城市水体氮污染类型及同位素溯源研究
2023-06-30孙婷婷涂耀仁罗鹏程高佳欣刘生辉寇佳怡顾心彤段艳平
孙婷婷 涂耀仁 罗鹏程 高佳欣 刘生辉 寇佳怡 顾心彤 段艳平
摘要:城市中各类含氮污染物的排放对环境产生了各种危害,明确氮污染的来源及循环规律可为环境治理提供一系列的专业依据.文章阐述了氮污染的机理、产生的危害、城市水体氮污染现状及污染类型,综述了城市水体氮污染溯源研究的最新进展.地表水主要受总氮、硝态氮和铵态氮污染影响,大部分水体仅满足Ⅳ~Ⅴ类水质标准,人为活动是城市水体氮污染的主要贡献者.此外,更进一步对水体氮污染来源示踪技术(水化学分析法、同位素示踪法、微生物源追踪技术(MST )及同位素源解析模型等)和端元物质中硝酸盐氮氧同位素特征值进行汇总,为氮污染溯源和明确氮污染迁移规律提供了可靠的依据.本综述对城市水体的氮污染溯源及氮污染防治工作具有重要意义.
关键词:城市水体;氮污染;同位素示踪;硝酸盐氮同位素;同位素分馏
中图分类号:X-1 文献标志码:A 文章编号:1000-5137(2023)01-0146-09
Study on nitrogen pollution types and isotopic tracing of urban water bodies
SUN Tingting1,TU Yaoren1,2*,LUO Pengcheng1,GAO Jiaxin1, LIU Shenghui1,KOU Jiayi1,GU Xintong1,DUAN Yanping1,2
(1.School of Environmental and Geographical Sciences,Shanghai Normal University,Shanghai 200234,China;
2.Yangtze River Delta Urban Wetland Ecosystem National Field Observation andResearch Station,Shanghai Normal University,Shanghai 200234,China)
Abstract:The emission of various nitrogen-containing pollutants in cities causes various hazards in the environment . Clarifying the source and circulation law of nitrogen pollution can provide a series of supports for environmental governance . In this paper,not onlythe mechanism and harm of nitrogen pollution but also the status and types of nitrogen pollution in urban water environment were described. The latest progress in the research on the traceability of nitrogen pollution in urban water was reviewed . The surface waters were mainly affected by total nitrogen,nitrate nitrogen,and ammonia nitrogen pollutions. Most of the water environment only met the class Ⅳ-Ⅴ water quality standards,and human activities were the main contributor to the nitrogen pollution in urban water environment. In addition,the source tracing technology of nitrogen pollution in water (hydrochemistry analysis,isotope tracing, microbial source tracing,isotope source analytical model,etc.) and the characteristic values of nitrate-nitrogen and oxygen isotopes in end-member substances were further summarized,which provided a reliable way to trace the source of nitrogen pollution and clarify the migration law of nitrogen pollution. This review is of great significance for the traceability and prevention of nitrogen pollution in urban water environment.
Key words:urban water environment;nitrogen pollution;isotopic tracing;nitrate nitrogen isotope;isotopic fractionation
0 引言
根据《2021中国生态环境状况公报》[1]显示,我国地表水监测断面中Ⅰ~Ⅲ类水质断面占84.9%,整体来看水质逐年向好;其中,河流、湖泊和水库监测断面水质以Ⅰ~Ⅲ类为主,但仍有10%~25%的水体仅达到Ⅳ类标准,湖泊和水库Ⅴ~劣Ⅴ类监测断面数量高于河流,且均存在有机质和营养盐污染现象,部分水体处于中度富营养水平.城市生态系统代谢严重依赖外部物质和能量,其所需的物质和能量为其他自然生态系统的10~100倍,故其高氮输入导致城市成为全球氮研究的热点[2-3].水环境中氮的主要来源包括自然和人为来源,如大气氮沉降、土壤有机氮的硝化作用、工业废水和生活污水以及农业化肥的使用等[4],其中工业废水和生活污水对地表水中氮污染的影响尤为突出,而农业中氮的过度利用、高强度施氮与漫灌甚至造成了地下水硝态氮的淋失,也極大地加剧了地下水污染[5].过多的硝酸盐会对水生生态系统造成严重的影响,如水体富营养化、藻华以及缺氧现象等[6],从而对水生生物的生存造成威胁.地下水中硝酸盐氮若被还原为亚硝态氮,可能会引起婴儿高铁血红蛋白症,也可能会引发胃癌、肝癌以及高血压等疾病[7].因此,水体氮污染的治理刻不容缓,在控制水体硝酸盐污染的前提下,需要准确识别其污染来源.目前,城市水体中含氮污染物的来源仍众说纷纭,故对城市水体氮污染的来源进行准确鉴定,有助于为环保部门氮污染的治理提供科学依据.
