APP下载

记录时及其计数过程精确渐近性的一般形式

2023-04-29李玉玲赵辉艳

吉林大学学报(理学版) 2023年2期

李玉玲 赵辉艳

摘要: 設{Xn,n≥1}是独立同分布的连续型随机变量,记录时刻序列为{Ln,n≥1},对应的计数过程为{μn,n≥1}. 利用记录时及其计数过程的中心极限定理、矩不等式和Berry-Esseen不等式,给出边界函数和拟权函数记录时及相应计数过程的精确渐近性的一般结果.

关键词: 计数过程; 记录时; 精确渐近性; 一般形式

中图分类号: O211.4  文献标志码: A  文章编号: 1671-5489(2023)02-0285-07

General Form of Precise Asymptotics forRecord Times and Its Counting Process

LI Yuling,ZHAO Huiyan

(Research Center for Applied Mathematics and Interdisciplinary Sciences,

Beijing Normal University at Zhuhai,Zhuhai 519087,Guangdong Province,China)

Abstract: Let {Xn,n≥1} be an independent and identically distributed continuous random variables,let {Ln,n≥1} and {μn,n≥1} be th

e record times sequence and corresponding counting process. By using the central limit theorem,the moment inequalities and the Berry-Essee

n inequalities of the record times and its counting process,a general result of precise asymptotics for the record times and corresponding counting process wer

e obtained for the boundary function and quasi-weight function.

Keywords: counting process; record times; precise asymptotics; general form

收稿日期: 2022-09-26.

第一作者简介: 李玉玲(1979—),女,汉族,博士,讲师,从事概率统计的研究,E-mail: liyuling@bnu.edu.cn. 通信作者简介:

赵辉艳(1982—),男,汉族,博士,副教授,从事概率统计的研究,E-mail: huiyan.zhao@bnu.edu.cn.

基金项目: 广东省普通高校特色创新项目(批准号: 201912009QX).

2.2 定理2的证明

利用引理1、 定理2的证明和定理1的证明类似可得结论,故略.

2.3 定理3的证明

利用引理2、 定理3的证明和定理1的证明类似可得结论,故略.

2.4 定理4的证明

利用引理2、 定理4的证明和定理1的证明类似可得结论,故略.

参考文献

[1] CHANDLER K N. The Distribution and Frequency of Record Values [J]. J Roy Statist Soc Ser B,1952,14: 220-228.

[2] RESNICK S I. Extreme Values,Regular Variation,and Point Processes [M].

New York: Springer-Verlag,1987: 162-250.

[3] GUT A. Convergence Rates for Record Times and the Associated Counting Process [J]. Stochastic Process Appl,1990,36(1): 135-151.

[4] NEVZOROV V B. Records: Mathematical Theory. Translat

ion of Mathematical Monographs [M]. Providence,RI: American Mathematical Society,2001: 1-176.

[5] GUT A,STADTMüLLER U. Limit Theorems for Co

unting Variables Based on Records and Extremes [J]. Extremes,2017,20(1): 33-52.

[6] GUT A,STADTMüLLER U. A Pointwise Limit Theo

rem for Counting Processes of Perturbed Random Walks with an Application to Repeated Significance Tests [J]. Sequential Anal,2017,36(2): 290-298.

[7] GUT A. Precise Asymptotics for Record Times and the

Associated Counting Process [J]. Stochastic Process Appl,2002,101(2): 233-239.

[8] WANG Y B,YANG Y. A General Law of Precise Asymptoti

cs for the Counting Process of Record Times [J]. J Math Anal Appl,2003,286(2): 753-764.

[9] 程东亚. 重对数律的记录时计数过程的收敛速度 [J]. 苏州大学学报(自然科学版),2004,20(3): 14-19. (

CHENG D Y. New Convergence Rates for the Law of Iterated Logarithm of the Counti

ng Process of Record Times [J]. Journal of Suzhou University (Nature Science Edition),2004,20(3): 14-19.)

[10] ZANG Q P,FU K A. Precise Asymptotics in Complete M

oment Convergence of the Associated Counting Process [J]. J Math Anal Appl,2009,359(1): 76-80.

