肠道菌群及其代谢产物在非酒精性脂肪性肝病发生发展及治疗中的作用
2023-04-29李永强唐文娟周永健
李永强 唐文娟 周永健
摘要:非酒精性脂肪性肝病(NAFLD)是全世界最为常见的慢性肝病。肝脏与肠道之间有着紧密的结构及功能关系即“肠-肝轴”,其中肠道菌群可通过菌群易位、内源性乙醇的产生、胆汁酸和胆碱代谢的调节异常、内毒素血症等参与NAFLD的发生、发展。本文主要关注肠道菌群及代谢产物在NAFLD发生、发展及治疗中的作用进展。关键词:非酒精性脂肪性肝病; 胃肠道微生物组; 治疗学基金项目:国家自然科学基金(82170585, 81970507); 广州市医学重点学科(2021-2023); 广州市科技计划项目(SL2022A03J01100); 广东省自然科学基金(2021A1515011290)
Role of intestinal microbiota and metabolites in the development, progression, and treatment of nonalcoholic fatty liver disease
LI Yongqiang, TANG Wenjuan, ZHOU Yongjian. (Department of Gastroenterology, Guangzhou First Peoples Hospital & The Second Affiliated Hospital of South China University of Technology;Guangzhou Digestive Disease Center, Guangzhou 510180, China)
Corresponding author:ZHOU Yongjian, eyzhouyongjian@scut.edu.cn (ORCID:0000-0003-1721-7639)
Abstract:Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world. There is a close structural and functional relationship between the liver and the intestine, namely “the gut-liver axis”, in which intestinal microbiota can participate in the development and progression of NAFLD through microbial translocation, production of endogenous ethanol, abnormal regulation of bile acid metabolism and choline metabolism, and endotoxemia. This article reviews the role of intestinal microbiota and metabolites in the development, progression, and treatment of NAFLD.
Key words:Non-alcoholic Fatty Liver Disease; Gastrointestinal Microbiome; Therapeutics
Research funding:National Natural Science Foundation of China (NSFC)(82170585, 81970507); The Project of Key Medical Discipline in Guangzhou(2021-2023); Guangzhou Planned Project of Science and Technology(SL2022A03J01100); National Natural Science Foundation of Guangdong Province (2021A1515011290)