1 城市水体的氮污染类型
表1为我国城市各类水体中氮的污染类型[8-25],近年来我国城市水体仍普遍存在氮污染问题,当水体某种氮的含量超标或占总氮(TN )的比例较高时,认为 TN 是水体的主要氮污染类型,其中河流和湖泊均以 TN 和氨氮(NH4+-N )污染为主,水质分别呈Ⅲ~劣 V 类和Ⅴ~劣 V 类水平;水库以 TN 和硝态氮( NO3--N )污染为主,水质呈Ⅳ~劣 V 类水平.虽城市管控日趋严格,但不可避免存在偷排、漏排及垃圾渗滤液渗漏等现象,使地表水系统中氮失去平衡.总体来说,水库及河流的水质略优于湖泊,这与水库的地理位置位于城市边缘及政府对水库、河流等水源地水质的重视程度有关.
2 水体氮污染来源的鉴别技术
氮污染来源的鉴别技术主要有水化学分析法、同位素示踪法以及多种方法相结合的溯源方式[26].由于水体中硝酸盐来源多样且易发生生物地球化学效应,单纯依靠水化学分析法不能识别水体硝酸盐来源[27].同位素技术在硝酸盐污染源识别研究方面已有40多年的历史,初期研究者只能通过确定硝酸盐氮同位素(δ15N-NO3-)值来识别硝酸盐主要来源,但部分来源的δ15N-NO3-值范围较广,存在重叠部分,因此单一同位素往往很难准确地识别污染物来源.随着研究的进步,硝酸盐氧同位素(δ18O-NO3-)开始应用于水体硝酸盐溯源研究,多种同位素示踪法不仅弥补了单一同位素示踪的缺陷,结合同位素模型可较为准确地辨别氮污染来源与各污染源的贡献率.
2.1 不同来源615N-NO3-和618 O-NO3-值的范围
20世纪70年代,自 KOHL 等[28]使用δ15N-NO3-研究了美國伊利诺伊州 Sangamon 河中肥料对 NO3-的贡献后,即开启了利用δ15N-NO3-来识别水体 NO3-来源的先河.不同污染来源中硝酸盐的δ15N-NO3-和δ18O-NO3-值,如表2所示[29-43].各类氮肥δ15N-NO3-差别较小,硝态氮肥和铵态氮肥δ15N-NO3-值分别为-2‰~4‰和-4‰~2‰.大气沉降受大气中各类化学反应及人为来源影响,国外研究中大气氮沉降δ15N-NO3-值为-13‰~13‰[36],国内相较于国外δ15N-NO3-值范围窄.人畜粪便和生活污水易受到氨挥发以及硝化作用的影响,δ15N 值较高,为4‰~25‰.土壤中矿化作用和硝化作用的相对速率、土壤深度、植被种类等因素都会影响土壤的δ15N-NO3-值[30],其典型值域范围为0~9‰.
除δ15N-NO3-外,越来越多的学者将δ18O-NO3-用作识别水体中 NO3-来源的附加手段[44].例如, DURKA 等[45]发现由于大气中的 NO3-与微生物产生的土壤中 NO3-的δ18O-NO3-特征值有显著差异,故δ18O-NO3-能很好地分离这2个来源的污染物.WASSENAAR[46]也通过研究发现δ18O-NO3-能区分合成肥料与其他污染源.硝化作用产生的 NO3-的δ18O 值为2‰~14‰;大气沉降δ18O-NO3-值域较广,为18‰~75‰;硝态氮肥料则较铵态氮肥料δ18O-NO3-值偏重,分别为17‰~25‰和-5‰~15‰.
