APP下载

CuO/TiO2复合材料制备与光催化性能研究

2023-07-06陈顺洪胥巧陈鸿锦刘佳伟王牟博朱晓东

关键词:溶胶

陈顺洪 胥巧 陈鸿锦 刘佳伟 王牟博 朱晓东

(文章编号:1004-5422(2023)02-0184-05

DOI:10.3969/j.issn.1004-5422.2023.02.012

收稿日期:2022-11-14

基金项目:四川省科技厅应用基础研究项目(19YJ0664);四川省高等教育人才质量和教学改革项目(JG2021-1104、JG2021-1105);成都大学大学生创新计划项目(CDUCX2022013、CDUCX2022070、CDUCX2022086)

作者简介:陈顺洪(1993—),男,硕士,助教,从事智能材料设计研究.E-mail:chenshunhong@cdu.edu.cn

摘要:采用溶胶—凝胶法在550 ℃热处理条件下制备纯TiO2及CuO/TiO2复合光催化材料.通过X射线衍射、扫面电子显微镜和荧光光谱等方法对催化剂的晶体结构、微观形貌,以及光生电子和空穴复合率进行表征,并以亚甲基蓝作为目标污染物,研究其光催化性能.结果表明,采用550 ℃热处理工艺制备的纯TiO2为锐钛矿结构,Cu元素加入后,TiO2中出现了微量的金红石,促进了锐钛矿向金红石转变,并且产生了CuO相,形成了CuO/TiO2复合材料.CuO的产生有利于抑制光生电子与空穴的复合,但CuO/TiO2对亚甲基蓝的降解率低于纯TiO2,这可能是CuO/TiO2复合材料的纳米颗粒团聚现象增强,比表面积降低所致.

关键词:溶胶—凝胶法;CuO/TiO2复合材料;光催化性能

中图分类号:TB332;O643.36

文献标志码:A

0引言

利用光解催化剂处理污水因其方式简单,效果明显而受到极大地关注[1-7].为提高光催化性能,研究人员采用多种方式对光催化剂进行改性处理.其中,包括光敏化处理[8-9]、半导体复合[10-13]、引入助催化剂[14-16]和掺杂处理[17-20]等.TiO2因其化学性质稳定、无毒无害、廉价易得和可重复使用等优点在光催化领域备受青睐[21-23].但纯TiO2光生电子—空穴对极易复合,并且可见光利用率较低[24-25],因此需要对TiO2进行改性以提高光催化性能.半导体复合是近年来改性的一个研究热点,当其他半导体与TiO2复合后,由于复合材料中半导体价带和导带能级位置不同,当受到光照产生光生电荷后,可以在界面间加快转移,抑制复合,从而提高光催化性能[26-28].Kusior等[29]采用溶胶—凝胶法制备SnO2/TiO2复合材料,光生电子由锐钛矿导带向SnO2迁移,空穴从SnO2转移到TiO2,从而有效抑制电子与空穴的复合,延长载流子寿命,相比纯TiO2拥有更高的光催化活性.

本研究采用溶胶—凝胶法在550 ℃热处理下制备纯TiO2及CuO/TiO2復合材料光催化剂,对光催化材料进行晶体结构、微观形貌,以及光生电子和空穴复合率分析,以亚甲基蓝(MB)为目标污染物,对其进行光催化降解实验,研究纯TiO2及CuO/TiO2复合材料的光催化性能.

1材料与方法

1.1仪器

UV-6100A型紫外可见分光光度计(上海元析仪器有限公司),Solar-350型氙灯光源(北京纽比特科技有限公司),DHG-9030型电热恒温鼓风干燥箱(上海鸿都电子科技有限公司),HC-2064型高速离心机(安徽中科中佳科学仪器有限公司),DX-2700型X射线衍射仪(XRD)(上海精密仪器仪表有限公司),F50型扫描电子显微镜(SEM)(美国FEI公司),F-4600型荧光光谱分析仪(PL)(日立高新技术有限公司).