非酒精性脂肪性肝病(NAFLD)是在排除病毒感染、酒精过量及其他因素,以肝脂肪异常堆积为特征的肝病,包括肝脏单纯脂肪变性、非酒精性脂肪性肝炎(NASH)、肝纤维化、肝硬化,并可能发展为肝细胞癌和肝衰竭。随着生活节奏、饮食习惯改变等因素,NAFLD发病率高达25%[1],已成为全球最常见的慢性肝病。NAFLD是与向心性肥胖、胰岛素抵抗、高血压、高血脂、高血糖等代谢综合征有关的肝病[2]。当前NAFLD的发病机制尚未完全明确,“多因素共同打击”假说逐渐取代“二次打击”假说理论成为NAFLD发病机制的主要理论。除了脂肪堆积、脂质氧化应激、胰岛素抵抗外,肠道菌群及代谢物、肠道屏障功能异常也密切参与了NAFLD的發生、发展[3]。
肝脏与肠道之间有着紧密的结构及功能关系,即“肠-肝轴”,两者通过胆道、门静脉、体循环进行联系,肝脏通过胆道系统将分泌的胆汁酸及其他生物活性物质释放到肠道中。肝脏的75%血供来自门静脉,成为第一个通过门静脉血液暴露于肠道菌群及代谢产物的器官。正常的肠道屏障能够阻止肠腔内微生物及代谢产物或毒素转移至肠腔外,肠道屏障的破坏或能引起肠道微生物的易位,过度活化免疫系统,引发或促进肝脏炎症的发生发展。因而NAFLD的发生发展可影响肠道菌群稳态,肠道菌群及代谢产物异常等也可影响NAFLD的发生发展。本文主要关注NAFLD的肠道菌群及代谢产物失衡和相关治疗的进展。
1肠道菌群失衡是NAFLD发生、发展的重要因素
人体肠道菌群主要以拟杆菌门、厚壁菌门、变形杆菌门、放线菌门为主,占肠道菌群的90%,其中拟杆菌门、厚壁菌门占主导地位[4]。肠道菌群与人体代谢、免疫和疾病的调节有关,其与NAFLD的发生发展有着密切联系,肠道中存在物理、生化、免疫等多种屏障限制肠道微生物及代谢物的易位。长期不健康饮食习惯(如高糖高脂饮食、暴饮暴食)可引起肠道微生物群的生态失调,进而导致屏障功能损伤和免疫稳态的紊乱。一方面,由肠道菌群及其代谢产物诱导的免疫细胞的过度激活可能导致进一步的肝损伤、炎症和纤维化,从而加速NAFLD的发展,另一方面,来自肠道细菌的代谢物如短链脂肪酸 (SCFA)、胆汁酸等改善肝组织中的炎症反应、氧化损伤、脂肪变性。与健康者相比,NAFLD患者肠道菌群多样性显著下降,肠道菌群组成存在显著改变[5],主要为革兰阴性菌(包括拟杆菌、变形杆菌、肠杆菌)丰度显著增加,而厚壁菌门细菌尤其是产SCFA的细菌如乳酸杆菌、瘤胃球菌等的丰度显著减少[5]。肠道菌群或是NAFLD发生发展病理过程的关键因素。
2肠道菌群来源的代谢产物影响NAFLD的发生、发展2.1胆汁酸胆汁酸由肝脏合成,经胆管分泌到肠道,以促进膳食脂肪、胆固醇和脂溶性维生素的乳化及吸收,其后胆汁酸到达回肠末端,被胆汁酸转运蛋白介导的活性摄取机制重吸收。胆汁酸可通过法尼醇X受体(FXR)和G蛋白偶联胆汁酸受体5(TGR5,也称GPBAR1)活化信号通路,在维持肝葡萄糖、脂质和能量代谢的调节中发挥重要作用[6-7]。FXR主要由初级胆汁酸激活,而TGR5主要由次级胆汁酸激活[8-9]。FXR活化刺激过氧化物酶体增殖物激活受体α(PPARα)的表达和活化,诱导成纤维细胞生长因子21的表达和分泌。成纤维细胞生长因子21通过丝裂原活化蛋白激酶,激活哺乳动物雷帕霉素复合物1靶点,增强脂肪细胞中的葡萄糖摄取,并通过调节脂肪生成的主要转录调节因子PPARγ的活性,促进脂肪组织中的脂肪酸氧化[10-12]。FXR还上调肝糖原合成,调节胰高血糖素样肽1的表达,增加与NAFLD密切相关的胰岛素敏感性[8]。研究[13]显示,FXR激动剂药物奥贝胆酸可防止肠道屏障破坏,抑制NASH的发展,为其用于预防或治疗NASH提供了证据。除了FXR外,TGR5在肝脏组织中的Kupffer细胞和内皮细胞中表达,可调节肝脏炎症和葡萄糖代谢,具有改善胰岛素敏感性的功能。TGR5通过抑制巨噬细胞中NF-κB信号传导和细胞因子生成来减轻炎症反应[14]。
肠道菌群中的胆汁酸水解酶催化胆汁酸解耦连反应是胆汁酸代谢的重要通路反应。肠道中多个细菌种类可使初级胆汁酸解耦连,包括梭状芽胞杆菌、乳酸菌、双歧杆菌、真杆菌、埃希氏菌和拟杆菌[15],肠道菌群通过将初级胆汁酸代谢为次级胆汁酸,影响胆汁酸池的稳态,后者参与调节NAFLD形成过程中的脂质和能量代谢途径[16]。肠道菌群失衡影响胆汁酸代谢,肠道菌群与胆汁酸之间的相互作用为NAFLD的肠道菌群靶向治疗提供了基础证据。
