防寒处理提升南疆突尼斯软籽石榴微域温度效应的研究
2023-07-27宋娟胡晓静唐诚刁明柴亚倩关思慧高子渊
宋娟 胡晓静 唐诚 刁明 柴亚倩 关思慧 高子渊
摘 要:【目的】比較不同防寒处理对提升突尼斯软籽石榴微域温度的影响,为今后新疆产区露地匍匐栽培安全越冬提供技术支撑。【方法】以2年生突尼斯软籽石榴为试材,以露地石榴无覆盖为对照,比较当地气温与石榴园近地表气温,以及3种覆土厚度(15、20、30 cm)下各7组防寒处理(T0:单一覆土;T1:草帘+覆土;T2:钢筋架+草帘+覆土;T3:EVA塑料膜+草帘+覆土;T4:彩条布+覆土;T5:单毛毡+覆土;T6:双毛毡+覆土)的微域温度动态变化特征。【结果】当地气温与石榴园近地表气温相比具有明显滞后性,差异显著(p<0.05)。3种覆土厚度各处理微域温度差异显著(p<0.05),与对照相比,15 cm覆土厚度T1提升微域温度的效果最佳,T0和T6较差;20 cm覆土厚度T3提升微域温度的效果最佳,T4和T5较差;30 cm覆土厚度T2提升微域温度的效果最佳,其余处理差异不明显。【结论】3种覆土厚度各处理均能不同程度地提升突尼斯软籽石榴微域温度。综合比较,采用30 cm覆土厚度的T2(钢筋架+草帘+覆土)可最大程度提升突尼斯软籽石榴微域温度。
关键词:突尼斯软籽石榴;防寒处理;微域温度
中图分类号:S665.4 文献标志码:A 文章编号:1009-9980(2023)07-1399-12
Temperature increasing effect of cold-prevention treatments in micro-environment of Tunisian soft seed pomegranate trees in South Xinjiang
SONG Juan1, HU Xiaojing1*, TANG Cheng2*, DIAO Ming, CHAI Yaqian2, GUAN Sihui2, GAO Ziyuan2
(1College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830000, Xinjiang, China; 2College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China)
Abstract: 【Objective】 The demand for soft seed pomegranate in market is rising year by year. The Tunisian soft seed pomegranate has the widest commercial area for cultivation. However, due to the special geographical climate of Xinjiang and the freezing damage temperature threshold of Tunisian soft seed pomegranates, traditional soil covering methods cannot ensure safe overwintering, resulting in plant damage and low survival rate. Therefore, it is important to explore cold-prevention treatment methods that can maximize the safe overwintering of Tunisian soft seed pomegranate seedlings, providing technical support for the application of cold-prevention measures in winter for Tunisian soft seed pomegranate in the open field in Xinjiang production areas. 【Methods】 The test pomegranate orchard was located in the 12th Company of the 51st Regiment of the Third Division of Xinjiang Production and Construction Corps, with an altitude of 1 046.20 meters. It belongs to a warm temperate continental arid climate with an average temperature of -6.6 ℃ to -7.3 ℃ in the coldest month (January). The test plants were 2-year-old Tunisian soft seed pomegranate cuttings, planted in a creeping manner at a 40° inclination in a south-north direction with a planting distance of 2.0 m×5.0 m. The soil was sandy with a deep layer and moderate fertility. During the winter from 2021 to 2022, the open field pomegranate plants without cover were used as the control (control), seven cold-prevention treatments were designed [T0: soil cover at one of three thicknesses (15 cm, 20 cm, and 30 cm); T1: straw curtain + soil cover; T2: double-bar holder + straw curtain + soil cover; T3: EVA plastic film cover + straw curtain + soil cover; T4: covering with colored fabric cloth strips+ soil cover; T5: single sheet cover + soil cover; T6: double sheet cover + soil cover]. The experiment used IoT dynamic monitoring technology to monitor in real-time the temperature changes in the orchard and in the micro-environment under each treatment. The data were collected every 5 minutes from November 7, 2021, to March 15, 2022. The daily minimum temperature, the longest duration of ≤-10 ℃, thermal insulation performance, and negative accumulated temperature in the micro-environment under each treatment with the three soil cover thicknesses were analyzed to explore the relationship between the temperature collected from local weather station and near-surface temperature of the pomegranate orchard and the temperature changes of each treatment micro-environment under the treatments. 【Results】 There were significant differences in the daily maximum and minimum values between the near surface area in the orchard and local weather report (p<0.05), which displayed an upward trend and a downward trend respectively, and there was an obvious lag in the appearance of the peak temperature value compared to the local weather station. There were significant differences in the temperature variations among treatments with the three soil thicknesses (p<0.05). With the freezing threshold as the reference, it was found that compared with the control group (control), the 15 cm soil cover thickness in T1 (grass cover + soil cover) had the best effect in raising the micro-environment temperature. The daily minimum temperature was increased by 14.4 ℃, with no ≤-10 ℃ low temperature, and the negative accumulated temperature was increased by 769.6 ℃; the thermal insulation performance was good. However, temperature elevation effects in T0 and T6 were poor and the longest duration of ≤-10 ℃ temperature (11 hours). Under the 20 cm soil cover thickness, T3 (EVA plastic film cover + grass cover + soil cover) had the best effect in raising the micro-environment temperature, with the daily minimum temperature increased by 15.4 ℃, no ≤-10 ℃ temperature, and the negative accumulated temperature increased by 780 ℃, indicating that the thermal insulation performance was good. The temperature elevation effects of T4 and T5 were poor, and the longest duration of ≤-10 ℃ temperature could reach 8 hours. Under the 30 cm soil cover thickness, T2 (steel frame + grass cover + soil cover) had the best effect in raising the micro-environment temperature, with the daily minimum temperature increased by 17 ℃, good thermal insulation performance, and the negative accumulated temperature increased by 880.4 ℃. The temperature elevation effects of the other treatments were not significant. 【Conclusion】 Compared with control, all the treatments had a positive effect in raising the micro-environment temperature to different degrees under the three soil cover thicknesses. Comprehensively T2 (double bar holder + straw curtain + 30 cm soil cover) had the best cold prevention effect in the orchard of Tunisian soft seed pomegranate.