1.2材料

钛酸四丁酯(C16H36O4Ti,分析纯)、无水乙醇(C2H6O,分析纯)、冰乙酸(CH3COOH,分析纯)、三水硝酸铜(Cu(NO3)2·3H2O,分析纯),均购自成都市科隆化学品有限公司.

1.3样品制备

首先量取一定量的C16H36O4Ti和C2H6O,配制成溶液A;再取适量的去离子水、CH3COOH和C2H6O,配制成溶液B;随后称取一定量的Cu(NO3)2·3H2O溶于溶液B中,超声5 min,得到溶液C.将所得C液滴加入A液中,搅拌30 min使溶液混合均匀,静置24 h后,在100 ℃烘箱中干燥.将得到的粉体在550 ℃条件下进行热处理,制备得到CuO/TiO2复合材料,其中Cu/Ti摩尔比为20%.其他条件相同,不加Cu(NO3)2·3H2即可制得纯TiO2.

1.4表征技术

采用XRD表征样品晶体结构,采用SEM分析样品表面形貌,采用PL检测光生电子与空穴的复合率.

1.5光催化实验

以10 mg/L MB为目标污染物,量取100 mL MB溶液,加入0.1 g光催化剂(TiO2或CuO/TiO2).超声5 min后在闭光环境中搅拌30 min,然后以250 W氙灯作为光源,光照下1 h后取4~5 mL MB溶液于离心管中,离心后取上层清液,在波长λ为664 nm的条件下测试其吸光度A,降解率计算公式为,     Φt =(A0-At)/A0×100%(1)

式中,Φt 为t时刻的降解率,A0和At分别为初始和t时刻溶液吸光度.

2结果与分析

2.1晶体结构分析

图1为样品的XRD图谱.纯TiO2在25.3°、37.8°和48.1°等位置出现了衍射峰,分别对应锐钛矿晶型的(101)、(004)和(200)等晶面.图谱中并未出现金红石衍射峰,表明此时纯TiO2为单一锐钛矿结构.当Cu加入后,在27.3°处出现了金红石(110)晶面衍射峰,表明有金红石的产生,此时为锐钛矿与金红石组成的混晶结构.不仅如此,在XRD图谱中,35.6°、38.7°、48.9°和61.8°处出现了CuO的相关衍射峰,对应氧化铜的(11-1)、(111)、(20-2)和(11-3)等晶面.表明Cu元素加入后,形成了CuO/TiO2复合材料.Cu元素的加入促进了锐钛矿向金红石的转变,这与王保伟等[30]的研究结果一致.TiO2 和 CuO/TiO2 平均晶粒尺寸计算公式[31]为,

D= kλ /(βcosθ)(2)

式中,D 为 TiO2 平均晶粒尺寸;λ 为 X 射线入射波长,k 为常数,0.89;β 为XRD 衍射峰的半高宽;θ为布拉格衍射角度的1/2.计算结果显示,纯TiO2的锐钛矿晶粒尺寸为23.5 nm,CuO/TiO2中锐钛矿的晶粒尺寸为32.3 nm.

混晶中金红石质量百分数的计算公式[32]为,

XR=1/(1+0.8IA /IR )(3)

式中,XR 为 TiO2 混合物中金紅石质量百分数;IA为锐钛矿(101) 晶面衍射峰的相对强度;IR为金红石(110)晶面衍射峰的相对强度,计算可知,金红石质量分数为4.9%,锐钛矿质量分数为95.1%.

2.2表面形貌分析

图2为纯TiO2与CuO/TiO2复合材料的SEM图,图2(A)中纯TiO2颗粒尺寸分布在30 nm~200 nm.CuO复合后所得材料出现了进一步的团聚,颗粒尺寸大致分布在100~500 nm,如图2(B)所示.TiO2光催化材料尺寸范围在纳米级,而纳米材料中位错、孪晶和层错等晶体缺陷会在晶界处堆积,产生很大的畸变能与缺陷,易与其他粒子结合形成团聚体[33-35].