2.2SCFASCFA是一组由5个或以下的碳原子组成的饱和脂肪酸,主要通过肠道微生物发酵可溶性膳食纤维和不易消化的碳水化合物产生。其中丁酸、丙酸和乙酸在肠道中含量最高[17],乙酸和丙酸主要由肠道中拟杆菌门产生,丁酸主要由厚壁菌门产生[18]。SCFA作用于G蛋白偶聯受体GPR41和GPR43,这些受体广泛分布在肠道内分泌L细胞、白色脂肪组织、骨骼肌和肝脏中,其中L细胞释放胰高血糖素样肽1,通过直接作用于肝细胞,激活脂肪酸β-氧化和胰岛素敏感性相关的基因来参与NAFLD发生发展[19-20]。此外,SCFA通过抑制组蛋白脱乙酰酶和GPR43通路在Treg细胞分化发挥免疫调节作用,通过减少T淋巴细胞、中性粒细胞、巨噬细胞、单核细胞等多种免疫细胞的迁移和增殖,减少多种促炎细胞因子(肿瘤坏死因子-α、单核细胞趋化蛋白-1等)的表达,上调抗炎细胞因子前列腺素E2,发挥抗炎作用[21]。另外丁酸盐可通过AMPK(腺苷酸活化蛋白激酶)激活,促进紧密连接的组装及肠道屏障的形成,改善肠道菌群失调来减轻高脂肪饮食诱发的脂肪性肝炎[22]。
2.3脂多糖(LPS)LPS又称为内毒素,是革兰阴性菌的外膜主要成分。肝细胞中广泛表达的Toll样受体4(TLR4)是LPS和多种游离脂肪酸的模式识别受体[23],通过门静脉系统进入肝脏的LPS诱导的TLR4活化诱导Kupffer细胞分泌炎性细胞因子(例如IL-6、IL-1β和TNF-α)和趋化因子,刺激星状细胞,导致肝脏炎症和纤维化[24-25],此外,增加的LPS可能通过肌球蛋白轻链激酶的TLR-14依赖性上调以及IRAK-4(IL-1R相关激酶4)的活化损害肠道屏障功能,导致肠道通透性增加。据报道[26],在NAFLD患者和实验动物中均可见血清LPS水平升高,降低血浆LPS水平可改善肝脂肪变性,提示LPS引发的慢性低度炎症可能是NAFLD进展的重要因素。
2.4肠道菌群来源的内源性乙醇研究[27]显示,NAFLD患儿的血乙醇水平显著高于健康儿童,与血液中胰岛素、瘦素和甘油三酯水平呈正相关,不饮酒的NASH患者肠道菌群组成改变引起生态失调会增加血液中乙醇水平,提示肠道微生物发酵可产生内源性乙醇[28]。临床前和临床研究已确认大肠杆菌、肠杆菌科和肺炎克雷伯菌为产乙醇细菌,在NAFLD患者和小鼠中含量相对较高[28]。乙醇可增加细胞色素P450 2E1(CYP2E1)的mRNA和蛋白表达,导致自由基的释放,引起线粒体功能障碍,引发肝损伤[29]。内源性乙醇抑制三羧酸循环并增加乙酸盐水平,促进肝细胞中甘油三酯的积累[30]。乙醇的代谢产物乙醛参与削弱肠道紧密连接蛋白[31],与肠道中抗菌肽表达下调有关[32],并增加肠道屏障通透性,导致肠道屏障功能损伤,增加肠道菌群的易位。总之,肠道微生物群的调节会产生各种改变的代谢物,最终导致肝脏炎症和NAFLD的发生发展。
2.5胆碱胆碱是一种人体必需的磷脂,主要通过饮食摄入及肝脏合成,是细胞膜磷脂的重要组成之一,其参与肝脏中的低密度脂蛋白合成等脂质代谢过程、胆汁和胆固醇的肝肠循环过程,并在肝脏脂质转运中起着重要作用[33]。而胆碱缺乏将抑制极低密度脂蛋白合成和分泌,导致肝脏甘油三酯蓄积和肝脂肪变性,从而引起肥胖[34]。肠道菌群可将胆碱转化为三甲胺(TMA),后者经肝脏单加氧酶氧化形成三甲胺N-氧化物(TMAO),被认为是早期代谢综合征的新型生物标志物[35]。研究[36]显示,肠道菌群将胆碱转化为TMA会降低宿主的胆碱生物利用度,并模仿胆碱缺乏状态,导致代谢紊乱。据报道[37],NAFLD患者血液中TMAO水平升高,TMAO调节葡萄糖代谢并通过增加血清炎性细胞因子C-C基序趋化因子2水平诱导胰岛素抵抗,引起脂肪组织炎症及血糖异常。
3靶向肠道菌群对NAFLD的潜在防治作用
目前,越来越多的证据表明肠道菌群及其代谢产物的变化影响着NAFLD的发生、发展。多项研究提示靶向肠道菌群如益生菌、益生元、合生元以及肠道菌群移植等在NAFLD的防治中具有较好的前景。
