,21(10):255.

[66]Ahammed G J,Li X,Yang Y,et al. Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2-mediated stomatal closure[J]. Environmental and Experimental Botany,2019,171:103960.

[67]Ahammed G J,Li X,Mao Q,et al. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought[J]. Physiologia Plantarum,2021,172(2):885-895.

[68]Zhou J,Wang J,Yu J Q,et al. Role and regulation of autophagy in heat stress responses of tomato plants[J]. Frontiers in Plant Science,2014,5:174.

[69]Chen L,Yang Y,Liu C,et al. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment[J]. Biochemical and Biophysical Research Communications,2015,464(3):962-968.

[70]Zhou J,Wang J,Zheng Z Y,et al. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses[J]. Journal of Experimental Botany,2015,66(15):4567-4583.

[71]王夢琪. 番茄乙烯响应因子ERF15在低温抗性中的作用[D]. 杭州:浙江大学,2016:15-45.

[72]王艺璇,孟庆伟,马娜娜. 番茄低温响应WRKY转录因子的鉴定和分析[J]. 植物生理学报,2021,57(6):1349-1362.

[73]周靖翔. 低温胁迫下番茄果实的冷应激反应及抗冷相关因子的筛选与分析[D]. 淄博:山东理工大学,2021:23-54.

[74]Guo M Y,Yang F J,Liu C X,et al. A single-nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato[J]. New Phytologist,2022,236(3):989-1005.

[75]Ye J,Wang X,Hu T X,et al. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J]. The Plant Cell,2017,29(9):2249-2268.

[76]Wang Z R,Liu L,Su H,et al. Jasmonate and aluminum crosstalk in tomato:identification and expression analysis of WRKYs and ALMTs during JA/Al-regulated root growth[J]. Plant Physiology Biochemistry,2020,154:409-418.

[77]王 茹,陈 超,于丽杰,等. 番茄SlWRKY6基因克隆及其在重金属胁迫下的表达分析[J]. 华北农学报,2021,36(1):54-62.

[78]金 慧,欒雨时. 番茄WRKY基因的克隆与分析[J]. 西北农业学报,2011,20(4):96-101.

[79]Li J B,Luan Y S,Jin H. The tomato SlWRKY gene plays an important role in the regulation of defense responses in tobacco[J]. Biochemical and Biophysical Research Communications,2012,427(3):671-676.

[80]Li J B,Luan Y S,Liu Z. Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco[J]. Physiology Plantarum,2015,155(3):248-266.

[81]Li J B,Luan Y S,Liu Z. SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato[J]. Plant Cell,Tissue and Organ Culture,2015,123(1):67-81.

[82]魏娟娟,杨 伟,潘 宇,等. 番茄WRKY41基因的克隆、表达分析与转基因植株的获得[J]. 西南大学学报(自然科学版),2017,39(1):46-54.

[83]Jafarov H R,Gasimov K G. Expression pattern of SlWRKY33 and SlERF5 in tomato plants under elevated salt concentration and water deficit[J]. Factors of Experimental Evolution of Organisms,2017,20:266-270.

[84]陈青奇,张 红,姜景彬,等. 番茄部分WRKY基因非生物胁迫表达和SlWRKY50基因沉默分析[J]. 东北农业大学学报,2018,49(7):8-18.

[85]Ashrafi-Dehkordi E,Alemzadeh A,Tanaka N,et al. Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato[J]. PeerJ,2018,6:e4631.

[86]周 涛,王 娟,王露露,等. 番茄转录因子基因SlWRKY16的克隆及原核表达分析[J]. 园艺学报,2020,47(7):1312-1322.

[87]Gao Y F,Liu J K,Yang F M,et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J]. Physiology Plantarum,2020,168(1):98-117.

[88]Liu Q,Li X,Yan S J,et al. OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice[J]. BMC Plant Biology,2018,18(1):257.

[89]Cui X X,Yan Q,Gan S P,et al. GmWRKY40,a member of the WRKY transcription factor genes identified from Glycine max L.,enhanced the resistance to Phytophthora sojae[J]. BMC Plant Biology,2019,19(1):598.

[90]Wang X,Li J J,Guo J,et al. The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora (herbaceous peony) to Alternaria tenuissima[J]. Horticulture Research,2020,7:57.

[91]Chen T T,Li Y P,Xie L H,et al. AaWRKY17,a positive regulator of artemisinin biosynthesis,is involved in resistance to Pseudomonas syringae in Artemisia annua[J]. Horticulture Research,2021,8(1):217.

[92]Yang S,Zhang Y W,Cai W W,et al. CaWRKY28 Cys249 is required for interaction with CaWRKY40 in the regulation of pepper immunity to Ralstonia solanacearum[J]. Molecular Plant-Microbe Interactions,2021,34(7):733-745.