2.3光生电子和空穴复合率分析

半导体价带上的电子受到光子激发时,由价带跃迁至导带,形成导带上的光生电子,同时在价带留下相应的光生空穴.但是导带上的光生电子容易返回价带与光生空穴复合,同时释放出光子,从而产生荧光,称为“光致发光”.因此,光致发光(PL)光谱强度越低,则表明光生电子和空穴的复合率越低.图3为纯TiO2及CuO/TiO2复合材料的PL光谱图.纯TiO2的PL光谱的最强峰在398 nm附近,此峰可归因于光生电子从导带返回到价带而引起,位于波长450~470 nm区间内的峰可能是晶体表面缺陷引起的[36-37].纯TiO2 PL峰强度相较于CuO/TiO2更高,这表明CuO的生成明显地降低了材料光生电荷的复合率.CuO与TiO2复合后,促进了光生电荷在两相界面间转移,抑制了复合,因此表现出了更低的PL峰强度[38].图3TiO2和CuO/TiO2的PL光谱

2.4光催化结果分析

图4为纯TiO2和CuO/TiO2复合材料的光降解结果柱状图.纯TiO2在1 h时对MB的降解率Φ为31.2%,而CuO/TiO2复合材料的降解率出现了一定幅度的下降,降解率Φ为5.8%.实验结果表明,CuO/TiO2的光催化活性低于纯TiO2.有研究表明,复合材料光催化活性与Cu/Ti的摩尔比例有关,低浓度的Cu有利于促进电子—空穴对的分离,而较高浓度的Cu会导致晶格缺陷和氧空位的增加,形成新的电子—空穴复合中心,降低光催化活性[39].本研究中,当在TiO2中引入Cu时,其PL光谱较纯TiO2表现出更低的峰强度,虽然Cu/Ti摩尔比达到20%,但并未形成新的复合中心.因此,这不是光催化活性下降的原因.结合SEM图观察结果,CuO/TiO2团聚现象较纯TiO2更严重,颗粒尺寸明显增大,这会减小催化剂的比表面积,使光催化降解反应的活性位点减少,导致光催化活性降低.

3结论

本研究采用溶胶—凝胶法制备了纯TiO2和CuO/TiO2复合光催化材料.Cu加入有利于锐钛矿向金红石的转变,同时生成了CuO相,形成了CuO/TiO2复合材料.PL光谱结果表明,CuO/TiO2加快了光生电荷在两相界面的迁移,明显降低了光生电子—空穴的复合.形貌分析表明,CuO/TiO2颗粒团聚现象比纯TiO2严重,团聚体尺寸增加.CuO/TiO2复合材料对亚甲基蓝染料的降解率较纯TiO2出现了下降,这可能是团聚增加,减小了比表面积所致.

参考文献:

[1]Yu J,Xiang Q,Zhou M.Preparation,characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures[J].Appl Catal,2009,90(3/4):595-602.

[2]Wang Z Y,Lv K L,Wang G H,et al.Study on the shape control and photocatalytic activity of high-energy anatase titania[J].Appl Catal,2010,100(1/2):378-385.

[3]Yu J G,Xiang Q J,Ran J R,et al.One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets[J].Crystengcomm,2010,12(3):872-879.

[4]Zhang H,Huang H,Ming H,et al.Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light[J].J Mater Chem,2012,22(21):10501-10506.

[5]Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting[J].Chem Soc Rev,2009,38(1):253-278.

[6]Li X,Yu J G,Jaroniec M.Hierarchical photocatalysts[J].Chem Soc Rev,2016,45(9):2603-2636.

[7]Gao C,Wang J,Xu H X,et al.Coordination chemistry in the design of heterogeneous photocatalysts[J].Chem Soc Rev,2017,46(10):2799-2823.

[8]Youngblood W J,Lee S H A,Maeda K,et al.Visible light water splitting using dye-sensitized oxide semiconductors[J].Acc Chem Res,2009,42(12):1966-1973.