3.1益生菌乳酸杆菌、双歧杆菌是最常用的益生菌[38]。动物研究[39]显示,乳杆菌可通过激活AMPK通路磷酸化ACC,阻断SREBP-1/Fas信号通路,抑制脂肪的重新生成,增加脂肪酸氧化,以缓解NAFLD进展。同样,补充混合益生菌制剂可改善肠道上皮通透性,维持紧密连接蛋白,减轻炎症,并降低肝脏甘油三酯浓度[40]。在临床研究中,Alisi等[41]发现补充4个月的VSL#3(含副干酪乳杆菌、植物乳杆菌、嗜酸乳杆菌、德氏乳杆菌、长双歧杆菌、婴儿双歧杆菌、短双歧杆菌、唾液链球菌)改善了NAFLD肥胖儿童的肝功能,增加了胰高血糖素样肽/活性胰高血糖素样肽水平。Sepideh等[42]认为补充多菌株益生菌可改善NAFLD患者胰岛素敏感性和肝脏炎症。此外,益生菌与药物(如NASH治疗中的二甲双胍和NAFLD治疗中的他汀类药物)联合使用比单独使用更能改善肝脏炎症、降低胆固醇水平[43-44]。以上研究提示益生菌单独使用或与其他药物联合使用在NAFLD治疗中显示了良好的临床应用潜力。
3.2益生元益生元是宿主微生物选择性利用的一种基质,有益于宿主健康[38]。作为益生元中的膳食低聚果糖,除了利于有益菌种(双歧杆菌属)的繁殖,还可通过PPARα刺激脂肪酸氧化减少肝脏甘油三酯的积累,并通过抑制SREBP-2依赖性胆固醇合成,减少胆固醇蓄积[45]。益生元还可增加内源性促肠胰高血糖素衍生肽的产生,改善肠道屏障中紧密连接完整性,降低肥胖相关的肠道通透性[46]。异麦芽低聚糖与番茄红素(抗氧化剂)的联合治疗可防止体质量增加,增强脂肪组织脂肪动员,并改善高脂饮食诱导的NAFLD小鼠的胰岛素抵抗,减少代谢内毒素血症,提示抗氧化剂和益生元的联合使用在NAFLD治疗中可能带来更大的益处。
3.3合生元合生元是益生菌、益生元的组合,通过选择性刺激一种或有限数量的促进健康的细菌的生长和/或激活其代谢[38]。研究[47]显示,含副干酪乳杆菌B21060阿拉伯半乳聚糖和低聚果糖的合生素可增加核PPAR及其靶基因的表达,有效降低与高脂摄入有关的肝损伤。Malaguarnera等[48]认为合生元(长双歧杆菌和低聚果糖)与生活方式干预相结合在降低NASH患者血清肿瘤坏死因子、C反应蛋白、内毒素和转氨酶水平,改善HOMA-IR和NASH活性指数的程度优于单独生活方式干预。目前仍需更多研究验证益生菌、益生元、合生元在预防和治疗NAFLD中的效果。
3.4肠道菌群移植(fecal microbiota transplantation,FMT)FMT是近年来较为新颖的治疗方法,是将健康人粪便中的功能肠道菌群移植到患者肠道内,重建新的肠道菌群,实现肠道及肠外疾病的治疗。现FMT已成功用于难治性和复发性艰难梭菌患者的治疗,也有较多应用于治疗炎症性肠病和肠易激综合征。FMT可通过改善肝内脂质积累、血清促炎细胞因子水平来减轻高脂饮食诱导NASH小鼠模型的肝脏炎症[49]。研究[50]显示FMT可以通过改善肠道微生物群失调来减少肝脏中的脂肪堆积,减轻脂肪肝,且认为FMT对瘦NAFLD患者的肠道微生物群重建效果优于肥胖的NAFLD患者。
4小结和展望
肠道菌群及代谢物在NAFLD發生、发展中扮演着重要的角色。靶向肠道菌群如益生菌、益生元、合生元、肠道菌群移植治疗在动物试验中获得积极的疗效,相关临床研究也逐渐得到关注。鉴于肠道菌群容易受到多种因素影响,不同地区、饮食,不同患者肠道菌群亦存在差异,肠道微生物群靶向治疗对NAFLD的临床疗效仍需通过大规模和组织良好的随机对照试验研究来证实。
利益冲突声明:本文不存在任何利益冲突。作者贡献声明:李永强负责论文的拟定及撰写;唐文娟负责论文的修改;周永健参与修改论文并最后定稿。
参考文献:
[1]XIAO J, WANG F, WONG NK, et al. Global liver disease burdens and research trends: Analysis from a Chinese perspective[J]. J Hepatol, 2019, 71(1): 212-221. DOI: 10.1016/j.jhep.2019.03.004.
[2]KIM D, TOUROS A, KIM WR. Nonalcoholic fatty liver disease and metabolic syndrome[J]. Clin Liver Dis, 2018, 22(1): 133-140. DOI: 10.1016/j.cld.2017.08.010.