[93]Wang Z,Deng J,Liang T T,et al. Lilium regale Wilson WRKY3 modulates an antimicrobial peptide gene,LrDef1,during response to Fusarium oxysporum[J]. BMC Plant Biology,2022,22(1):257.

[94]Xu X H,Wang H,Liu J Q,et al. OsWRKY62 and OsWRKY76 interact with importin α1s for negative regulation of defensive responses in rice nucleus[J]. Rice,2022,15(1):12.

[95]王麗芳,于涌鲲,杜希华,等. 茉莉酸等3种因素刺激番茄LeWRKY1的表达特征分析[J]. 中国农学通报,2010,26(23):73-76.

[96]Molan Y Y,El-Komy M H. Expression of Sl-WRKY1 transcription factor during B. cinerea tomato interaction in resistant and susceptible cultivars[J]. International Journal of Plant Breeding Genetics,2010,4(1):1-12.

[97]孙清鹏,李 娜,于涌鲲,等. LeWRKY2基因的克隆及功能分析[J]. 中国农业科学,2012,45(7):1257-1264.

[98]Liu B,Hong Y B,Zhang Y F,et al. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress[J]. Plant Science,2014,227(5):145-156.

[99]Lu M,Wang L F,Du X H,et al. Molecular cloning and expression analysis of jasmonic acid dependent but salicylic acid independent LeWRKY1[J]. Genetics and Molecular Research,2015,14(4):15390-15398.

[100]蔡 俊. SlWRKY3通过TPK1b负调控番茄对灰霉病的抗性[D]. 武汉:华中农业大学,2020:25-33.

[101]Shu P,Zhang S J,Li Y J,et al. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways[J]. Plant Physiology and Biochemistry,2021,166:1-9.

[102]Huang H,Zhao W C,Li C H,et al. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato[J]. Plant Physiology,2022,190(1):828-842.

[103]曾 輝,高永峰,刘继恺,等. 番茄SlWRKY80基因共抑制表达影响转基因植株抗逆性的研究[J]. 四川大学学报(自然科学版),2014,51(5):1035-1042.

[104]Sun X C,Gao Y F,Li H R,et al. Over-expression of SlWRKY39 leads to enhanced resistance to multiple stress factors in tomato[J]. Journal of Plant Biology,2015,58(1):52-60.

[105]Ramos R N,Martin G B,Pombo M A,et al. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana[J]. Plant Molecular Biology,2021,105(1/2):65-82.

[106]Li J B,Luan Y S. Molecular cloning and characterization of a pathogen-induced WRKY transcription factor gene from late blight resistant tomato varieties Solanum pimpinellifolium L3708[J]. Physiological and Molecular Plant Pathology,2014,87:25-31.

[107]刘 震. 番茄SpWRKY6转录因子的抗病功能研究[D]. 大连:大连理工大学,2016:19-52.

[108]Cui J,Xu P S,Meng J,et al. Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3[J]. Theoretical and Applied Genetics,2018,131(4):787-800.

[109]Hong Y H,Cui J,Liu Z,et al. SpWRKY6 acts as a positive regulator during tomato resistance to Phytophthora infestans infection[J]. Biochemical and Biophysical Research Communications,2018,506(4):787-792.

[110]Cui J,Jiang N,Meng J,et al. LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato-Phytophthora infestans interactions[J]. The Plant Journal,2019,97(5):933-946.

[111]Hofmann M G,Sinha A K,Proels R K,et al. Cloning and characterization of a novel LpWRKY1 transcription factor in tomato[J]. Plant Physiology and Biochemistry,2008,46(5/6):533-540.

[112]Mandal A,Sarkar D,Kundu S,et al. Mechanism of regulation of tomato TRN1 gene expression in late infection with tomato leaf curl New Delhi virus (ToLCNDV)[J]. Plant Science,2015,241:221-237.

[113]Roylawar P,Panda S,Kamble A. Comparative analysis of BABA and Piriformospora indica mediated priming of defence-related genes in tomato against early blight[J]. Physiological and Molecular Plant Pathology,2015,91:88-95.

[114]Shinde B A,Dholakia B B,Hussain K,et al. Dynamic metabolic reprogramming of steroidal glycol-alkaloid and phenylpropanoid biosynthesis may impart early blight resistance in wild tomato (Solanum arcanum Peralta)[J]. Plant Molecular Biology,2017,95(4/5):411-423.

[115]Shinde B A,Dholakia B B,Hussain K,et al. WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato,Solanum arcanum Peralta[J]. Plant Biotechnology Journal,2018,16(8):1502-1513.