2.2 多元同位素示踪法
δ15N-NO3-和δ18 O-NO3-示踪技术在国内外应用最为广泛,GUO 等[47]用δ15N 和δ18 O 双同位素探究澜沧江流域硝酸盐来源,结果表明澜沧江下游 NO3-显著增加,在城市流域达到最大值.澜沧江流域δ15N-NO3-值为2.8‰~5.2‰,δ18 O-NO3-值为4‰~8.5‰,下游δ15N-NO3-值显著上升,土壤有机氮矿化为硝酸盐第一大污染源,紧接着是生活污水,下游人口不断增加也许会导致污水量增加.FU 等[48]对张家口市宣化区主要供水区的地下水进行硝酸盐氮溯源,NO3-,Cl-和 SO42-的空间特征都表现为沿河和远岸点浓度低,中间点位浓度较高,初步判断数值较高点位的硝酸盐污染源来自人为因素.从δ15N-NO3-和δ18 O-NO3-值可以看出粪肥和生活污水可能是该区域硝酸盐污染的主要来源,此结果与水化学分析结果有一致性.
在大多数硝酸盐污染源中,硼( B )也存在显著富集[49].其优点为不易氧化还原且不易与含 N 化合物反应,硼同位素(δ11B )在区分动物排泄物方面作用明显[50],锶( Sr )同位素与 B,N 同位素相比,87Sr 和86Sr 同位素质量比相对较低,不会通过人为和自然过程进行分馏[51],因此基本可以追踪到污染源的混合.WIDORY 等[51]利用三同位素(δ15N,δ11B 和87Sr/86Sr )示踪技术研究了法国布列塔尼2个流域的硝酸盐氮污染来源.化学组分和同位素表明,反硝化和混合来源对地下水硝酸盐氮污染有重要贡献;B,N 和 Sr 同位素示踪结果表明,该流域硝酸盐氮污染来源主要来自猪粪和污水的点源排放.
DANNI 等[52]以水的氢氧同位素(δ2H,δ18 O )和硝酸盐稳定同位素δ15N,δ18 O 四同位素研究了摩洛哥 Massa 流域的矿化作用和硝酸盐污染,水稳定同位素表明地表水会因气候干旱而蒸发,地表水补给来自局部高海拔地区,水-岩相互作用、海水入侵、人为干扰都是水体矿化程度的影响因素.NO3-浓度变化幅度较大,在一些家庭井水中浓度相对最高,δ15N-NO3-结果表明化肥和粪肥是硝酸盐主要来源,且生活污水是潜在污染源.
2.3 同位素与微生物源追踪(MST )结合示踪法
同位素分析与 MST 相结合是一种新兴且很有前途的污染源识别方法,特别是对于污染源中包含有机污染源的水体[53].CARREY 等[53]利用δ15N-NO3-,δ18 O-NO3-与δ11B 结合的方法对西班牙东北部加泰罗尼亚的地表水和地下水进行了硝酸盐溯源,使用粪便指示菌(FIB )的多同位素分析和 MST 来改进硝酸盐来源的鉴定.结果表明,同位素和 MST 的分析是互补的,大部分样品的同位素数据与 MST 数据一致或部分一致(79%).根据同位素结果,主要的硝酸盐来源是有机质来源,包括废水和粪便.此外,同位素和
MST 在有机质贡献率较大的地区显示出更高的一致性.BRIAND 等[50]结合同位素(δ15N-NO3-,δ18O-NO3-和δ11B )和微生物标志物对法国西南部一个农业地区的2条多氮源共存的河流进行氮污染源示踪.δ11B 值和微生物标记分别显示氮污染来源于人类活动产生的污水以及人类和动物的有机污染,δ15N-NO3-,δ18O-NO3-值表明氮污染通过大流量的地表淋滤和基流状态下的地下排水输入,且反硝化作用在土壤中就已经发生.