Key words: Tunisian soft seed pomegranate; Cold-resistant treatment; Micro-environment temperature
石榴(Punica granatum L.)属于石榴科(Punicaceae)石榴属(Punica),是亚热带、热带果树,喜暖畏寒[1-2]。石榴品种繁多,根据种子的软硬程度,可将其划分为软籽、半软籽(半硬籽)和硬籽石榴[3-5]。与硬籽石榴相比,软籽石榴甜而无渣,是石榴中的珍品,生产与消费市场潜力巨大[6]。突尼斯软籽石榴(Punica granatum ‘Tunisia)作为我国早期首例引种成功的软籽品种,因其抗旱、适应性强和果实品质突出等特点,商业栽培推广速度最快,在四川、云南、河南、陕西等多地栽培[7-8]。但是,突尼斯软籽石榴露地栽培极易受极端天气影响,在其不断向北引种栽培时发现,与部分石榴品种(休眠期最低能耐-17 ℃的低温)相比,突尼斯软籽石榴耐寒性明显较差,气温低于-10 ℃超过12 h即可发生冻害[9],导致树体存活率较低及果实产量下降。新疆地区露地种植仍处于试验阶段,没有稳定成熟的规模化基地[8]。因此,有关突尼斯软籽石榴在新疆引种安全越冬的问题,亟须探索更科学、合理且普适性强的防寒处理方法,对新疆地区具有较强的现实迫切性和实际生产意义,是当前重要的研究热点。
近几年,国内外有关预防植物冻害的防寒处理方式有许多。国外学者对植物的防寒方式进行了主动防寒和被动防寒的区分,在被动防寒方面认为所有的防寒方法都是基于提高温度或减少植物的热量损失,并提出可以通过选址、灌溉、风力机、加热器、覆盖物或喷洒防冻物质对植物进行防寒处理[10-11]。Dabney等[12]证实了冬季覆盖植物可显著改变土壤内部微域温度进而有效防寒。Smith[13]则安装高架灌溉自动防护系统,以对南部高丛蓝莓冻害发生时的气温条件调查为依据,触发系统对植物进行防寒。Román-Figueroa等[14]通过调研国际市场上研发的防冻产品,利用产品形成的半渗透膜或渗透膜来预防植物外在和/或内在结冰情况。在国内防寒处理的研究主要集中在提高植物越冬期不同区域的微域温度方面,如利用设施栽培或覆盖不同材料保护植物免于受冻。赵乾等[15]和林红梅等[16]利用设施大棚的保温性栽培软籽石榴和西瓜,提升各自的生存温度,提高植物种植效益。王静等[17]和李红英等[18]针对不同埋土厚度和不同覆盖措施下葡萄根区微域内土壤温度的变化研究,发现土壤温度会随着埋土厚度的增加而升高,但使用“草苫+大棚膜”的防寒处理比埋土更能有效提高根区微域内的土壤温度,降低葡萄的受冻风险。曹德航等[19]、李太魁等[20]和杨书运等[21]则通过设置搭建小拱棚、秸秆和稻草覆盖对茶园的土壤温度动态变化进行了探索,表明搭建小拱棚可对微域内的地表温度提升9.4 ℃,并认为利用秸秆或稻草覆盖还可有效降低土壤温度的变化幅度,具有双向动态调控作用,可维持同层土壤温度的稳定性。但是,目前针对突尼斯软籽石榴的冻害主要是从其品种属性[22-24]和地理气象因素[25-27]等方面进行探讨,对实施防寒处理方式及不同防寒处理所能提升的微域温度变化研究却鲜有报道。
因此,针对新疆引种突尼斯软籽石榴栽培过程中预防越冬冻害的生产需求,笔者在本研究中以引种2年生突尼斯软籽石榴为对象,以石榴园近地表气温为对照,通过设置3种覆土厚度下7组防寒处理的复合方法,分析突尼斯软籽石榴越冬期微域温度动态变化,探讨各处理内部微域最低温度、低温持续时间、保温性能及负积温条件,以期为保障突尼斯软籽石榴在新疆石榴产区安全越冬和高效生产提供科学指导。
1 材料和方法
1.1 试验地概况
供试石榴园位于新疆生产建设兵团第三师五十一团十二连。地处39°98′ N,79°12′ E,海拔1 046.20 m,属暖温带大陆性干旱气候,年平均气温11.6 ℃,最热月(7月)平均气温25.85 ℃,最冷月(1月)平均氣温-6.95 ℃,年平均无霜期225 d,年降水量38.3 mm。土壤为砂质土,土层深厚,肥力中等。图1是当地研究区2012—2021年冬季(11—12月至翌年1—3月)气象温度的气温变化图。
1.2 试验设计
供试植株为2年生突尼斯软籽石榴扦插苗,2021年3月定植,南北行向倾斜40°匍匐栽植,株行距2.0 m×5.0 m。为更好地验证不同处理的防寒效果,以试验地近十年冬季气温变化为依据(图1),以露地石榴无覆盖为对照(CK),设置3种覆土厚度(15、20、30 cm)下7组防寒处理的复合方法(表1)。3种覆土厚度下各处理供试石榴植株分别选择同等规格、相同立地条件,养护管理水平和植株生态环境相一致的3株石榴。
于2021年10月底,将所有待处理石榴进行根茎部培土,再顺南北行向垫土30 cm厚做弧形土枕,预防压倒时石榴主干的折断或折裂并起到缓冲地温的作用,其次顺行向压倒匍匐石榴枝条,用土轻覆盖固定(图2)。
1.3 数据测定与获取
石榴园近地表气温(对照)和3种覆土厚度下(15、20、30 cm)各处理微域温度采用彭云物联S10A远程温湿度计测定,可监测范围为-40~90 ℃,测量精度为±0.2 ℃。石榴园近地表气温(对照)通过将温湿度计的监测探头固定在无覆盖露地石榴主干上离地35 cm处测定获得。