[9]Tran P D,Wong L H,Barber J,et al.Recent advances in hybrid photocatalysts for solar fuel production[J].Energy Environ Sci,2012,5(3):5902-5918.

[10]Qu Y Q,Duan X F.Progress,challenge and perspective of heterogeneous photocatalysts[J].Chem Soc Rev,2013,42(7):2568-2580.

[11]Wang H L,Zhang L S,Chen Z G,et al.Semiconductor heterojunction photocatalysts:design,construction,and photocatalytic performances[J].Chem Soc Rev,2014,43(15):5234-5244.

[12]Gao X H,Wu H B,Zheng L X,et al.Formation of mesoporous heterostructured BiVO4/Bi2S3 hollow discoids with enhanced photoactivity[J].Angew Chem Int Ed,2014,53(23):5917-5921.

[13]Zhao Y F,Li Z H,Li M Z,et al.Reductive transformation of layered-double-hydroxide nanosheets to fe-based heterostructures for efficient visible-light photocatalytic hydrogenation of CO[J].Adv Mater,2018,30(36):1803127-1-1803127-8.

[14]Yang J H,Wang D G,Han H X,et al.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J].Acc Chem Res,2013,46(8):1900-1909.

[15]Ran J R,Zhang J,Yu J G,et al.Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J].Chem Soc Rev,2014,43(22):7787-7812.

[16]Ran J R,Jaroniec M,Qiao S Z.Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction:Achievements,Challenges,and Opportunities[J].Adv Mater,2018,30(7):1704649-1-1704649-31.

[17]Bai S,Jiang W Y,Li Z Q,et al.Surface and interface engineering in photocatalysis[J].Chem Nano Mat,2015,1(4):223-239.

[18]Scanlon D O,Dunnill C W,Buckeridge J,et al.Band alignment of rutile and anatase TiO2[J].Nat Mater,2013,12:798-801.

[19]Yu H J,Shi R,Zhao Y X,et al.Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J].Adv Mater,2017,29(16):1605148-1-1605148-8.

[20]Ajmal A,Majeed I,Malik R N,et al.Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts:a comparative overview[J].RSC Adv,2014,4(70):37003-37026.

[21]Pirkanniemi K,Sillanp M.Heterogeneous water phase catalysis as an environmental application:a review[J].Chemosphere,2002,48(10):1047-1060.

[22]Adyani S M,Ghorbani M.A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe,Gd and P single and tri-doped TiO2 nanomaterials[J].J Rare Earths,2018,36(1):72-85.

[23]朱曉东,王娟,罗宇浩,等.金红石型TiO2/ZnTiO3复合材料的制备及其光催化性能[J].发光学报,2020,41(8):964-970.

[24]Zhang Y,Wang T,Zhou M,et al.Hydrothermal preparation of Ag-TiO2 nanostructures with exposed {001}/{101} facets for enhancing visible light photocatalytic activity[J].Ceram Int,2017,43(3):3118-3126.

[25]Li X,Xiong J,Huang J,et al.Novel g-C3N4/h'ZnTiO3-a'TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity[J].J Alloy Comp,2019,774:768-778.

[26]贾艳蓉,武志刚,王瑶,等.SnO2-TiO2复合半导体光催化剂制备及性能评价[J].水处理技术,2017,43(1):36-39.

[27]张文治,张秀丽,李莉,等.CTAB作用下纳米复合材料ZnO-TiO2制备与多模式光催化降解罗丹明B[J].分子催化,2013,27(5):474-482.

[28]肖洒,谈恒,吴珊妮,等.CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J].材料导报,2020,34(2):2005-2009.

[29]Kusior A,Zych L,Zakrzewska K,et al.Photocatalytic activity of TiO2/SnO2 nanostructures with controlled dimensionality/complexity[J].Appl Surf Sci,2019,471:973-985.