2.4 同位素与贝叶斯混合模型( SIAR )结合示踪法
在以稳定同位素示踪污染源的同时,PARNELL 等[54]基于 R 语言软件首次开发了 SIAR,该模型基于 Dirichlet 分布,在贝叶斯框架下构建了一个逻辑先验分布.许多学者利用 SIAR 来定量分析各个污染源对环境的贡献率,但是这种模型适用于硝酸盐来源特征明显的地区[50],计算式如下:
式中:Xij为样品i的同位素值j;Pk 为源 k 的比例贡献,需要用贝叶斯模型估算;Sjk为同位素j 的源值 k;Cjk为同位素j 在源 k 上的分馏因子;εjk为剩余误差,表示样品之间附加的未量化的变化量;qjk为Sjk的平均值;ωjk(2)为Sjk的标准差;λjk为Cjk的平均值;τjk(2)为Cjk的标准差;σj2为εjk的标准差.
MEGHDADI 等[55]探究了伊朗西北部Tarom流域中硝酸盐来源贡献率以及季节和空间的变化.通过地下水硝酸盐中δ15N 和δ18O 值,以及 SIAR 分析,采用基于δ11B 和87Sr/86Sr 耦合应用的多同位素方法區分硝酸盐的污水来源与肥料来源的空间季节性.结果表明,该流域在春末和秋初时,生活污水对地下水硝酸盐贡献率从17.0%增加至27.5%,肥料的平均贡献率从28.3%减少至19.0%.特别是秋初时期,在居住用地占20%以上的,污水平均贡献率最高(32.1%±2.8%);在晚春时期,肥料贡献率最大(42.1%±3.2%).
STOCK 等[56]开发了新一代贝叶斯稳定同位素混合模型,称为MixSIAR,与之前的混合模型软件相比,MixSIAR的主要优势是能够合并协变量数据,通过固定和随机效应来解释混合比例的可变性.LI 等[57]利用δ15N-NO3-、δ18O-NO3-、水化学成分(NO3-和 Cl-)和MixSIAR探究了中国西江河流的硝酸盐来源.结果表明,硝酸盐氮主要来自土壤有机氮、化肥和粪污废弃物.δ15N-NO3-值与 NO3-/Cl-的物质的量之比呈负相关,说明反硝化作用使 NO3-损失.MixSIAR表明,在丰水期土壤有机氮和化肥对硝酸盐氮贡献最大(72%~73%);而在枯水期,约58%的硝酸盐氮来自人为输入(粪肥和生活污水).表3为上述水体氮污染来源鉴别技术的总结.
3 结论与展望
1)城市生态系统组成复杂,大量的生活污水、工业废水和垃圾填埋场渗滤液等污染源给城市水体造成了严重污染.大部分城市水体均只能满足《地表水环境质量标准》(GB 3838—2002)中的Ⅳ~Ⅴ类水质标准,地表水主要受总氮、硝态氮和铵态氮污染影响.
2)氮污染源判别方法从传统的水化学分析法到同位素示踪法以及多种方法相结合的方式,使氮污染溯源实现从定性分析到定量分析.近年来同位素溯源技术发展迅速,多元同位素结合判别污染源的方法逐渐成为主流,弥补了单一同位素的局限性.SIAR 的应用为计算污染来源的贡献率提供了强有力的支撑.
3)不同区域的环境背景值、气候、人为干扰等因素会影响同位素特征值,研究者应丰富端元物质种类且合力建立区域氮污染同位素数据库,应用δ15N-NO3-和δ18O-NO3-定量研究 NO3-污染的区域性及季节性的动态变化,做到因地制宜、精准识别氮污染的来源及各污染来源的贡献率,为政府污染防治的决策与环境管理提供强有力的技术支撑.
参考文献:
[1] Ministry of Ecology and Environment of the Peoples Republic of China.2021 Bulletin on Chinas Ecological Environment[ R/OL ](2022-05-27)[2022-07-23]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/.
