APP下载

海上自组网中基于侦听的MAC协议退避算法

2023-07-06肖峰窦峥

南京信息工程大学学报 2023年3期
关键词:自适应

肖峰 窦峥

摘要 无人艇通常以编队协同的方式进行作业,并通过自组网进行数据交换.因海浪等因素影响,海上自组网的信道传输损耗通常处于动态变化中,现有MAC协议的退避算法在动态海上环境下无法区分分组碰撞和分组丢失,会出现可靠性和稳定性下降的问题.为此,本文提出一种基于信道监听的自适应最小竞争窗口退避算法,该算法通过感知邻近竞争节点数目来估计信道状态,降低信道冲突概率和重传次数,提升了网络整体的可靠性和稳定性.仿真结果表明,与经典BEB算法相比,改进算法的吞吐量和公平性分别最大提高28.67%和62.00%,端到端延时和丢包率分别最大降低2.84%和15.10%.关键词 退避算法;海上通信;自组网;信道监听;自适应;最小竞争窗口

中图分类号TN929.5

文献标志码A

0 引言

海上自组网是海上通信网络的一种组网形式.由于海面环境复杂、海面粗糙度多变以及天气频繁变化等因素[1-2],海上通信网络经常发生分组丢失和传输中断[3-4].因此,如何提升海上自组网的稳定性和可靠性成为了一个不可忽视的问题.

在无线自组网中,媒体接入控制(Medium Access Control,MAC)层与网络传输的稳定性和可靠性直接相关.与现有的无线移动自组网一样,海上无线自组网的MAC层面临的主要挑战之一就是退避算法.作为协议体系中较为底层的算法,退避算法为网络中的所有节点提供可靠的信道接入时机,在保证和平衡节点的数据传输速率、端到端时延、分组成功率和公平性上起到了至关重要的作用.但与现有无线自组网不同的是,海上无线自组网MAC层的退避算法必须能够抵抗多样的海上信道干扰和随机变化的传输损耗对于网络性能的影响[5-6].因此,对于海上自组网的MAC协议退避算法的研究是非常必要的.

针对海上自组网的MAC协议退避算法的研究进展缓慢,现有的海上网络依旧使用无线移动自组网的退避算法.其中最为经典的是二进制指数退避(Binary Exponential Backoff,BEB)[7]算法,其对于竞争窗口的调整方法是指数增加、定值缩小.因BEB算法存在节点竞争不公平和吞吐量受限等缺陷,所以提出改进的退避算法[8-9],大致可以分为两种类型:基于竞争窗口变化方式的退避算法和基于网络状态估计的退避算法.

基于竞争窗口变化方式的退避算法的设计思路是更新竞争窗口的变化规则.目前大多改进算法属于这一类,例如,旨在提升网络收敛速度的指数增加指数减少(Exponential Increase Exponential Decrease,EIED)[10]的退避算法和能够兼顾所有负载情况下网络性能要求的乘性增加、乘性/线性减少(Multiplicative Increase Multiplicate/ Linear Decrease,MIMLD)[11]的退避算法等.这些算法机制简单,没有额外开销,但是由于其仅通过信道竞争调整退避窗口,无法区分分组碰撞和丢失,且窗口变化的参数固定,无法针对海上动态信道环境进行自适应调整,其网络性能仍存在很大的提升空间.

基于网络状态估计的退避算法的设计思路是让节点通过信道信息估测网络负载变化,对窗口变化因子进行自适应调整.例如,基于碰撞的自适应退避算法(Collision-Aware Backoff Mechanism,CABM)[12]通过统计固定周期内的发送失败次数和发送总数来计算自己的碰撞概率,进而调整自身竞争窗口变化策略.该类算法相较于基于竞争窗口变化方式的算法,其理论性能更加优秀.但由于需要一定时间和周期采集计算网络信息,该类算法收敛速度更慢,且会误判海上信道的分组丢失为分组碰撞,错误估计网络负载状态,造成节点出现不必要的等待,导致网络延迟增加,所以该类算法对变化迅速的海上环境适应性较差.