[3]BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
[4]ECKBURG PB, BIK EM, BERNSTEIN CN, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728): 1635-1638. DOI: 10.1126/science.1110591.
[5]WANG B, JIANG X, CAO M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease[J]. Sci Rep, 2016, 6: 32002. DOI: 10.1038/srep32002.
[6]PARKS DJ, BLANCHARD SG, BLEDSOE RK, et al. Bile acids: natural ligands for an orphan nuclear receptor[J]. Science, 1999, 284(5418): 1365-1368. DOI: 10.1126/science.284.5418.1365.
[7]CHIANG J. Bile acid metabolism and signaling in liver disease and therapy[J]. Liver Res, 2017, 1(1): 3-9. DOI: 10.1016/j.livres.2017.05.001.
[8]CHVEZ-TALAVERA O, TAILLEUX A, LEFEBVRE P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7): 1679-1694. e3. DOI: 10.1053/j.gastro.2017.01.055.
[9]ARAB JP, KARPEN SJ, DAWSON PA, et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives[J]. Hepatology, 2017, 65(1): 350-362. DOI: 10.1002/hep.28709.
[10]CYPHERT HA, GE X, KOHAN AB, et al. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21[J]. J Biol Chem, 2012, 287(30): 25123-25138. DOI: 10.1074/jbc.M112.375907.
[11]MINARD AY, TAN SX, YANG P, et al. mTORC1 is a major regulatory node in the FGF21 signaling network in adipocytes[J]. Cell Rep, 2016, 17(1): 29-36. DOI: 10.1016/j.celrep.2016.08.086.
[12]DUTCHAK PA, KATAFUCHI T, BOOKOUT AL, et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones[J]. Cell, 2012, 148(3): 556-567. DOI: 10.1016/j.cell.2011.11.062.
[13]MOURIES J, BRESCIA P, SILVESTRI A, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development[J]. J Hepatol, 2019, 71(6): 1216-1228. DOI: 10.1016/j.jhep.2019.08.005.
[14]LOU G, MA X, FU X, et al. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells[J]. PLoS One, 2014, 9(4): e93567. DOI: 10.1371/journal.pone.0093567.
