APP下载

植物SWEET蛋白的结构与分类及功能研究进展

2023-05-30任凯丽孔维萍唐桃霞程鸿

甘肃农业科技 2023年1期
关键词:分类结构功能

任凯丽 孔维萍 唐桃霞 程鸿

摘要:植物SWEET蛋白是一类重要的转运蛋白,研究其生理生化功能,有助于分子辅助育种,缩短育种年限。本文基于文献资料,梳理归纳了近年来国内外的植物SWEET蛋白的结构、分类、转运底物和功能方面的相关研究进展,阐述表明SWEET蛋白是植物中广泛存在的一类糖转运体,既能转运单糖又能转运蔗糖,属于Mt N3家族。不同植物间的SWEET蛋白具有一定的保守性,根据亲缘关系SWEET家族可以分为四类。植物SWEET蛋白是位于膜系统上,参与糖分的跨膜转运,在植物生长发育及逆境胁迫中均有不同程度的调控作用,如调控花蜜的分泌、花粉的营养、灌浆期种子的发育、果实发育、植物抗逆性和抗病性等。然而不同植物的SWEET蛋白转运底物和调控功能不同,目前仅在拟南芥等少数植物中研究较为深入。

关键词:SWEET;糖转运蛋白;糖;结构;分类;功能

中图分类号:S184;Q51            文献标志码:A            文章编号:2097-2172(2023)01-0005-08

doi:10.3969/j.issn.2097-2172.2023.01.002

Advances in Structure, Classification and Functions of

SWEET Protein in Plants

REN Kaili, KONG Weiping, TANG Taoxia, CHENG Hong

(Institute of Vegetables, Gansu Academy of Agricultural Sciences, Lanzhou Gansu 730070, China)

Abstract: The yield and quality of crops depend on sugar transport and regulation. In this paper, we reviewed the structure, classification, transport substrates and functions of SWEET protein, in order to lay a foundation for the study of SWEET protein in other plants. SWEET transporter is a newly discovered sugar transporter located in membrane system, which can transport both hexose and sucrose and belongs to Mt N3 family. SWEET proteins are conserved in different plants, and the SWEET family can be divided into four groups according to their relatives. plant SWEET protein plays an important role in plant growth and development, biological and abiotic stress response, such as regulating nectar secretion, pollen nutrition, seed development during grain filling, fruit development, plant stress resistance and disease resistance. However, the transport substrates and regulatory functions of SWEET proteins are different in different plants, and only in a few plants such as Arabidopsis thaliana had this protein been studied in depth.

Key words: SWEET; Sugar transporter; Sugar; Structure; Classification; Function

糖是植物的重要能源。植物葉片通过光合作用进行碳固定,形成糖类物质,除自身消耗外,其余大部分运输到库器官,供库器官生长发育,而糖类物质从源到库的运输离不开糖转运蛋白的参与。植物的糖转运蛋白分为3类,即蔗糖转运蛋白(Sucrose transporters,SUTs)、单糖转运蛋白(Monosaccharide transporters,MSTs)和SWEET糖转运蛋白(Sugars Will Eventually be Exported Transporters)[1 ]。单糖转运蛋白和蔗糖转运蛋白分别主要负责单糖和蔗糖的转运,而SWEET蛋白既能转运单糖又能转运蔗糖[2 ],是植物中最新发现的一类转运蛋白,除了糖转运外SWEET蛋白在植物生长发育和抗逆性等方面均发挥着重要的作用[3 - 5  ]。

SWEET蛋白最先在拟南芥(Arabidopsis thaliana)中发现并鉴定[6 ],随后逐渐在水稻(Oryza sativa)、葡萄(Vitis vinifera)、木薯(Manihot esculenta)、苹果(Malus domestica)、甜橙(Citrus sinensis)等作物中陆续被鉴定[7 - 11 ]。目前,SWEET蛋白在模式植物拟南芥中的研究较为深入,很多其他植物的报道少且深度不够。我们综述了近年来已经鉴定的SWEET蛋白相关研究,以期为其他植物的SWEET转运蛋白研究提供参考。