为了解决当前自组网退避算法在海上信道性能表现不佳的问题,本文提出一种新的MAC的退避算法,为海上无人艇节點间提供可靠通信传输,其设计思路是通过侦听机制对邻近活跃节点数目进行感知,估计信道实际负载状态,自适应调整竞争窗口,使其能够在海上组网中保持良好的网络性能.

1 系统模型

2 理论建模与ALBI退避算法设计由于海洋信道是快速随机变化的,无法迅速适应海洋信道的网络会因为信道冲突和重传而导致网络整体的可靠性和稳定性下降.本节首先利用数学建模分析最小冲突概率与邻居节点数目关系,进而得到最佳竞争窗口的计算方法,最后提出基于侦听机制的对数退避算法(Adaptive Logarithm Backoff based on Interception,ALBI).

2.1 自组网MAC层传输过程建模

2.2 基于侦听机制的对数自适应退避算法

3 仿真条件与性能分析为了验证基于侦听机制的自适应对数退避(ALBI)算法的有效性,本节利用OMNET++实现ALBI算法的仿真分析,并将其与其他现有的退避算法进行比较.

3.1 仿真场景与参数设计基于OMNET++建立的仿真网络,场景模型参考图1,该网络是由n个移动节点(例如船只、舰艇等)组成的单跳网络,随机分布在400 m×300 m的区域中,节点的目标地址随机选择,仿真参数如表1所示,网络仿真时间为300 s.

3.2 性能分析本小节主要将ALBI算法与传统BEB[7]、EIED[10]、MIMLD[11]和CABM[12]算法进行比较分析,分别从网络归一化吞吐量、公平性、端到端时延和丢包率4个指标来评估算法性能.

通过对比网络中不同竞争节点数目的情况,本文得到几种退避算法的性能比较,如图3—6所示.

从图3可以看出:退避算法的网络整体吞吐量在16个竞争节点时到达峰值,此时网络负载饱和,之后增加的竞争节点会对吞吐量产生负面收益,其中CABM、EIED和BEB算法都随着网络节点数目的增加产生了明显的下降趋势,而MIMLD算法只是略有下降,基本保持稳定;ALBI算法吞吐量性能最好,在网络负载最大、节点数目最多时,ALBI算法相比MIMLD、EIED、BEB和CABM算法吞吐量分别提高4.5%、13.72%、28.67%和52.89%.从图4可以看出:所有算法的公平性指标在网络竞争不激烈时都处于最佳状态,随着网络中竞争节点的增多,公平性指标因为网络负载的增大而降低,其中EIED、CABM和BEB算法的公平性在高负载下急剧下降,MIMLD算法公平性指标在高负载下略有下降,而ALBI算法的公平性基本不受影响.在网络负载最大、节点数目最多时,ALBI算法相比MIMLD、CABM、BEB和EIED算法公平性分别提高7.82%、44.32%、62.00%和90.40%.

从图5可以看出,端到端延时性能随着节点数目的增加而下降,这是因为竞争节点数目的增加导致信道争用时碰撞的概率增加,所以传输时延增加.在低负载时,ALBI算法的延时性能最佳,随着节点数目增加,网络负载进入饱和状态,ALBI算法的延时性能逐渐下降,但与其他算法之间依旧存在性能优势;在网络负载最大时,ALBI算法相比于MIMLD、EIED、BEB和CABM算法端到端延时分别减少1.10%、2.60%、2.84%和4.72%.