各处理微域温度通过将温湿度计的监测探头固定在匍匐压倒石榴枝的中部离地35 cm处测定获得,避免覆盖材料或覆土时导致的探头移动(图2)。
所有数据连续测定,每5 min自动记录1次,观测时间从2021-11-07开始至2022-03-15结束。
当地气温是研究区的温度数据,来源于ERA5 hourly data on single levels from 1979 to present数据集,ERA5(ECMWF Re-Analysis 5)是欧洲中期天气预报中心(ECMWF,The European Centre for Medium-Range Weather Forecasts)对过去40到70年全球气候和天气数值的第五代再分析资料,选用分辨率为0.25°×0.25°。
1.4 数据处理方法
1.4.1 标准划分 根据李银芳等[28]提出的以最高气温稳定在0 ℃作为石榴树体在渐冷期、寒冷期和转暖期的界限划分。以当地越冬期气象数据为依据,确定试验区渐冷期在2021-11-07至2021-12-10(34 d),寒冷期在2021-12-11至2022-02-07(59 d),转暖期在2022-02-08至2022-03-15(36 d),处理时长共计129 d。
1.4.2 保温性能 保温性能主要从低温时各处理内部微域保温性和低温抗干扰性2个角度进行综合分析。
保温性比较,以对照组石榴园近地表气温(对照)测定0 ℃以下低温为标准,与同期各处理0 ℃以下低温进行温差分析。根据各处理温差变化幅度的范围大小进行保温性判断,温差幅度范围提升越高,保温性就越好。
抗干扰性通常是指系统对于外界干扰所受影响的程度。建立以对照组石榴园近地表气温(对照)测定0 ℃以下低温为自变量,同期各处理0 ℃以下低温为因变量,建立各处理拟合低温线性方程[28]。根据方程斜率的大小进行比较,斜率越小,说明处理抵抗低温的效果越好,抗干扰性越强。
1.4.3 数据分析方法 试验数据利用Microsoft Excel 2021进行统计整理,运用R语言4.2.2版本进行方差分析和图表绘制,显著性检验采用卡方检验,显著性水平选取0.05。
2 结果与分析
2.1 当地气温与石榴园近地表气温(对照)的变化特征
将石榴园近地面35 cm处的温度数据与研究区当地同时期的气象数据进行对比分析。由图3可知,越冬期石榴园近地表气温与当地气温的变化波动相一致,总体表现为逐渐下降再逐渐上升的趋势。与当地气温相比,石榴园近地表气温的日最大值和最小值分别出现了显著的抬升和降低(p<0.05),表明石榴园近地表气温比当地气温变化更敏感。因此,近地表气温更能反映热通量变化,表达石榴园的生存环境。在渐冷期,石榴园近地表气温最大值相比当地气温高约3 ℃,提前5 d出现,在寒冷期则比当地气温高约8 ℃,滞后14 d出现,进入转暖期比当地气温高约1 ℃,提前7 d出现,石榴园近地表气温的最大值出现早,在寒冷期的下降速度慢于同期当地气温。
同理,在渐冷期石榴园近地表气温最小值相比气象温度低约7.5 ℃,出现时间一致;在寒冷期则比当地气温低约8 ℃,提前15 d出现;进入转暖期比当地气温低约12 ℃,提前11 d出现;石榴园近地表气温的最小值出现早,在转暖期上升速度快于当地气温。这说明在越冬期石榴园近地表气温最大值或最小值的绝对值均高于当地气温,且当地气温对比石榴园近地面气温变化具有明显的滞后性,滞后程度随温度出现的时期而有所不同。
2.2 不同覆土厚度下各处理微域日最低温度及≤-10 ℃ 持续时间的比较
由表2可知,对照组日最低温度可达-20.2 ℃,远低于其他处理最低温度,且≤ -10 ℃的时间长达103 d,说明越冬期突尼斯软籽石榴必须采取一定的防寒措施进行保护。T1、T2、T3和T0的日最低温度随覆土厚度的增加而逐渐降低,但T3、T4和T5的日最低温度并不遵循此规律,具体原因还需进一步探索。
以突尼斯软籽石榴在低于-10 ℃环境下超过12 h即可发生冻害为依据[9],对比各处理与对照的日最低温度,日最低温度差值越大,增温效果就越明显。15 cm覆土厚度下,T1增温效果最好,对比-10 ℃提高了4.2 ℃,T0和T6增温效果最差,对比-10 ℃分别降低了2.4、0.1 ℃,且T1和T0、T6之间分别相差6.6、4.3 ℃;20 cm覆土厚度下,T3增温效果最好,对比-10 ℃提高了5.2 ℃,T4和T5增温效果最差,对比-10 ℃分别降低了1.2、0.6 ℃,且T3和T4、T5之间分别相差6.4、5.8 ℃;30 cm覆土厚度下,T2增温效果最好,对比-10 ℃ 提高了6.8 ℃,T5增温效果较差,对比-10 ℃ 提高了0.7 ℃,且T2和T5两者相差6.1 ℃。这说明在30 cm覆土厚度下各处理日最低温度均高于-10 ℃,增温效果最好。