[116]崔丹丹. 番茄青枯病發病过程中ARFs和WRKYs的表达分析[D]. 广州:华南农业大学,2018:29-35.

[117]Naveed Z A,Ali G S. Comparative transcriptome analysis between a resistant and a susceptible wild tomato accession in response to Phytophthora parasitica[J]. International Journal of Molecular Sciences,2018,19(12):3735.

[118]Pentimone I,Colagiero M,Ferrara M,et al. Time-dependent effects of Pochonia chlamydosporia endophytism on gene expression profiles of colonized tomato roots[J]. Applied Microbiology and Biotechnology,2019,103(20):8511-8527.

[119]Du H S,Wang Y Q,Yang J J,et al. Comparative transcriptome analysis of resistant and susceptible tomato lines in response to infection by Xanthomonas perforans Race T3[J]. Frontiers in Plant Science,2015,6(428):161-171.

[120]Huang Y,Li M Y,Wu P,et al. Members of WRKY Group Ⅲ transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum)[J]. BMC Genomics,2016,17(1):788.

[121]Aamir M,Singh V K,Dubey M K,et al. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici)[J]. PLoS One,2018,13(4):1-43.

[122]Aamir M,Kashyap S P,Zehra A,et al. Trichoderma erinaceum bio-priming modulates the WRKYs defense programming in tomato against the Fusarium oxysporum f. sp. lycopersici (Fol) challenged condition[J]. Frontiers in Plant Science,2019,10:911.

[123]Gharsallah C,Gharsallah Chouchane S,Werghi S,et al. Tomato contrasting genotypes responses under combined salinity and viral stresses[J]. Physiology and Molecular Biology of Plants,2020,26(7):1411-1424.

[124]Bhattarai K K,Atamian H S,Kaloshian I,et al. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1[J]. Plant Journal,2010,63(2):229-240.

[125]Atamian H S,Eulgem T,Kaloshian I. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato[J]. Planta,2012,235(2):299-309.

[126]Chinnapandi B,Bucki P,Braun Miyara S. SlWRKY45,nematode-responsive tomato WRKY gene,enhances susceptibility to the root knot nematode;M. javanica infection[J]. Plant Signaling Behavior,2017,12(12):e1356530.

[127]Hu Z R,Wang R,Zheng M,et al. TaWRKY51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (Triticum aestivum L.)[J]. The Plant Journal,2018,96(2):372-388.

[128]Ma Q B,Xia Z L,Cai Z D,et al. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana[J]. Frontiers in Plant Science,2019,9:1979.

[129]Zhao L,Zhang W J,Song Q H,et al. A WRKY transcription factor,TaWRKY40-D,promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat[J]. Plant Biology,2020,22(6):1072-1085.

[130]Bi M M,Li X Y,Yan X,et al. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway[J]. Horticulture Research,2021,8(1):6.

[131]LimC,KangK,ShimY,etal.InactivatingtranscriptionfactorOsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J]. Plant Physiology,2022,188(4):1900-1916.

[132]于涌鯤,王丽芳,杜希华,等. LeWRKY1基因的克隆及分析[J]. 植物生理学报,2010,46(12):1225-1231.

[133]Wang L F,Yu Y K,Du X H,et al. Research on expression of LeWRKY1 in tomato induced by jasmonic acid and other two factors[J]. Agricultural Science & Technology,2011,12(8):1133-1135,1138.

[134]Lindo L,Cardoza R E,Lorenzana A,et al. Identification of plant genes putatively involved in the perception of fungal ergosterol-squalene[J]. Journal of Integrative Plant Biology,2020,62(7):927-947.

[135]周 涛,王 娟,胡佳蕙,等. 番茄转录因子基因SlWRKY6的克隆与原核表达分析[J]. 西北植物学报,2020,40(11):1824-1832.

[136]Zhao W H,Li Y H,Fan S Z,et al. The transcription factor WRKY32 affects tomato fruit colour by regulating YELLOW FRUITED-TOMATO 1,a core component of ethylene signal transduction[J]. Journal of Experimental Botany,2021,72(12):4269-4282.

[137]Wang Z R,Gao M,Li Y F,et al. SlWRKY37 positively regulates jasmonic acid-and dark-induced leaf senescence in tomato[J]. Journal of Experimental Botany,2022,73(18):6207-6225.

猜你喜欢

生长发育番茄
番茄炒蛋
秋茬番茄“疑难杂症”如何挽救
番茄果实“起棱”怎么办
冬天的番茄为啥不太好吃
番茄炒蛋做成功啦
秸秆覆盖和保水剂对烤烟生长发育的影响
温度与降水条件对玉米生长发育的影响
冬油菜栽培技术探析