[2] DUH J D,SHANDAS V,CHANG H,et al. Rates of urbanisation and the resiliency of air and water quality [J]. Scienceof the Total Environment,2008,400(1/2/3):238-256.
[3] HU M M,WANG Y C,DU P C,et al. Tracing the sources of nitrate in the rivers and lakes of the southern areas of theTibetan Plateau using dual nitrate isotopes [J]. Science of the Total Environment,2019,658(1):132-140.
[4] JIN Z X,WANG J F,CHEN J G,et al. Identifying the sources of nitrate in a small watershed using δ15N-δ18O isotopes ofnitrate in the Kelan Reservoir,Guangxi,China [J]. Agriculture,Ecosystems and Environment,2020,297:106936.
[5] SU X S,WANG H,ZHANG Y L. Health risk assessment of nitrate contamination in groundwater:a case study of anagricultural area in northeast China [J]. Water Resources Management,2013,27(8):3025-3034.
[6] CAREY R O,MIGLIACCIO K W,BROWN M T. Nutrient discharges to Biscayne Bay,Florida:trends,loads,and a pollutantindex [J]. Science of the Total Environment,2011,409(3):530-539.
[7] MACILWAIN C. US report raises fears over nitrate levels in water [J]. Nature,1995,377(6544):4.
[8] SUN R H,CHEN L D,CHEN W L,et al. Effect of land-use patterns on total nitrogen concentration in the upstreamregions of the Haihe River Basin,China [J]. Environmental Management,2013,51(1):45-58.
[9] YU H X,ZHOU L Y,HE P et al. Analysis on spatial variation characteristics of water quality in Hangzhou section ofQiantang River during different water periods [J]. Yellow River,2016,38(8):55-59.
[10] ZHAI X Y,ZHANG Y Y. Spatio-temporal variations of water quality indices and regional influences of land use types intheHuai River Basin [J]. Water Resources Protection,2022,38(5):181-189.
[11] ZHAO M M,WANG S M,CHEN Y P,et al. Pollution status of the Yellow River tributaries in middle and lower reaches [J].Science of the Total Environment,2020,722:137861.
[12] TONG J. Characteristics and variation rules of raw water quality for Jinze Reservoir and upstream water [J]. WaterPurification Technology,2020,39(1):58-68.
[13] YU Z L,CHEN W,ZHAO R,et al. Periphytic algae community structure and its relation to environment factors in themain stream of the Songhua River from 2014 to 2019[J]. Environmental Science,2021,42(2):819-830.
[14] BAI D R,ZHANG T,CHEN T,et al. Distribution characteristics of carbon,nitrogen,and phosphorus bearing pollutantsin the ancient town rivers of Suzhou [J]. Environmental Science,2021,42(3):1403-1415.
[15] HE F,LI W X,MA Q X,et al. Research and application of integrated technology of water quality target management intypical areas of Yangtze River economic belt [J]. Research of Environmental Sciences,2021,34(7):1523-1531.
[16] WANG Y,WANG H Y,AN L J,et al. Water quality evaluation and nitrogen pollution cause analysis of HuangbizhuangReservoir [J]. Water Resources and Power,2020,38(4):60-63.
[17] JIN Z F,ZHANG W L,ZHENG Q,et al. Contribution of nitrogen sources in water sources by combining nitrogen andoxygen isotopes and SIAR [J]. Environmental Science,2018,39(5):2039-2047.
[18] LIU K X,WANG D M,CHANG G L,et al. Study on the relationship between landscape pattern and surface waterquality at multiple spatial scales [J]. Acta Scientiae Circumstantiae,2022,42(2):23-31.
[19] LI D L,WEI H L. Analysis on water quality and eutrophication of Longtan Reservoir in Hechi City [J]. Guangxi WaterResources and Hydropower Engineering,2021(6):10-13,26.
[20] HE X L,HE Q. Research on water quality variation trend and correlation of West Lake scenic area [J]. Journal ofZhejiang University of Water Resources and Electric Power,2015,27(3):38-42.