低温出现时间与持续时长也是影响防寒处理效果的重要指标之一。不同覆土厚度下各处理日最低温度出现的时间基本一致,主要集中在12月底至1月初,说明这段时间是试验地极端温度的易发时期,若防寒处理不佳,偶然的极端低温就会导致植株发生严重冻害,持续的低温时长,甚至使植株死亡。在15 cm覆土厚度下,T0≤-10 ℃最长持续时间长达11 h,共出现22 d,T6≤-10 ℃ 最长持续时间长达2 h,仅出现1 d;20 cm 覆土厚度下,T4≤-10 ℃最长持续时间长达8 h,共出现11 d,T5≤-10 ℃最长持续时间长达5 h,共出现4 d;30 cm 覆土厚度下各处理未出现-10 ℃以下低温,进一步表明增加覆土厚度可显著提高防寒处理的保温效果。
2.3 不同覆土厚度下各处理微域保温性能的分析
在相同覆土厚度下各處理间均具有显著差异变化(p<0.05)。由图4可知,在3种覆土厚度下各处理温差波动变化趋于基本一致,由渐冷期至转暖期,波动逐渐剧烈。各处理温差幅度的上移速度随覆土厚度的增加而增加,说明覆土越厚,各处理微域内的温差变化幅度越大。在寒冷期1月,各处理温差变化幅度相比12月和2月明显降低,表明1月是防寒越冬的关键期。关键月期间各处理温差变化幅度不同,15 cm覆土厚度下,T1变化幅度最大,其次是T2和T3,T0和T6变化幅度最小;20 cm覆土厚度下,T3变化幅度最大,其次是T2,T4变化幅度最小;30 cm覆土厚度下,T2变化幅度最大,明显高于其他处理,其次是T1和T3,其余处理温差变化幅度无明显差距。在寒冷期T1、T2和T3在3种覆土厚度下的温差变化幅度均较大,随覆土厚度的增加,T2增幅最明显。从渐冷期也可以看出,15 cm覆土厚度下,T1、T2变化幅度最大,且T2>T1,T0变化幅度最小;20 cm覆土厚度下,T1、T2和T3变化幅度最大,且T1>T3>T2,T5变化幅度最小;30 cm覆土厚度下,T2变化幅度最大,其次是T1和T3。而转暖期各处理温差变化幅度随外界温度的升温总体逐渐趋于一致。
由图5可知,各处理与对照组测定的温度关系不同,随着覆土厚度的增加,仅有T6和T2的斜率逐渐减小,这与李银芳等[28]认为的防寒处理随覆盖厚度的增加斜率减少的结果并不一致,具体原因还需进一步探索。根据各处理斜率越小,抵抗露地低温的抗干扰性越好可知,15 cm覆土厚度下,各处理抗干扰性表现为T1>T2>T3>T5>T4>T6>T0,表明T1抵抗低温的抗干扰效果最好,T0效果最差;20 cm覆土厚度下,各处理抗干扰性为T3>T1>T2>T0>T6>T5>T4,表明T3抵抗低温的抗干扰效果最好,T4最差;30 cm覆土厚度下,各处理抗干扰性则为T2>T3>T1>T0>T6>T5>T4,表明T2抵抗低温的抗干扰效果最好,T4最差。
2.4 不同覆土厚度下各处理微域负积温变化分析
越冬期负积温是指某一时段内各处理微域内小于0 ℃日平均气温累积值,既可以表示越冬期内3个时期的寒冷强度,又可以表示各处理在越冬期间的低温强度,是反映植物能否具有安全越冬条件的重要限制因素之一[29]。由图6可知,3种覆土厚度下各处理与对照组在不同时期的负积温随时间变化趋势基本一致,整体上都呈先升高后降低的趋势,各处理负积温值明显高于对照组。由对照组可知,越冬期外界负积温在渐冷期和转暖期基本持平,而在寒冷期骤增,与渐冷期和转暖期之间相差约690 ℃。这说明寒冷期低温强度更大,石榴越冬条件最差。在寒冷期内,各处理负积温差值随着覆土厚度的增加而降低。15 cm覆土厚度下,T1最高,T0最低,两者相差约310 ℃;20 cm覆土厚度下,T3最高,T4最低,两者相差约279 ℃;30 cm覆土厚度下,T2最高,T5最低,两者相差约262 ℃。可见,覆土30 cm时,各处理负积温差值最小。不同覆土厚度间比较,各处理负积温随覆土厚度的增加,仅有T0、T2和T6随之降低。
3 讨 论
3.1 当地气温与近地表气温之间的关系
植物发生冻害不仅与气象温度变化有关,还与地形地势、栽培管理技术和田间小气候的变化密切相关[23]。受周围环境条件的影响,田间小气候形成的近地表气温与当时当地大区域气象温度有所不同,从而导致植物冻害的轻重程度也有所差异。因此,要想深入了解温度对植物冻害的影响,不应只局限于了解气温变化,还要进一步探究当地近地表气温的变化情况,将气象温度与近地表温度相结合,为农业生产服务提供全面的温度数据支撑。笔者通过分析越冬期当地气温变化与石榴园近地表气温变化的过程,发现当地气温与石榴园近地表气温间存在着较紧密的关联性,两者随时间的变化规律基本一致,且当地气温相较石榴园近地表气温的变化具有明显的滞后性,这与Shen等[30]和张浩鑫[31]研究认为气象温度变化,总是滞后于近地面监测温度变化的结论相一致,其滞后性的产生与区域的地形地势、下垫面利用及植被覆盖等因素相关。同时,笔者在本研究中也发现,石榴园近地表气温的最大值和最小值均高于当地气温,这与Jiang等[32]研究得出的0 cm平均地表温度尺度指数的区域平均值、最小值和最大值高于平均气温的结论相符合。
因此,在新疆发展突尼斯软籽石榴产业,仅以当地气象发布的低温数据为依据,会对突尼斯软籽石榴植株安全越冬的论断存在一定的滞后性和偏差,故加强对石榴园近地表低温的实时监测也是十分重要的。未来还可建立不同区域气温与石榴园近地表气温的相关性模型,为及时制定园区突尼斯软籽石榴相关防寒保温措施提供更科学有效的数据支撑。