从图6可以看出:CABM算法的丢包率随着节点数目增加,上升很快,其性能甚至劣于传统的BEB算法;EIED丢包率基本保持稳定;ALBI和MIMLD丢包率基本不变,约等于0,但ALBI算法更接近于0.ALBI算法相比于MIMLD、EIED、BEB和CABM算法的丢包率分别减少0.29%、2.06%、15.10%和34.88%.综上所述,基于碰撞情况估计信道竞争的CABM算法无法适应海上变化的信道环境,这主要是因为海上信道的传输损耗随机变化,使得节点传输失败的原因不仅仅是信道争用失败,也可能是节点之间因为信道传输损耗过高无法通信,但通过信道碰撞和信道占用情况预测下一时刻信道竞争态势的方法无法区分二者;同时,由于信道传输损耗的随机变化,不同时刻存在信道竞争的邻居节点数目也会随机发生改变,因此基于平均碰撞概率的信道情况分析方法无法根据过去的数据准确预测未来网络竞争的随机性的变化,所以CABM算法经常发生节点之间的信道碰撞和不必要的信道等待,导致该算法的稳定性和可靠性要远低于预期,其性能表现甚至远低于传统的BEB算法.BEB、EIED和MIMLD等静态竞争窗口调节因子的算法在海上自组网中的综合性能要略优于CABM算法,但因为窗口调节因子固定,只能依赖过去分组竞争的成败来调整现在的竞争窗口等缺陷.随着网络节点数增加,网络负载增大,使用BEB、EIED和MIMLD等算法的网络节点冲突加剧,其吞吐量、公平性和延时等性能都存在着不同程度的下降.其中,由于MIMLD算法采用门限窗口的机制,对于高负载和低负载网络的竞争窗口采取不同的变化逻辑,所以其性能表现比较稳定,但仍与ALBI算法之间存在性能差距.相比于仿真测试的其他算法,ALBI算法的性能最为优秀.ALBI算法采用侦听机制和自适应竞争窗口调整因子和最佳初始竞争窗口的设计,不再过分依赖过去的信道争用情况来调整竞争窗口,而是根据邻居节点数目来调整竞争窗口,使得竞争窗口维持在一个动态的合理的數值.ALBI算法虽然会略微增加网络延时,但避免了因为分组碰撞而损失过多的网络性能,并且改善了激烈信道竞争时节点发送成功后退避时间太短的缺陷,减少了不必要的信道碰撞和传输时间浪费,提升了网络的公平性.同时,自适应竞争窗口调整因子可以促使竞争窗口快速收敛,使得网络发生重构时,当前节点的竞争窗口可以迅速适应当前网络的变化情况.对比仿真结果可以得出结论:ALBI算法是当前算法中最适合海上无线自组网的选择.4 结束语本文提出一种高效可靠的海上网络的竞争式MAC退避算法,该算法通过侦听机制来收集邻近活跃竞争节点信息,通过自适应竞争窗口调整因子和自适应最佳初始竞争窗口两种机制,提高了网络的综合传输性能.OMNET++仿真结果表明,相较于已有算法,ALBI算法在高负载的海上网络环境下能够取得更好的性能.未来将会进一步研究基于ALBI的改进方法,在保证公平性的同时继续提高算法的吞吐量、降低延时和丢包率.

参考文献 References

[1]张瑞杰,彭琳琳,付林罡,等.海上无人船自组网随机接入仿真研究[J].遥测遥控,2020,41(5):29-35ZHANG Ruijie,PENG Linlin,FU Lingang,et al.Random access technique for unmanned surface vehicle ad-hoc network[J].Journal of Telemetry,Tracking and Command,2020,41(5):29-35

[2] 石尧,李晖,杜文才,等.基于Ad Hoc移动节点模型的海上DTN建模与性能分析[J].计算机工程,2018,44(3):82-86SHI Yao,LI Hui,DU Wencai,et al.Modeling and performance analysis of marine DTN based on ad hoc mobile nodes model[J].Computer Engineering,2018,44(3):82-86

[3] Hosseini-Fahraji A,Zeng K,Yang Y,et al.A self-sustaining maritime mesh network[C]//2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).IEEE,2019:1-2

[4] Yau K L A,Syed A R,Hashim W,et al.Maritime networking:bringing Internet to the sea[J].IEEE Access,2019,7:48236-4825

[5] 李瑞景.海上宽带无线自组网多信道MAC协议研究[D].大连:大连海事大学,2019LI Ruijing.Study on the multi-channel MAC protocol of maritime broadband wireless ad hoc network[D].Dalian:Dalian Maritime University,2019

[6] 张键.海上宽带无线自组网MAC协议设计与实现[D].大连:大连海事大学,2019ZHANG Jian.Design and implementation of MAC protocol for maritime broadband wireless ad hoc network[D].Dalian:Dalian Maritime University,2019

[7] 彭璟云.无线局域网MAC层BEB退避算法研究[D].昆明:昆明理工大学,2018PENG Jingyun.Research on BEB backoff algorithm in MAC layer of WLAN[D].Kunming:Kunming University of Science and Technology,2018