[30]王保伟,孙启梅,李艳平,等.简单浸渍法制备纳米CuO/TiO2及其光催化剂活性[J].燃料化学学报,2013,41(6):741-747.

[31]Uvarov V,Popov I.Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials[J].Mater Charact,2013,85:111-123.

[32]Spurr R,Myers H.Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer[J].Anal Chem,1957,29(5):760-762.

[33]Zhao Z,He H,Zhu Y,et al.An ordered fish scale-like Co-TiO2/GO inverse opal photonic crystal as the multifunctional SERS substrate[J].J Alloy Compd,2020,858:158356-1-158356-12.

[34]冯黛丽,冯妍卉,袁思伟,等.颗粒团聚对纳米尺度熔化行为的影响[J].工程热物理学报,2015,36(2):397-401.

[35]宋晓岚,王海波,吴雪兰,等.纳米颗粒分散技术的研究与发展[J].化工进展,2005,25(1):47-52.

[36]Fan X,Fan J,Hu X Y,et al.Preparation and characterization of Ag deposited and Fe doped TiO2 nanotube arrays for photocatalytic hydrogen production by water splitting[J].Ceram Int,2014,40(10):15907-15917.

[37]Gao X T,Zhang S,Liu J C,et al.Enhanced active oxidative species generation over Fe-doped defective TiO2 nanosheets for boosted photodegradation[J].RSC Adv,2020,10(67):40619-40624.

[38]Li J L,Zhang M,Guan Z J,et al.Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2[J].Appl Catal,2017,206:300-307.

[39]Zhu X D,Xu H Y,Yao Y,et al.Effects of Ag0-modification and Fe3+-doping on the structural,optical and photocatalytic properties of TiO2[J].RSC Adv,2019,9(68):40003-40012.(實习编辑:姚运秀)

Study on Preparation of CuO/TiO2 Composite Material and Its Photocatalytic Performance

CHEN Shunhong,XU Qiao,CHEN Hongjin,LIU Jiawei,WANG Mubo,ZHU Xiaodong

(School of Mechanical Engineering,Chengdu University,Chengdu 610106,China)

Abstract:

Pure TiO2 and CuO/TiO2 composite photocatalytic materials were prepared by sol-gel method at 550 ℃.X-ray diffractometer,scanning electron microscope,fluorescence spectroscopy were used to analyze the crystal structure,surface morphology,and recombination rate of photogenerated electron and holes of the samples.Methylene blue,as a photocatalytic degradation target,was used to evaluate the photocatalytic performance of the prepared photocatalysts.The results show that the pure TiO2 exists as anatase crystalline phase at 550 ℃.Cu adding makes the emergence of a small amount of rutile,promoting the transformation of anatase to rutile.In addition,CuO phase is yielded,forming CuO/TiO2 composite material.The formation of CuO is useful to inhibit the recombination of photogenerated electrons and holes;however,the photocatalytic activity of CuO/TiO2 is lower than that of pure TiO2.This may be caused by the increased aggregation of nanoparticles of CuO/TiO2 composite material and the decrease in specific surface area.

Key words:

sol-gel method;CuO/TiO2 composite materials;photocatalytic performance

猜你喜欢

溶胶
浅谈氧化铝溶胶制备中溶胶黏度的变化
不同电解质对溶胶碘化银聚沉作用的影响
溶胶-凝胶法制备氮化硅陶瓷微球
溶胶-凝胶法制备高性能ZrO2纳滤膜
溶胶-凝胶法制备光学减反射膜的研究进展
溶胶凝胶法制备锂离子电池正极材料LiNi1/3Mn1/3Co1/3O2的研究
溶胶-凝胶微波加热合成PbZr0.52Ti0.48O3前驱体
溶胶-凝胶法制备无机膜开裂问题的研究进展
结构稳定的CuO/TiO2纳米管的功能化溶胶修饰法制备及其催化CO氧化性能研究
Ce:LuAG粉体的溶胶-凝胶燃烧法制备和发光性能