3.2 各处理微域防寒优劣的成因
温度变化作为影响植物生长发育和生产力的关键气候因子之一,对创造植物越冬条件具有重要意义。温度变化中的绝对低温、低温持续时间、降温幅度以及低温骤降都是直接影响植物冻害发生程度的重要因素[33]。研究表明,在不同覆土厚度下各处理相较于对照组的日最低温度、温差幅度、低温抗干扰性及负积温变化均有所改善,这是覆盖材料的保温性造成的,但各处理之间微域温度的提升程度却各有不同,这与杨书运等[21]研究认为覆盖可有效提高地表最低温度,减小地表最低温度日变幅且不同覆盖材料作用有较大差异的结果相一致。
研究结果显示,3种覆土厚度下各处理中以T1(草帘+覆土)、T2(钢筋架+草帘+覆土)和T3(EVA塑料膜+草帘+覆土)的微域温度提升效果相对较佳。从处理的微域温度变化与结构具体来看,T1在15、20、30 cm覆土厚度下,与对照组相比,分别提升了14.4、14.4、14.5 ℃ ,温差幅度在16.7~5.1 ℃之间,抵抗低温的干扰性(斜率)在0.315~0.403之间,负积温与寒冷期对照组相比,分别提升了769.6、755.6、715.3 ℃。这说明T1具有良好的保温性,极大提升了微域日最低温度和缩小了温差浮动范围,耐寒程度随覆土厚度的增加逐渐升高。这是因为在草帘上进行覆土,草帘本身作为一种疏松多孔的材料,空气的导热系数小,且不同厚度的覆土经过白天吸收的太陽光,将光能转化为热能储藏于土壤中,最大程度保持了处理内部气温的相对稳定性。这与马凯等[34]和李从娟等[35]研究认为覆盖草帘的防寒方式比其他措施保温效果更好、能起到一定的保墒作用、具有良好生态效益的结论相符合。
T2(钢筋架+草帘+覆土)在15、20、30 cm覆土厚度下,最低温度与对照组相比,分别提升了13.3、14.3、17.0 ℃ ,温差幅度在17.9~5.9 ℃之间,抵抗低温的干扰性(斜率)在0.205~0.402之间,负积温与对照组相比,分别提升了719.5、756.2、880.4 ℃。与TI相比,T2在30 cm厚度下,具有更好的保温性和更高的耐寒程度。这是因为钢筋架与草帘搭建的小拱棚形成了一定的内部空间,再通过最上部覆土和草帘在地表上形成一层防护,既阻碍内部空间与大气的热量交换,为植株越冬休眠创造了一个相对稳定的小气候环境,又充分缓解了T1(草帘+覆土)中随越冬时间的延长草帘与植株和地下土壤直接接触过程中受潮腐烂对植株的影响。这和曹德航等[19]、谢辉等[36]和曹长明等[37]研究认为搭建小拱棚和小拱棚结合覆草均可较大幅度地提升地温、防止植物受冻的研究结果一致。
T3(EVA塑料膜+草帘+覆土)在15、20、30 cm覆土厚度下,最低温度与对照组相比,分别提升了13.9、15.4、15.0 ℃,温差幅度在16.1~5.3 ℃之间,抵抗低温的干扰性(斜率)在0.306~0.514之间,负积温与对照组相比,分别提升了715.3、780、763.6 ℃。与T2相比,T3的保温性略差,耐寒程度略低。这是因为在草帘覆土的结构上加入EVA塑料膜,利用EVA塑料膜的防水性和保温性,使得内部湿度和热通量均有所增大,减缓温度下降趋势,但若受潮时间过长,也易引发草帘腐烂。这与郭万辉等[38]研究认为稻草覆盖和薄膜覆盖可显著提高土壤温度,以及李红英等[18]研究认为的“草苫+大棚膜”的防寒技术更佳的结论相一致。
T0(单一覆土)、T4(彩条布+覆土)、T5(单毛毡+覆土)和T6(双毛毡+覆土)这4种防寒处理微域温度的提升效果在3种覆土厚度下相对较差。T0是因为该地区冬季寒冷,地表温度极低,而田间砂质土因土壤颗粒粗糙,孔隙较大等特点,使得土壤保蓄性差,失墒引起土壤干旱,且土温变化幅度大,白昼升温快,夜晚降温也快,故单一的覆土处理提温效果差。而T4、T5和T6保温效果差,则是因为彩布条和毛毡的保温性能不及草帘,在疏松通气的结构及覆盖厚度上也有些不足,这与田寿乐等[39]研究认为毛毡+覆土10~30 cm后的土层温度提升效果差、温度变化最小的结论相符合,但与张建军等[40]对葡萄进行彩条布+覆土30 cm处理后的地温提高0.81~14.77 ℃的试验结果不同,还需进一步探讨。
4 结 论
与露地石榴无覆盖相比,3种覆土厚度下各处理对提升突尼斯软籽石榴微域温度均有积极的影响。综合比较,T2(钢筋架+草帘+覆土)提升微域温度的效果最佳,钢筋架加草帘形成小拱棚,既能明显提高微域温度,又能充分缓解单独覆盖草帘易受潮腐烂的影响,为新疆未来突尼斯软籽石榴越冬防寒措施的制定提供技术支撑。
参考文献 References:
[1] CHEN Y H,GAO H F,WANG S,LIU X Y,HU Q X,JIAN Z H,WAN R,SONG J H,SHI J L. Comprehensive evaluation of 20 pomegranate (Punica granatum L.) cultivars in China[J]. Journal of Integrative Agriculture,2022,21(2):434-445.
