APP下载

平行四边形中的辅助线的作法

2023-07-04兰萍

语数外学习·初中版 2023年4期
关键词:位线辅助线对角线

兰萍

在解答几何问题时,作辅助线可以构造新的图形,形成新的关系,使分散的条件集中,并建立起已知与未知的“桥梁”.平行四边形具有两组对边分别平行且相等,对角相等,对角线互相平分等性质.结合上述性质添加辅助线,就是在平行四边形中作出平行或垂直的线段,构成三角形的全等或相似,把平行四边形问题转化成常见的三角形、矩形等问题来解答.

一、平移对角线,把平行四边形转化为梯形

平移是一种只改变图形的位置而不改变图形大小及形状的变换.在平行四边形中求线段的长度或证明线段的不等关系时,首先考虑将要求的线段与三角形结合起来,运用三角形三边的不等关系来解答.若要求解或证明的线段与已知线段不在同一个三角形内,则可通过平移将线段集中到同一个三角形内.平移对角线可以构造一个以两对角线为边的三角形,建立待求线段与已知线段之间的关系,从而找到解题的突破口,使问题得以顺利解答.

例1

解析:

说明:本题通过作辅助线,利用平行四边形的性质,将两条已知线段与未知线段集中到了一个三角形中.解题主要运用了三角形的三边关系定理,即任意两边之和大于第三边,任意两边之差小于第三边.

二、过一边两端点作对边的垂线,把平行四边形转化为直角三角形

作垂線即过平行四边形一边的一个或两个端点向下底作高,将平行四边形分割成矩形和直角三角形.由于直角三角形的全等判定定理比较多,且可利用勾股定理得到边长间的数量关系,所以,作垂线段可为证明直角三角形全等创造条件,同时方便我们利用直角三角形相关性质定理解题.

例2

证明:

说明:本题考查了平行四边形的性质、勾股定理的运用、全等三角形的判定和性质.正确作出辅助线将平行四边形转化为两个直角三角形,并证明两个三角形全等是解题的关键.

三、延长顶点与对边上一点的连线,把平行四边形转化为相似三角形

证明线段的等积式或求线段的比值,常常要根据题目条件和结论的特征,巧妙地构造相似三角形.平行四边形对角相等,对边平行,连接顶点与对边上一点的连线可以为我们创造内错角相等的条件,这样就有助于找到线段所涉及的两个三角形中相等的两对角,从而证明两个三角形相似,由此便可证明线段的等积式或求得线段的比值.

例3

解:

说明:求两条线段的比值就要考虑相似,因为相似三角形对应边的比相等,所以本题添加辅助线就将平行四边形中的两个线段转化到了两个相似三角形中.解题中巧妙添加辅助线,可以构造多个相等的角,这就为我们证明相似创造了条件.

四、连接对角线交点与一边的中点,构造三角形中位线

在涉及三角形及平行四边形的证明和计算题中,经常会用到中位线定理.若题目以线段相等或中点为条件,结合平行四边形的对角线互相平分,就可以尝试连接对角线交点与一边的中点,构造中位线.利用三角形的中位线平行于第三边,且等于第三边的一半来解题,使线段在位置上的平行关系和数量上的比例关系在推理论证中发挥作用.

例4

解:

说明:平行四边形的性质比较多,其边、角、对角线等都存在一定的数量关系或位置关系.如果条件中给出的中点不止一个,解题时应有意识地寻找是否存在中位线;若条件中只有一个中点,可以利用对角线互相平分得到中点进而造中位线解题.

猜你喜欢

位线辅助线对角线
怎样添辅助线证全等
用活平行四边形对角线的性质
妙用中位线
两种重要的辅助线
巧构中位线解题
浅谈辅助线在数控切割中的应用
巧用三角形中位线定理解题
活用中位线的性质解题
边、角、对角线与平行四边形的关系
看四边形对角线的“气质”