1   植物SWEET蛋白结构与分类

SWEET蛋白是植物、动物和微生物中广泛存在的、定位于膜结构的糖转运蛋白[6, 12 - 14 ],属于Mt N3家族。真核生物SWEET蛋白具有7个TM螺旋(transmembrane domains),N端THB由TMs 1-3组成,C端THB由TMs 5-7制成,且N端与C端THB结构相似,均以平行方向排列,各自为1个单元(图1)。TM4作为连接螺旋,连接N端和C端的THB,不同SWEET蛋白中连接螺旋的蛋白序列是不保守的(图1)[14 - 16 ]。原核生物的semiSWEET蛋白仅含有单个THB结构,也具有糖转运功能[13, 17 - 18 ]。Yuan等[7 ]认为真核生物SWEET基因可能是原核生物semiSWEET基因复制的结果,TM4是转运体的一部分;而Hu等[19 ]提出一个基因融合假设理论,认为在进化过程中当产甲烷古菌吞噬细菌时,会导致semiSWEET基因转移到宿主基因组中,因此细菌的semiSWEET和寄主基因结合形成了1个双THB的SWEET,但保守的TM4是如何在2个THB之间插入或产生的仍不清楚。基因复制和基因融合是SWEET转运体进化的主流理论,然而不论哪种进化理论,SWEET中涉及糖运输的关键残基在进化过程中是保守的[20 ]。

随着SWEET家族研究的深入,不少植物的SWEET蛋白被鉴定,表1为已经发表的几种植物SWEET蛋白家族成员数量。对拟南芥的17个、水稻的21个、黄瓜的17个SWEET家族蛋白成员利用MAGA11软件采用邻接发构建系统进化树,结果见图2。植物的SWEET家族蛋白分为4个分支。以拟南芥为例,分支Ⅰ有AtSWEET1-3,分支Ⅱ有AtSWEET4-8,分支Ⅲ有AtSWEET9-15,分支Ⅳ有AtSWEET16和AtSWEET17[2, 6, 21 ]。

2   植物SWEET蛋白转运底物

植物SWEET蛋白大多位于质膜,少数位于液泡膜,具有不依赖能量的跨膜转运糖分的功能。拟南芥SWEET1蛋白具有跨膜转模葡萄糖的功能[6 ],SWEET2蛋白跨膜转运2-脱氢葡萄糖[55 ],SWEET4蛋白跨膜转运葡萄糖和果糖[56 ],SWEET5蛋白跨膜转运葡萄糖和半乳糖[57 ],SWEET8蛋白跨膜转运葡萄糖[58 ],SWEET9、SWEET11、SWEET12、SWEET13、SWEET14和SWEET15蛋白跨膜转运蔗糖[59 - 62 ],SWEET16蛋白跨膜转运葡萄糖、果糖和蔗糖[2 ],SWEET17蛋白跨膜转运果糖(表2)[21 ]。

此外,不同植物间SWEET蛋白的转运底物也略有不同。茶树的SWEET1a蛋白可跨膜转运葡萄糖、半乳糖和蔗糖[43 ],SWEET16蛋白可跨膜转运葡萄糖、果糖和蔗糖[43 ],SWEET17蛋白可跨膜转运葡萄糖、果糖、半乳糖、甘露糖和蔗糖等多种糖分[43 ];葡萄SWEET4、SWEET10蛋白可跨膜转运葡萄糖和果糖的功能[5, 63 ];百脉根SWEET3蛋白可跨膜转运蔗糖的功能[35 ];番茄SWEET7a、SWEET14蛋白可跨膜转运葡萄糖、果糖和蔗糖(表2)[3 ]。

3   植物SWEET蛋白功能

植物SWEET蛋白参与糖分的转运,而糖不仅可以作为养分物质供植株生长,也可作为信号因子,因此SWEET蛋白在植物生长发育、响应生物与非生物逆境胁迫过程中均有不同程度的调控作用(表2)。