[2] 陈利娜,敬丹,唐丽颖,曹尚银. 新中國果树科学研究70年:石榴[J]. 果树学报,2019,36(10):1389-1398.
CHEN Lina,JING Dan,TANG Liying,CAO Shangyin. Fruit scientific research in New China in the past 70 years:Pomegranate[J]. Journal of Fruit Science,2019,36(10):1389-1398.
[3] PUJARI K H,RANE D A. Concept of seed hardness in pomegranate - Ⅱ) histo-chemical studies relation to seed hardness in pomegranate[J]. Acta Horticulturae,2015(1089):111-118.
[4] KHADIVI-KHUB A,KAMELI M,MOSHFEGHI N,EBRAHIMI A. Phenotypic characterization and relatedness among some Iranian pomegranate (Punica granatum L.) accessions[J]. Trees,2015,29(3):893-901.
[5] 秦改花,黎积誉,刘春燕,陈晨,贾波涛,徐义流. 石榴籽粒硬度研究进展[J]. 果树学报,2021,38(5):806-816.
QIN Gaihua,LI Jiyu,LIU Chunyan,CHEN Chen,JIA Botao,XU Yiliu. Progresses in research on pomegranate seed hardness[J]. Journal of Fruit Science,2021,38(5):806-816.
[6] 薛辉,曹尚银,牛娟,李好先,张富红,赵弟广. 软籽石榴的生产现状与发展前景[J]. 江苏农业科学,2016,44(3):24-27.
XUE Hui,CAO Shangyin,NIU Juan,LI Haoxian,ZHANG Fuhong,ZHAO Diguang. Production status and development prospect of soft-seeded pomegranate[J]. Jiangsu Agricultural Sciences,2016,44(3):24-27.
[7] 吴红,周霞,陈晶,陈丽,张成霞. 突尼斯软籽石榴在苏中地区引种的适应性鉴定[J]. 湖南农业科学,2018(12):66-68.
WU Hong,ZHOU Xia,CHEN Jing,CHEN Li,ZHANG Chengxia. Adaptability of Tunisian soft-seed pomegranate in central Jiangsu region[J]. Hunan Agricultural Sciences,2018(12):66-68.
[8] 陈延惠,史江莉,万然,简在海,胡青霞. 中国软籽石榴产业发展现状与发展建议[J]. 落叶果树,2020,52(3):1-4.
CHEN Yanhui,SHI Jiangli,WAN Ran,JIAN Zaihai,HU Qingxia. Development status and suggestions of soft seed pomegranate industry in China[J]. Deciduous Fruits,2020,52(3):1-4.
[9] 薛华柏,曹尚银,郭俊英,司鹏,刘丽,谭洪花. 突尼斯软籽石榴气候区划北限及次适宜区的防寒栽培[J]. 中国果树,2010(2):63-64.
XUE Huabai,CAO Shangyin,GUO Junying,SI Peng,LIU Li,TAN Honghua. Cold-proof cultivation of soft-seed pomegranate in northern limit and sub-suitable area of climate division in Tunisia[J]. China Fruits,2010(2):63-64.
[10] RIEGER M. Freeze protection for horticultural crops[M]//JANICK J. Horticultural Reviews. Hoboken,NJ,USA:John Wiley & Sons,Inc.,1989:45-109.
[11] PERRY K B. Basics of frost and freeze protection for horticultural crops[J]. HortTechnology,1998,8(1):10-15.
[12] DABNEY S M,DELGADO J A,REEVES D W. Using winter cover crops to improve soil and water quality[J]. Communications in Soil Science and Plant Analysis,2001,32(7/8):1221-1250.
[13] SMITH E D. Cold hardiness and options for the freeze protection of southern highbush blueberry[J]. Agriculture,2019,9(1):9.
[14] ROM?N-FIGUEROA C,BRAVO L,PANEQUE M,NAVIA R,CEA M. Chemical products for crop protection against freezing stress:A review[J]. Journal of Agronomy and Crop Science,2021,207(3):391-403.
[15] 趙乾,胡青霞,司晓丽,季亚平,赵玉洁,陈延惠. ‘突尼斯软籽石榴设施栽培研究[C]//中国园艺学会石榴分会. 第二届中国石榴博览会暨第七届全国石榴生产与科研研讨会论文集. 2017:136-148.
ZHAO Qian,HU Qingxia,SI Xiaoli,JI Yaping,ZHAO Yujie,CHEN Yanhui. Study on ‘Tunisia soft-seeded pomegranate facility cultivati on environment[C]//Pomegranate Division of Chinese Society for Horticultural Science. Proceedings of the 2nd China pomegranate Exposition & 7th National Symposium on pomegranate production and research. 2017:136-148.