[11] 沈炎峰. 纪录时刻及其计数过程矩完全收敛的精确渐近性 [J]. 浙江大学学报(理学版),2010,37(1): 12-16.

(SHEN Y F. Precise Asymptotics in the Complete Moment Convergence of Record Time

s and the Associated Counting Process [J]. Journal of Zhejiang University (Science Edition),2010,37(1): 12-16.)

[12] KONG L T,DAI H S. Exact Asymptotics in Complete Moment Convergence for Record

Times and the Associated Counting Process [J]. Chinese Journal of Applid Probability and Statistics,2017,33(3): 257-266.

[13] 張亚运,吴群英. φ-混合移动平均过程完全矩收敛的精确渐近性 [J]. 吉林大学学报(理学版),2017,55(1): 61-69.

(ZHANG Y Y,WU Q Y. Precise Asymptotics of Complete Moment Convergence of φ-Mixing Moving Average Process [J]. Journal of Jilin University

(Science Edition),2017,55(1): 61-69.)

[14] 高秀娟,邢峰. 非平稳NA序列更新过程的精确渐近性 [J]. 吉林大学学报(理学版),2017,55(5): 1181-1183.

(GAO X J,XING F. Precise Asymptotics for Renewal Processes of Nonstationary NA Sequences [J]. Journal of Jilin University (Science Edition),2017,55(5): 1181-1183.)

[15] 谭希丽,孙佩宇. ρ-混合序列完全矩收敛的精确渐近性 [J]. 吉林大学学报(理学版),2018,56(3): 573-577. (TAN X L,SUN P Y.

Precise Asymptotics of Complete Moment Convergence for ρ--Mixing Sequence [J]. Journal of Jilin University (Science Edition),2018,56(3): 573-577.)

[16] 高云峰,谭希丽. β-Laguerre随机矩阵最大特征值精确渐近性的一般结果 [J]. 吉林大学学报(理学版),2018,56(6): 1414-1418.

(GAO Y F,TAN X L. General Result on Precise Asymptotics for the Largest Eigen

value of β-Laguerre Random Matrix [J]. Journal of Jilin University (Science Edition),2018,56(6): 1414-1418.)

[17] 赵力. 最长增加子列长度精确渐近性的一般结果 [J]. 吉林大学学报(理学版),2019,57(4): 844-848.

(ZHAO L. General Result of Precise Asymptotics for Length of Longest Increasing S

ubsequences [J]. Journal of Jilin University (Science Edition),2019,57(4): 844-848.)

[18] 卢哲昕,谭希丽,张勇,等. 两两NQD序列完全矩收敛的精确渐近性 [J]. 吉林大学学报(理学版),2020,58(5): 1149-1153. (

LU Z X,TAN X L,ZHANG Y,et al. Precise Asymptotics of Complete Moment Conver

gence for Pairwise NQD Sequences [J]. Journal of Jilin University (Science Edition),2020,58(5): 1149-1153.)

[19] CHEN Y T. Precise Asymptotics of Some Meeting Times

Arising from the Voter Model on Large Random Regular Graphs [J]. Electron Commun Probab,2021,26: 5-1-5-13.

[20] ROZOVSKY L V. One More on the Convergence Rates in Precise Asymptotics [J]. Statist Probab Lett,2021,171: 109023-1-109023-6.

[21] CHOI B J,JI U C,SHIN D. Precise Asymptotics of Weighted Sequences and Their Applications [J]. Acta Math Hungar,2022,167(1): 161-179.

[22] DING X. A General Form for Precise Asymptotics for

Complete Convergence under Sublinear Expectation [J]. AIMS Math,2022,7(2): 1664-1677.

[23] WU Y,WANG X J. General Results on Precise Asymptot

ics under Sub-linear Expectations [J]. J Math Anal Appl,2022,511(2): 126090-1-126090-18.

[24] ZHANG Y,YANG X Y,DONG Z S.

A General Law of Precise Asymptotics for the Complete Moment Convergence [J]. Chinese Ann Math Ser B,2009,30(1): 77-90.

[25] HALL P,HEYDE C C. Martingale Limit Theory and Its Application [M]. New York: Academic Press,1980: 31.

(責任编辑: 李 琦)