3.1   植物SWEET蛋白的生理功能

SWEET蛋白可以调控花蜜的分泌。拟南芥SWEET1蛋白具有给配子体或花蜜提供营养的作用[6 ],拟南芥和芜菁的SWEET9蛋白也具有调控花蜜分泌的功能[59 ]。SWEET蛋白可以调控花粉的發育,拟南芥的SWEET5、SWEET8、SWEET13、SWEET14蛋白均具有调控花粉营养与萌发的功 能[57 - 58, 61 ]。SWEET蛋白可以调控灌浆期种子的发育,例如Chen等[62 ]的研究表明,拟南芥SWEET11、SWEET12和SWEET15蛋白可以调控种子发育。此外,SWEET蛋白可以调控果实发育,如葡萄SWEET10蛋白介导了果实中糖分的积累[63 ]。

3.2   植物SWEET蛋白对逆境胁迫的调控

SWEET蛋白可以调控植物对非生物胁迫的抗性。过表达茶树SWEET1a、SWEET16与SWEET17基因和过表达拟南芥SWEET4与SWEET16基因,可以提高茶树和拟南芥对冷胁迫的耐受性[2, 43, 56, 64 ];拟南芥水分胁迫下通过调控SWEET11和SWEET12基因的表达将更多的糖分从叶片运输到根部,以维持根的生长发育,从而增强对水分胁迫的适应性[60 ];拟南芥SWEET11和SWEET12可协同作用调控植株抗冻性,冷胁迫处理下拟南芥SWEET11和SWEET12表达下调,且sweet11和sweet12双突变体表现出抗冻性[60 ];拟南芥sweet17敲除突变体表现出侧根减少和侧根发育相关转录因子表达减少,导致耐旱性降低[66 ]。

SWEET蛋白可以调控植物对生物胁迫的抗性。过表达SWEET2可以增强拟南芥对腐霉的抗性;过表达葡萄SWEET4可促进具有真菌抗性的黄酮类化合物的生物合成,增强对真菌的抗性[5 ];过表达甘薯SWEET10可通过降低甘薯的糖含量来增强了对尖孢菌的抗性[4 ];拟南芥SWEET11和SWEET12蛋白参与病原体驱动下胚轴内蔗糖分布的调控,进而对甘蓝根肿菌的侵染产生负面影响[65 ]。

4   小结与展望

SWEET蛋白是植物中广泛存在的一类糖转运体,其既能转运单糖又能转运蔗糖,属于Mt N3家族。不同植物间的SWEET蛋白具有一定的保守性,根据亲缘关系SWEET家族可以分为四类。植物SWEET蛋白是位于膜系统上,参与糖分的跨膜转运,在植物生长发育及逆境胁迫中均有不同程度的调控作用,例如调控花蜜的分泌、花粉的营养、灌浆期种子的发育、果实发育、植物抗逆性和抗病性等。因此,植物SWEET蛋白是一类重要的转运蛋白,研究其生理生化功能,有助于分子辅助育种,缩短育种年限。

目前,SWEET蛋白在模式植物擬南芥中的研究较为深入,在其他植物的研究还相对较少且深度不够。今后的研究重点应从以下几点入手,一是作物生长调控,如水稻、玉米等作物,研究营养器官与生殖器官的关系,保证充足营养面积的基础上更多的糖分转运到种子/果实中,以提高产量和品质;二是园艺瓜果植物的高品质育种,深入研究葡萄、苹果、甜瓜、西瓜等园艺植物SWEET蛋白的功能,利用生物技术手段进行高品质育种;三是植物抗性育种,挖掘植物SWEET蛋白的功能,通过SWEET蛋白对糖的调控增强植物对生物与非生物胁迫的耐受性,结合分子生物学手段,达到抗性育种的目的。

参考文献:

[1] 耿艳秋,董肖昌,张春梅.  园艺作物糖转运蛋白研究进展[J]. 园艺学报,2021,48(4):676-688.

[2] KLEMENS P A W, PATZKE K, DEITMER J, et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J].  Plant Physiology, 2013, 163(3): 1338-1352.

[3] ZHANG X, FENG C, WANG M, et al.  Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits[J].  Horticulture Research, 2021, 8:186.