[21] ZHOU Q,JIA H Y,LU L,et al. Changing trend of the pollutant influx and outflux in Dongting Lake and the waterquality [J]. Ecology and Environmental Monitoring of Three Gorges,2021,6(2):71-80.
[22] WEN C Y,LIU J T,HU F,et al. Water quality change characteristics and eutrophication assessment of Poyang Lake [J].China Rural Water and Hydropower,2020(11):83-88.
[23] ZHANG M,SHI X L,YANG Z,et al. The variation of water quality from 2012 to 2018 in Lake Chaohu and themitigating strategy on cyanobacterial blooms [J]. Journal of Lake Sciences,2020,32(1):11-20.
[24] ZHANG J X. Spatial distribution of water quality and identification of pollution sources in Taihu Lake Basin [J]. JiangsuScience and Technology Information,2021,38(10):48-54.
[25] FANG Z N,JIN K,WANG X J,et al. Analysis of water quality trend of main rivers and lakes in Yangtze River Deltaintegrated eco-green development demonstration area [J]. Express Water Resources and Hydropower Information,2021,42(4):68-74.
[26] SUN Y Q,WANG X D,XIAO K,et al. Advances in nitrogen pollution isotope tracers in freshwater environments [J].Ecology and Environmental Sciences,2020,29(8):1693-1702.
[27] DU X Q,FANG M,YE X Y. Research progress on the sources of inorganic nitrogen pollution in groundwater andidentification methods [J]. Environmental Science,2018,39(11):5266-5275.
[28] KOHL D H,SHEARER G B,COMMONER B. Fertilizer nitrogen:contribution to nitrate in surface water in a corn beltwatershed [J]. Science,1971,174(4016):1331-1334.
[29] XUE D,BOTTE J,BAETS B D,et al. Present limitations and future prospects of stable isotope methods for nitratesource identification in surface and groundwater [J]. Water Research,2009,43(5):1159-1170.
[30] MAYER B ,BOLLWERK S M ,MANSFELDT T ,et al. The oxygen isotope composition of nitrate generated bynitrification in acid forest floors [J]. Geochimica et Cosmochimica Acta:Journal of the Geochemical Society and the Meteoritical Society,2001,65(16):2743-2756.
[31] KENDALL C. Tracing Nitrogen Sources and Cycling in Catchments [ M ]. Amsterdam:Elsevier Science Press,1998:519-576.
[32] XING M ,LIU W G ,HU J. Using nitrate isotope to trace the nitrogen pollution in Chanhe and Laohe River [J].Environmental Science,2010,31(10):2305-2310.
[33] SINGLETON M J,ESSER B K,MORAN J E,et al. Saturated zone denitrification:potential for natural attenuation ofnitrate contamination in shallow groundwater under dairy operations [J]. Environmental Science and Technology,2007,41(3):759-765.
[34] YANG Y Y,TOOR G S.δ15N and δ18O reveal the sources of nitrate-nitrogen in urban residential stormwater runoff[J].Environmental Science and Technology,2016,50(6):2881-2889.
[35] LEE K S ,BONG Y S ,LEE D ,et al. Tracing the sources of nitrate in the Han River watershed in Korea,usingδ15N-NO3- and δ18O-NO3- values [J]. Science of the Total Environment,2008,395(2):117-124.
[36] JIANG Y J,WU Y X,YUAN D. Human impacts on Karst groundwater contamination deduced by coupled nitrogen withstrontium isotopes in the Nandong underground river system in Yunan,China [J]. Environmental Science and Technology,2009,43(20):7676.
[37] JIA G,CHEN F. Monthly variations in nitrogen isotopes of ammonium and nitrate in wet deposition at Guangzhou ,southChina [J]. Atmospheric Environment,2010,44(19):2309-2315.
[38] YANG L P,HAN J P,XUE J L,et al. Nitrate source apportionment in a subtropical watershed using Bayesian model [J].Science of the Total Environment,2013,463/464(5):340-347.
[39] ZHANG Y,SHI P,LI F D,et al. Quantification of nitrate sources and fates in rivers in an irrigated agricultural areausing environmental isotopes and a Bayesian isotope mixing model [J]. Chemosphere,2018,208:493-501.