[8] 余小龍.Ad Hoc网络MAC层协议研究及其算法改进[D].成都:电子科技大学,2017YU Xiaolong.Research on ad hoc network MAC layer protocol and related algorithm improvement[D].Chengdu:University of Electronic Science and Technology of China,2017

[9] 陆毅.无人机集群自组网MAC协议研究[D].桂林:桂林电子科技大学,2020LU Yi.Research on MAC protocol of UAV cluster ad hoc network[D].Guilin:Guilin University of Electronic Technology,2020

[10] Song N O,Kwak B J,Song J,et al.Enhancement of IEEE 802.11 distributed coordination function with exponential increase exponential decrease backoff algorithm[C]//The 57th IEEE Semiannual Vehicular Technology Conference.Jeju,Korea (South).IEEE,2003:2775-2778

[11] Pang Q X,Liew S C,Lee J Y B,et al.Performance evaluation of an adaptive backoff scheme for WLAN[J].Wireless Communications and Mobile Computing,2004,4(8):867-879

[12] Chan Y C,Liao M C,Chu C H.A collision-aware backoff mechanism for IEEE 802.11 WLANs[C]//2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.IEEE,2009,3:284-288

[13] Timmins I J,OYoung S.Marine communications channel modeling using the finite-difference time domain method[J].IEEE Transactions on Vehicular Technology,2009,58(6):2626-2637

[14] 沈亮.面向海上无线通信的信道估计算法研究与实现[D].西安:西安电子科技大学,2018

SHEN Liang.Research and implementation of channel estimation algorithms for maritime wireless communication systems[D].Xian:Xidian University,2018

[15] 魏特,王文浩,陈军,等.环境信息辅助的海上无线信道测量与建模[J].清华大学学报(自然科学版),2021,61(9):1002-1007WEI Te,WANG Wenhao,CHEN Jun,et al.Environmental information-aided maritime wireless channel measurement and modelling[J].Journal of Tsinghua University(Science and Technology),2021,61(9):1002-1007

[16] 戴德君.有关海浪波面高度分布的几个问题[D].青岛:中国海洋大学,2000DAI Dejun.Some problems about the height distribution of sea waves[D].Qingdao:Ocean University of China,2000

[17] Bianchi G.Performance analysis of the IEEE 802.11 distributed coordination function[J].IEEE Journal on Selected Areas in Communications,2000,18(3):535-547

[18] Bianchi G,Tinnirello I.Remarks on IEEE 802.11 DCF performance analysis[J].IEEE Communications Letters,2005,9(8):765-767

MAC protocol backoff algorithm based on interception in maritime ad hoc networks

XIAO Feng DOU Zheng

1College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001

Abstract Unmanned Surface Vehicles (USVs) usually operate in coordinated formation and exchange data through wireless ad hoc networks due to mission requirements,and the channel transmission loss of maritime ad hoc networks is usually in a dynamic state owing to the influence of ocean waves.However,the existing backoff algorithm of MAC protocol in ad hoc networks cannot distinguish between packet collision and packet loss in a dynamic maritime environment,resulting in the decline of reliability and stability.Here,we propose an adaptive minimum contention window backoff algorithm based on channel monitoring.The algorithm estimates the channel state by sensing the number of adjacent contention nodes,reduces the channel collision probability and retransmission times,thus improves the reliability and stability of the network as a whole.Simulation results show that compared with classical BEB algorithm,the proposed backoff algorithm increases the throughput and fairness by 28.67% and 62.00%,respectively,and reduces the end-to-end delay and packet loss rate by 2.84% and 15.10%,respectively.

Key words backoff algorithm;maritime communication;ad hoc network;channel monitoring;adaptive;minimum competition window

猜你喜欢

自适应
散乱点云的自适应α—shape曲面重建
浅谈网络教育领域的自适应推送系统
以数据为中心的分布式系统自适应集成方法
自适应的智能搬运路径规划算法
Ka频段卫星通信自适应抗雨衰控制系统设计
电子节气门非线性控制策略
多天线波束成形的MIMO-OFDM跨层自适应资源分配
适应性学习系统的参考模型对比研究
分析,自适应控制一个有乘积项的混沌系统
基于参数自适应蚁群算法对多目标问题的优化