[4] LI Y, WANG Y N, ZHANG H, et al. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum[J]. Frontiers in Plant Science, 2017, 8(e44467): 197.

[5] METEIER E, LA CAMERA S, GODDARD ML, et al. Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a SoilbornePathoge[J].  Frontiers in Plant Science, 2019, 10: 884

[6] CHEN L Q, HOU B H, LALONDE S, et al.  Sugar transporters for intercellular exchange and nutrition of pathogens[J].  Nature, 2010, 468(7323): 527-532.

[7] YUAN M, WANG S. Rice Mt N3/saliva/SWEET family genes and their homologs in cellular organisms[J].  Molecular Plant, 2013, 6: 665-674.

[8] CHONG J, PIRON MC, MEYER S, et al.  The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea[J]. Journal of Experimental Botany, 2014, 65(22): 6589-6601.

[9] COHN M, BART R S, SHYBUT M, et al. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava[J].  Molecular Plant-Microbe Interactions, 2014, 27(1): 1186-1198.

[10] WEI X, LIU F, CHEN C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars[J].  Frontiers in Plant Science, 2014, 5: 569.

[11] ZHENG Q, TANG Z, XU Q, et al.  Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis)[J].  Plant Cell, Tissue and Organ Culture, 2014, 119(3): 609-624.

[12] CHEN LQ, CHEUNG L, FENG L, et al. Transport of sugars[J].  Annual Review of Biochemistry, 2015, 84: 865-894.

[13] XUAN YH, HU YB, CHEN LQ, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J].  Proceedings of the National Academy of Sciences, 2013, 110(39): e3685-3694.

[14] XU Y, TAO YY, CHEUNG LS, et al.  Structures of bacterial homologues of SWEET transporters in two distinct conformations[J].  Nature, 2014, 515(7527): 448-452.

[15] HAN L, ZHU Y, LIU M, et al. Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter[J].  Proceedings of the National Academy of Sciences, 2017, 114(38): 10089-10094.

[16] JEENA GS, KUMAR S, SHUKLA RK.  Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants[J].  Plant Molecular Biology, 2019, 100(4): 351-365.

[17] FENG L, FROMMER W B. Structure and function of SemiSWEET and SWEET sugar transporters[J].  Trends in Biochemical Sciences, 2015, 40(8): 480-486.

[18] LEE Y, NISHIZAWA T, YAMASHITA K, et al. Structural basis for thefacilitative diffusion mechanism by semiSWEET transporter[J]. Nature Communications, 2015, 6(1): 1-8.

[19] HU Y B, SOSSO D, QU X Q, et al. Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis[J].  The FASEB Journal, 2016, 30(10): 3644-3654.

[20] JIA B, ZHU X F, PU Z J, et al.  Integrative view of the diversity and evolution of SWEET and SemiSWEET sugar transporters[J].  Frontiers in Plant Science, 2017, 8: 2178.

[21] CHARDON F, BEDU M, CALENGE F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis[J].  Current Biology, 2013, 23(8): 697-702.

[22] EOM J S, CHEN L Q, SOSSO D, et al.  SWEETs, transporters for intracellular and intercellular sugar translocation[J].  Current Opinion in Plant Biology, 2015, 25: 53-62.

[23] FENG C Y, HAN J X, HAN X X, JIANG J. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J].  Gene, 2015, 573: 261-272.

[24] PATIL G, VALLIYODAN B, DESHMUKH R, et al. Soybean(Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis[J].  BMC Genomics, 2015, 16(1): 1-16.

[25] SOSSO D, LUO D, LI Q, et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J].  Nature Genetics, 2015, 47(12): 1489-1493.

[26] HU B, WU H, HUANG W, et al.  SWEET Gene Family in Medicago truncatula: Genome-Wide Identification, Expression and Substrate Specificity Analysis[J].  Plants, 2019, 8(9): 338.

[27] KRYVORUCHKO I S, SINHAROY S, TORRES-JEREZ I, et al. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula[J].  Plant Physiology, 2016, 171(1): 554-565.

[28] MANCK-G?魻TZENBERGER J, REQUENA N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family[J].  Frontiers in Plant Science, 2016, 7: 487.