[16] 林红梅,孙兴祥. 双大棚多层覆盖保温效果及对西瓜生长的影响[J]. 中国瓜菜,2016,29(6):25-29.
LIN Hongmei,SUN Xingxiang. Effects of two-layer plastic shed on heat preservation of greenhouse and the growth of watermelon[J]. China Cucurbits and Vegetables,2016,29(6):25-29.
[17] 王静,张晓煜,张磊,胡宏远,李娜,李红英. 越冬期埋土防寒层厚度对贺兰山东麓葡萄园土壤温度的影响[J]. 中国农业气象,2022,43(8):633-643.
WANG Jing,ZHANG Xiaoyu,ZHANG Lei,HU Hongyuan,LI Na,LI Hongying. Effects of the thickness of buried soil for cold prevention on the vineyard soil temperature during the overwintering period at the eastern foot of Helan Mountain[J]. Chinese Journal of Agrometeorology,2022,43(8):633-643.
[18] 李红英,段晓凤,旭花,杨洋,朱永宁,杨凯凯,张晓煜,张磊. 贺兰山东西两麓酿酒葡萄越冬覆盖防寒措施效果对比[J]. 中国农业气象,2022,43(7):575-586.
LI Hongying,DUAN Xiaofeng,XU Hua,YANG Yang,ZHU Yongning,YANG Kaikai,ZHANG Xiaoyu,ZHANG Lei. Comparison on effect between two anti-freezing measures taken for wine grape overwintering in the east and west foothills of Helan Mountain[J]. Chinese Journal of Agrometeorology,2022,43(7):575-586.
[19] 曹德航,孫海伟,王会,王玉,丁兆堂,尚涛. 不同防寒措施对幼龄茶园冬季小气候的影响[J]. 山东农业科学,2014,46(3):28-32.
CAO Dehang,SUN Haiwei,WANG Hui,WANG Yu,DING Zhaotang,SHANG Tao. Effects of different cold-proof measures on infancy tea garden microclimate during winter[J]. Shandong Agricultural Sciences,2014,46(3):28-32.
[20] 李太魁,张香凝,郭战玲,寇长林,吕金岭,杨小林. 覆盖与间作对丹江口库区坡地茶园氮磷流失和土壤环境的影响[J]. 生态环境学报,2020,29(3):543-549.
LI Taikui,ZHANG Xiangning,GUO Zhanling,KOU Changlin,L? Jinling,YANG Xiaolin. Effects of mulching and intercropping on nitrogen and phosphorus runoff losses from sloping land and soil environment of tea garden in the Danjiangkou Reservoir area[J]. Ecology and Environmental Sciences,2020,29(3):543-549.
[21] 杨书运,江昌俊. 稻草和地膜覆盖对冬季茶园保温增温作用的研究[J]. 中国生态农业学报,2010,18(2):327-333.
YANG Shuyun,JIANG Changjun. Effect of straw and plastic film mulching on warming and insulation of tea plantation in winter[J]. Chinese Journal of Eco-Agriculture,2010,18(2):327-333.
[22] 姚方,王宁,曹尚银,马贯羊,司守霞,姚海雷. 不同软籽品种石榴抗寒性综合评价[J]. 森林与环境学报,2016,36(3):373-379.
YAO Fang,WANG Ning,CAO Shangyin,MA Guanyang,SI Shouxia,YAO Hailei. Comprehensive evaluation on cold resistance of different pomegranate cultivars[J]. Journal of Forest and Environment,2016,36(3):373-379.
[23] 王庆军,毕润霞,马敏,孟健,侯乐峰,郝兆祥. 我国北方地区石榴冻害的发生原因及预防措施[J]. 中国果树,2017(2):76-79.
WANG Qingjun,BI Runxia,MA Min,MENG Jian,HOU Lefeng,HAO Zhaoxiang. Causes and preventive measures of pomegranate freezing injury in Northern China[J]. China Fruits,2017(2):76-79.
[24] 焦其庆,冯立娟,尹燕雷,崔洪涛. 石榴冻害及抗寒评价研究进展[J]. 植物生理学报,2019,55(4):425-432.
JIAO Qiqing,FENG Lijuan,YIN Yanlei,CUI Hongtao. Research progress on evaluation of freezing injury and cold resistance of pomegranate[J]. Plant Physiology Journal,2019,55(4):425-432.
[25] 朱桢桢,柴丽娜,周小娟. 河阴地区突尼斯软籽石榴冻害的发生及防寒技术[J]. 农业科技通讯,2015(1):173-175.
ZHU Zhenzhen,CHAI Lina,ZHOU Xiaojuan. Occurrence of freezing injury of Tunisian soft-seeded pomegranate in Heyin area and its cold-proof technology[J]. Bulletin of Agricultural Science and Technology,2015(1):173-175.
[26] 田加才,李甲梁,尹燕雷,王跃华,李春. 2015年山东枣庄石榴冻害情况分析[J]. 落叶果树,2017,49(1):57-58.
TIAN Jiacai,LI Jialiang,YIN Yanlei,WANG Yuehua,LI Chun. Analysis of pomegranate freezing injury in Zaozhuang,Shandong Province in 2015[J]. Deciduous Fruits,2017,49(1):57-58.
[27] 柴丽娜,刘程宏,郑华魁. 郑州地区突尼斯软籽石榴防寒栽培技术[J]. 农业科技通讯,2018(12):307-309.