[15]WAHLSTRM A, SAYIN SI, MARSCHALL HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. DOI: 10.1016/j.cmet.2016.05.005.
[16]HOUTEN SM, WATANABE M, AUWERX J. Endocrine functions of bile acids[J]. EMBO J, 2006, 25(7): 1419-1425. DOI: 10.1038/sj.emboj.7601049.
[17]den BESTEN G, van EUNEN K, GROEN AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54(9): 2325-2340. DOI: 10.1194/jlr.R036012.
[18]CHAKRABORTI CK. New-found link between microbiota and obesity[J]. World J Gastrointest Pathophysiol, 2015, 6(4): 110-119. DOI: 10.4291/wjgp.v6.i4.110.
[19]MOUZAKI M, LOOMBA R. Insights into the evolving role of the gut microbiome in nonalcoholic fatty liver disease: rationale and prospects for therapeutic intervention[J]. Therap Adv Gastroenterol, 2019, 12: 1756284819858470. DOI: 10.1177/1756284819858470.
[20]SVEGLIATI-BARONI G, SACCOMANNO S, RYCHLICKI C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis[J]. Liver Int, 2011, 31(9): 1285-1297. DOI: 10.1111/j.1478-3231.2011.02462.x.
[21]SMITH PM, HOWITT MR, PANIKOV N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573. DOI: 10.1126/science.1241165.
[22]ZHOU D, PAN Q, XIN FZ, et al. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier[J]. World J Gastroenterol, 2017, 23(1): 60-75. DOI: 10.3748/wjg.v23.i1.60.
[23]SHARIFNIA T, ANTOUN J, VERRIERE TG, et al. Hepatic TLR4 signaling in obese NAFLD[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(4): G270-G278. DOI: 10.1152/ajpgi.00304.2014.
[24]CECCARELLI S, PANERA N, MINA M, et al. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease[J]. Oncotarget, 2015, 6(39): 41434-41452. DOI: 10.18632/oncotarget.5163.
[25]NIGHOT M, AL-SADI R, GUO S, et al. Lipopolysaccharide-induced increase in intestinal epithelial tight permeability is mediated by toll-like receptor 4/Myeloid differentiation primary response 88 (MyD88) activation of myosin light chain kinase expression[J]. Am J Pathol, 2017, 187(12): 2698-2710. DOI: 10.1016/j.ajpath.2017.08.005.
[26]HARTE AL, da SILVA NF, CREELY SJ, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease[J]. J Inflamm (Lond), 2010, 7: 15. DOI: 10.1186/1476-9255-7-15.
[27]ENGSTLER AJ, AUMILLER T, DEGEN C, et al. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease[J]. Gut, 2016, 65(9): 1564-1571. DOI: 10.1136/gutjnl-2014-308379.
[28]ZHU L, BAKER SS, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57(2): 601-609. DOI: 10.1002/hep.26093.
[29]BAKER SS, BAKER RD, LIU W, et al. Role of alcohol metabolism in non-alcoholic steatohepatitis[J]. PLoS One, 2010, 5(3): e9570. DOI: 10.1371/journal.pone.0009570.
[30]CHEN X, ZHANG Z, LI H, et al. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease[J]. J Gastroenterol Hepatol, 2020, 35(11): 2009-2019. DOI: 10.1111/jgh.15027.
[31]MIR H, MEENA AS, CHAUDHRY KK, et al. Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice[J]. Biochim Biophys Acta, 2016, 1860(4): 765-774. DOI: 10.1016/j.bbagen.2015.12.013.
[32]HARTMANN P, SEEBAUER CT, MAZAGOVA M, et al. Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(5): G310-322. DOI: 10.1152/ajpgi.00094.2015.
[33]CORBIN KD, ZEISEL SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression[J]. Curr Opin Gastroenterol, 2012, 28(2): 159-165. DOI: 10.1097/MOG.0b013e32834e7b4b.
[34]YE JZ, LI YT, WU WR, et al. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis[J]. World J Gastroenterol, 2018, 24(23): 2468-2481. DOI: 10.3748/wjg.v24.i23.2468.