[29] MIZUNO H, KASUGA S, KAWAHIGASHI H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling[J]. Biotechnology for Biofuels, 2016, 9(1): 1-12.

[30] COX K L, MENG F, WILKINS K E, et al. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton[J].  Nature Communications, 2017, 8(1): 1-14.

[31] HU L P, ZHANG F, SONG S H, et al. Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber[J].  Journal of Integrative Agriculture, 2017, 16(7): 1486-1501.

[32] LIY X, FENG S, MAS, et al. Spatiotemporal Expression and Substrate Specificity Analysis of the Cucumber SWEET Gene Family[J].  Frontiers in Plant Science,2017, 8: 1855.

[33] LI J, QIN M, QIAO X, et al. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear(Pyrus bretschneideri)[J].  Plant and Cell Physiology, 2017, 58(4): 839-850.

[34] MIAO H, SUN P, LIU Q, et al. Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana[J].  Scientific Reports, 2017, 7(1): 1-15.

[35] SUGIYAMA A, SAIDA Y, YOSHIMIZU M, et al. Molecular characterization of LjSWEET3, a sugar transporter in nodules of Lotus japonicus[J].  Plant and Cell Physiology, 2017, 58(2): 298-306.

[36] SUI J L, XIAO X H, QI J Y , et al.  The SWEET gene family in Hevea brasiliensis—its evolution and expression compared with four other plant species[J].  FEBS Open Bio, 2017, 7(12): 1943-1959.

[37] WU Y, WANG Y, SHAN Y, et al. Characterization of SWEET family members from loquat and their responses to exogenous induction[J].  Tree Genetics & Genomes, 2017, 13(6): 1-9.

[38] GAO Y, ZHANG C, HAN X, et al. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease[J].  Molecular Plant Pathology, 2018, 19(9): 2149-2161.

[39] GAUTAM T, SARIPALLI G, GAHLAUT V, et al. Further studies on sugar transporter(SWEET) genes in wheat (Triticumaestivum L.)[J]. Molecular Biology Reports, 2019, 46(2): 2327-2353.

[40] GUO C, LI H, XIA X, et al. Functional and evolution characterization of SWEET sugar transporters in Ananascomosus[J].  Biochemical and Biophysical Research Communications, 2018, 496(2): 407-414.

[41] HU W, HUA X, ZHANG Q, et al.  New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics[J]. BMC Plant Biology, 2018, 18(1): 1-20.

[42] LI H, LI X, XUAN Y, et al.  Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophorabrassicae-induced formation of clubroot in Brassica rapa[J].  Frontiers in Plant Science, 2018, 9: 207.

[43] WANG L, YAO L, HAO X, et al.  Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis[J].  Plant Molecular Biology, 2018, 96(6): 577-592.

[44] DOIDY J, VIDAL U, LEMOINE R. Sugar transporters in Fabaceae, featuring SUT MST and SWEET families of the model plant Medicago truncatula and the agricultural crop Pisumsativum[J].  PLoS ONE, 2019, 14(9): e0223173.

[45] LIU H T, LYU W Y, TIAN S H, et al. The SWEET family genes in strawberry: identification and expression profiling during fruit development[J].  South African Journal of Botany, 2019, 125: 176-187.

[46] XIE H, WANG D, QIN Y, et al. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development[J].  BMC Plant Biology, 2019, 19(1): 1-13.

[47] ZHANG W, WANG S, YU F, et al. Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and clubroot disease responses[J].  BMC Genomics, 2019, 20(1): 1-16.

[48] GENG Y, WU M, ZHANG C. Sugar transporter ZjSWEET2.2 mediates sugar loading in leaves of Ziziphusjujubamill[J]. Frontiers in Plant Science, 2020, 11: 1081.

[49] JIANG S, BALAN B, ASSIS R D A, et al. Genome-wide profiling and phylogenetic analysis of the SWEET sugar transporter gene family in walnut and their lack of responsiveness to Xanthomonas arboricolapv. juglandis infection[J].  International journal of molecular sciences, 2020, 21(4): 1251.