CHAI Lina,LIU Chenghong,ZHENG Huakui. Cold-proof cultivation techniques of Tunisian soft-seeded pomegranate in Zhengzhou area[J]. Bulletin of Agricultural Science and Technology,2018(12):307-309.
[28] 李银芳,潘伯荣,阿迪力·吾彼尔,管开云,段士民,荆卫民,王志强,宋政梅,吴玉华. 石榴和无花果黑白双膜覆盖越冬的膜下温度变化特征[J]. 北方园艺,2016(23):44-50.
LI Yinfang,PAN Borong,Adil·Ubil,GUAN Kaiyun,DUAN Shimin,JING Weimin,WANG Zhiqiang,SONG Zhengmei,WU Yuhua. Effect of double-coated black and white plastic film for overwintering on heat preservation of Punica granatum and Ficus carica[J]. Northern Horticulture,2016(23):44-50.
[29] 鄭冬晓,杨晓光,赵锦,慕臣英,龚宇. 气候变化背景下黄淮冬麦区冬季长寒型冻害时空变化特征[J]. 生态学报,2015,35(13):4338-4346.
ZHENG Dongxiao,YANG Xiaoguang,ZHAO Jin,MU Chenying,GONG Yu. Spatial and temporal patterns of freezing injury during winter in Huang-Huai Winter Wheat Area under climate change[J]. Acta Ecologica Sinica,2015,35(13):4338-4346.
[30] SHEN X Y,JIE B,LI S,CHE X J,LIU Y B,FENG Y Z. Effects of near-surface low temperature on freezing injury of ‘Tunisian soft-seed pomegranate[J]. Plant Diseases and Pests,2019,10(4):21-25.
[31] 张浩鑫. 中国区域土壤温度与近地面气温相互联系的研究[D]. 北京:中国科学院大学,2020.
ZHANG Haoxin. Study on the relationship between soil temperature and near-surface temperature in China area[D]. Beijing:University of Chinese Academy of Sciences,2020.
[32] JIANG L,LI N N,FU Z T,ZHANG J P. Long-range correlation behaviors for the 0-cm average ground surface temperature and average air temperature over China[J]. Theoretical and Applied Climatology,2015,119(1/2):25-31.
[33] 李敏. 突尼斯软籽石榴冻旱的发生与预防[D]. 泰安:山东农业大学,2013.
LI Min. The happening and prevention of the cold and drought in Tunisia soft seeds pomegranate[D]. Taian:Shandong Agricultural University,2013.
[34] 马凯,王继勋,卢春生,闫鹏,李世强,王斐,樊丁宇. 不同防寒措施对南疆果树越冬温度指标的影响[J]. 新疆农业科学,2012,49(2):230-236.
MA Kai,WANG Jixun,LU Chunsheng,YAN Peng,LI Shiqiang,WANG Fei,FAN Dingyu. Effect of different cold-proof measures on temperature indexes of fruit trees overwintering in southern Xinjiang[J]. Xinjiang Agricultural Sciences,2012,49(2):230-236.
[35] 李从娟,王世杰,孙永强,张恒. 葡萄越冬防寒技术研究综述[J]. 沙漠与绿洲气象,2021,15(2):138-143.
LI Congjuan,WANG Shijie,SUN Yongqiang,ZHANG Heng. Overview of the grape protection techniques against the cold in winter[J]. Desert and Oasis Meteorology,2021,15(2):138-143.
[36] 谢辉,常希忠,朱超,李华,卢玉春,张明昌,谢廷刚. 茶树越冬防冻试验报告[J]. 山东林业科技,2003,33(6):9-10.
XIE Hui,CHANG Xizhong,ZHU Chao,LI Hua,LU Yuchun,ZHANG Mingchang,XIE Tinggang. Experimental report on overwintering and antifreezing of tea trees[J]. Journal of Shandong Forestry Science and Technology,2003,33(6):9-10.
[37] 曹长明,黄丙玲,段进明,贾爱宏. 拱棚嫁接西瓜水肥一体化栽培技术[J]. 农业科技通讯,2022(5):304-305.
CAO Changming,HUANG Bingling,DUAN Jinming,JIA Aihong. Integrated cultivation techniques of water and fertilizer for watermelon grafted in arch shed[J]. Bulletin of Agricultural Science and Technology,2022(5):304-305.
[38] 郭萬辉,刘挺,余瑜,邱光华,龙岗. 不同覆盖方式对烤烟农艺性状及土壤温度的影响[J]. 现代农业科技,2016(18):11-13.
GUO Wanhui,LIU Ting,YU Yu,QIU Guanghua,LONG Gang. Effect of different mulching methods on flue-cured tobacco agronomic characters and soil temperature[J]. Modern Agricultural Science and Technology,2016(18):11-13.
[39] 田寿乐,孙晓莉,沈广宁. 不同覆盖物对山地板栗园土壤性状及幼苗生长的影响[J]. 山东农业科学,2017,49(11):37-44.
TIAN Shoule,SUN Xiaoli,SHEN Guangning. Effects of different mulches on soil properties of hilly orchard and chestnut seedling growth[J]. Shandong Agricultural Sciences,2017,49(11):37-44.
[40] 张建军,勾健,闫卫兵,赵国宏,王军. 沙城产区葡萄彩条布机械埋土防寒及出土技术[J]. 中外葡萄与葡萄酒,2016(4):32-34.
ZHANG Jianjun,GOU jian,YAN Weibing,ZHAO Guohong,WANG Jun. Cold-proof and unearthing techniques of grape colored stripes by mechanical burying in Shacheng production area[J]. Sino-Overseas Grapevine & Wine,2016(4):32-34.