[40] WIDORY D,PETELET E,NEGREL P,et al. Tracking the sources of nitrate in groundwater using coupled nitrogen andboron isotopes:a synthesis [J]. Environmental Science and Technology,2005,39(2):539-548.
[41] HEATON T. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:a review [J]. Chemical Geology:Isotope Geoscience Section,1986,59:87-102.
[42] LIU S,KONG FX,CAI Y F,et al. Nitrogen stable isotope study on nitrate nitrogen pollution of four inflowing rivers ofLakeChaohu [J]. Journal of Lake Sciences,2012,24(6):952-956.
[43] YU U ,HOSONO T ,ONODERA S ,et al. Sources of nitrate and ammonium contamination in groundwater underdeveloping Asian megacities [J]. Science of the Total Environment,2008,404(2/3):361-376.
[44] DEUTSCH B,MEWES M,LISKOW I,et al. Quantification of diffuse nitrate inputs into a small river system using stableisotopes of oxygen and nitrogen in nitrate [J]. Organic Geochemistry,2006,37(10):1333-1342.
[45] DURKA W,SCHULZE E D,GEBAUER G,et al. Effects of forest decline on uptake and leaching of deposited nitratedetermined from 15N and 18O measurements [J]. Nature,1994,372(6508):765-767.
[46] WASSENAAR L I. Evaluation of the origin and fate of nitrate in the abbotsford aquifer using the isotopes of 15N and18O inNO3-[J]. Applied Geochemistry,1995,10(4):391-405.
[47] GUO X J,TANG Y C,XU Y,et al. Using stable nitrogen and oxygen isotopes to identify nitrate sources in the LancangRiver,upper Mekong [J]. Journal of Environmental Management,2020,274:111197.
[48] FU X M,SUN Y Y,SU J,et al. Source of nitrate in groundwater based on hydrochemical and dual stable isotopes [J].China Environmental Science,2019,39(9):3951-3958.
[49] LEENHOUTS J M,BASSETT R L,MADDOCK T. Utilization of intrinsic boron isotopes as co-migrating tracers foridentifying potential nitrate [J]. Ground Water,1998,36(2):240-250.
[50] BRIAND C ,SEBILO M ,LOUVAT P ,et al. Legacy of contaminant N sources to the NO3- signature in rivers :acombined isotopic (δ15N-NO3-,δ18O-NO3-,δ11B ) and microbiological investigation [J]. Scientific Reports,2017,7(1):41703.
[51] WIDORY D,KLOPPMANN W,CHERY L,et al. Nitrate in groundwater:an isotopic multi-tracer approach [J]. Journalof Contaminant Hydrology,2004,72(1):165-188.
[52] DANNI S O ,BOUCHAOU L ,ELMODEN A ,et al. Assessment of water quality and nitrate source in the Massacatchment (Morocco ) using δ15N and δ18O tracers [J]. Applied Radiation and Isotopes,2019,154:108859.
[53] CARREY R,BALLESTE E,BLANCH A R,et al. Combining multi-isotopic and molecular source tracking methods toidentify nitrate pollution sources in surface and groundwater [J]. Water Research,2021,188:116537.
[54] PARNELL A C ,INGER R ,BEARHOP S ,et al. Source partitioning using stable isotopes :coping with too muchvariation [J]. PLoS One,2010,5(3):e9672.
[55] MEGHDADI A,JAVAR N. Quantification of spatial and seasonal variations in the proportional contribution of nitratesources using a multi-isotope approach and Bayesian isotope mixing model [J]. Environmental Pollution,2018,235:207-222.
[56] STOCK B C,JACKSON A L,WARD E J,et al. Analyzing mixing systems using a new generation of Bayesian tracermixing models [J]. PeerJ,2018,6(4):e5096.
[57] LI C,LI S L,YUE F J,et al. Identification of sources and transformations of nitrate in the Xijiang River using nitrateisotopes and Bayesian model [J]. Science of the Total Environment,2019,646:801-810.
(責任编辑:郁慧,冯珍珍)