[50] ZHANG L, WANG L, ZHANG J, et al. Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth[J].  Tree Physiology, 2021, 41(5): 882-899.

[51] ZHANG R, NIU K, MA H. Identification and expression analysis of the SWEET gene family from Poapratensis under abiotic stresses[J].  DNA Cell Biology, 2020, 39(9): 1606-1620.

[52] LIN Q, ZHONG Q, ZHANG Z. Identification and functional analysis of SWEET gene family in Averrhoa carambola L. fruits during ripening[J].  PeerJ, 2021, 9:e11404.

[53] ZHANG X, WANG S, REN Y, et al. Identification, Analysis and Gene Cloning of the SWEET Gene Family Provide Insights into Sugar Transport in Pomegranate (Punicagranatum)[J].  International Journal of Molecular Sciences, 2022, 23(5): 2471.

[54] DU Y L, LI W J, GENG J, et al. Genome-wide identification of the SWEET gene family in Phaseolus vulgaris L. and their patterns of expression under abiotic stress[J].  Journal of Plant Interactions, 2022, 17(1): 390-403.

[55] CHEN HY, HUH JH, YU YC, et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection[J].  The Plant Journal, 2015, 83(6): 1046-1058.

[56] LIU X, ZHANG Y, YANG C, et al. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development[J].  Scientific Reports,  2016, 6(1): 1-12.

[57] WANG J, YU Y C, LI Y, et al. Hexose transporter SWEET5 confers galactose sensitivity to Arabidopsis pollen germination via a galactokinase[J].  Plant Physiology, 2022, 189(1): 388-401.

[58] SUN MX, HUANG XY, YANG J, et al. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage[J].  Plant Reproduction, 2013, 26(2): 83-91.

[59] LIN I W, SOSSO D, CHEN L Q, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9[J].  Nature, 2014, 508(7497): 546-549.

[60] FATIMA U, BALASUBRAMANIAM D, KHAN W A, et al. SWEET11 and SWEET12 transporters function in tandem to modulate sugar flux in Arabidopsis: An account of the underlying unique structure-function relationship[J].  BioRxiv, 2022.

[61] KANNO Y, OIKAWA T, CHIBA Y, et al.  AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J].  Nature Communications, 2016, 7(1): 1-11.

[62] CHEN L Q, LIN I W, QU X Q, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J].  The Plant Cell, 2015, 27(3): 607-619.

[63] ZHANG Z, ZOU L M, REN C, et al. VvSWEET10 Mediates Sugar Accumulation in Grapes[J].  Genes, 2019, 10(4): 255.

[64] YAOL N, DINGC Q, HAOX Y, et al. CsSWEET1a and CsSWEET17 Mediate Growth and Freezing Tolerance by Promoting Sugar Transport across the Plasma Membrane[J].  Plant and Cell Physiology, 2020, 61(9): 1669-1682.

[65] WALEROWSKI P, G?譈NDEL A, YAHAYA N, et al. Clubroot disease stimulates early steps of phloem differentiation and recruits SWEET sucrose transporters within developing galls[J].  Plant Cell, 2018, 30(12): 3058-3073.

[66] VALIFARD M, LE HIR R, M?譈LLER J, et al. Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance[J].  Plant Physiology, 2021, 187(4): 2716-2730.

收稿日期:2022 - 07 - 11;修訂日期:2022 - 12 - 09

基金项目:甘肃省农业科学院生物育种专项(2022GAAS05);国家自然科学基金(31960523)。

作者简介:任凯丽(1993 — ),女,河北邯郸人,研究实习员,研究方向为西甜瓜新品种选育与栽培。Email: 2296802504@qq.com。

通信作者:程   鸿(1972 — ),男,甘肃会宁人,研究员,研究方向为分子育种。Email: chengjn@yeah.net。

猜你喜欢

分类结构功能
也谈诗的“功能”
《形而上学》△卷的结构和位置
分类算一算
论结构
分类讨论求坐标
数据分析中的分类讨论
教你一招:数的分类
关于非首都功能疏解的几点思考
论《日出》的结构
创新治理结构促进中小企业持续成长