[35]BARREA L, ANNUNZIATA G, MUSCOGIURI G, et al. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome[J]. Nutrients, 2018, 10(12): 1971. DOI: 10.3390/nu10121971.
[36]ROMANO KA, MARTINEZ-DEL CAMPO A, KASAHARA K, et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption[J]. Cell Host Microbe, 2017, 22(3): 279-290. e7. DOI: 10.1016/j.chom.2017.07.021.
[37]GAO X, LIU X, XU J, et al. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet[J]. J Biosci Bioeng, 2014, 118(4): 476-481. DOI: 10.1016/j.jbiosc.2014.03.001.
[38]J?GER R, MOHR AE, CARPENTER KC, et al. International society of sports nutrition position stand: probiotics[J]. J Int Soc Sports Nutr, 2019, 16(1): 62. DOI: 10.1186/s12970-019-0329-0.
[39]ZHAO Z, WANG C, ZHANG L, et al. Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway[J]. Appl Microbiol Biotechnol, 2019, 103(14): 5843-5850. DOI: 10.1007/s00253-019-09703-4.
[40]BRISKEY D, HERITAGE M, JASKOWSKI LA, et al. Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease[J]. Therap Adv Gastroenterol, 2016, 9(4): 463-472. DOI: 10.1177/1756283X16645055.
[41]ALISI A, BEDOGNI G, BAVIERA G, et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis[J]. Aliment Pharmacol Ther, 2014, 39(11): 1276-1285. DOI: 10.1111/apt.12758.
[42]SEPIDEH A, KARIM P, HOSSEIN A, et al. Effects of multistrain probiotic supplementation on glycemic and inflammatory indices in patients with nonalcoholic fatty liver disease: a double-blind randomized clinical trial[J]. J Am Coll Nutr, 2016, 35(6): 500-505. DOI: 10.1080/07315724.2015.1031355.
[43]ZVENIGORODSKAIA LA, CHERKASHOVA EA, SAMSONOVA NG, et al. Advisability of using probiotics in the treatment of atherogenic dyslipidemia[J]. Eksp Klin Gastroenterol, 2011, (2): 37-43.
[44]SHAVAKHI A, MINAKARI M, FIROUZIAN H, et al. Effect of a probiotic and metformin on liver aminotransferases in non-alcoholic steatohepatitis: a double blind randomized clinical trial[J]. Int J Prev Med, 2013, 4(5): 531-537.
[45]PACHIKIAN BD, ESSAGHIR A, DEMOULIN JB, et al. Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways[J]. Mol Nutr Food Res, 2013, 57(2): 347-359. DOI: 10.1002/mnfr.201200364.
[46]CANI PD, POSSEMIERS S, van de WIELE T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J]. Gut, 2009, 58(8): 1091-1103. DOI: 10.1136/gut.2008.165886.
[47]RASO GM, SIMEOLI R, IACONO A, et al. Effects of a Lactobacillus paracasei B21060 based synbiotic on steatosis, insulin signaling and toll-like receptor expression in rats fed a high-fat diet[J]. J Nutr Biochem, 2014, 25(1): 81-90. DOI: 10.1016/j.jnutbio.2013.09.006.
[48]MALAGUARNERA M, VACANTE M, ANTIC T, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis[J]. Dig Dis Sci, 2012, 57(2): 545-553. DOI: 10.1007/s10620-011-1887-4.
[49]LE ROY T, LLOPIS M, LEPAGE P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice[J]. Gut, 2013, 62(12): 1787-1794. DOI: 10.1136/gutjnl-2012-303816.
[50]XUE L, DENG Z, LUO W, et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial[J]. Front Cell Infect Microbiol, 2022, 12: 759306. DOI: 10.3389/fcimb.2022.759306.
收稿日期:2023-05-04;錄用日期:2023-06-04
本文编辑:林姣
引证本文:LI YQ, TANG WJ, ZHOU YJ. Role of intestinal microbiota and metabolites in the development, progression, and treatment of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2023, 39(8): 1805-1810.