APP下载

广义Ablowitz-Ladik方程的守恒律和Darboux变换

2023-04-29谢伟康樊方成周冉

吉林大学学报(理学版) 2023年2期

谢伟康 樊方成 周冉

摘要: 基于新的2×2离散矩阵谱问题,研究广义Ablowitz-Ladik(AL)方程的守恒律和Darboux变换. 首先,利用Riccati方法给出广义AL方程的无穷守恒律,并得到其显式表示; 其次,借助Lax对和规范变换构造广义AL方程的Darboux变换; 最后,选择恰当的种子解,给出广义AL方程的显式精确解,得到2-扭结孤子解,并分析解的动力学性质.

关键词: 广义Ablowitz-Ladik方程; Lax对; 守恒律; Darboux变换; 精确解

中图分类号: O175.29  文献标志码: A  文章编号: 1671-5489(2023)02-0246-05

Conservation Law and Darboux Transformation of Generalized Ablowitz-Ladik  Equation

XIE Weikang1,FAN Fangcheng1,ZHOU Ran2

(1. School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,Fujian Province,China;

2. College of Mathematics,Jilin University,Changchun 130012,China)

Abstract: Based on  a new 2×2 discrete matrix spectral problem,we  studied conservation law and Darboux transformation of generalized Ablowitz-Ladik (AL)

equation. Firstly,we gave infinite  conservation law of the generalized AL equation and obtained its explicit representation by using Riccati  method.

Secondly,Darboux transformation (DT) of the generalized AL equation was constructed by means of the Lax pair and gauge transformation. Finally, by choosing the appropriate

seed solution,we gave the explicit exact solutions of the generalized AL equation, obtained 2-kink soliton,and analyzed the dynamic properties of the solution.

Keywords: generalized Ablowitz-Ladik  equation; Lax pair; conservation law; Darboux transformation; exact solution

收稿日期: 2022-04-20.

第一作者简介: 谢伟康(1998—),男,汉族,硕士,从事可积系统及其应用的研究,E-mail: xieweikang7@163.com.

通信作者简介: 樊方成 (1989—),男,汉族,博士,副教授,从事可积系统及其应用的研究,E-mail: fanfc@mnnu.edu.cn.

基金项目: 福建省自然科学基金面上项目(批准号: 2022J01892).

0 引 言

非线性Schr?dinger(NLS)方程在非線性光学、 等离子体、 水波理论、 生物物理学、 Bose-Einstein凝聚态等物理学领域应用广泛[1-2].  Ablowitz-Ladik(AL)方程是NLS方程的离散形式,可描述光学系统中的self-trapping机制、 化学性质和凝聚态等[3].这两类方程都是完全可积的,能通过Hirota双线性方法[4]、 Darboux变换[5]和Riemann-Hilbert方法[6]等得到其孤子解、 呼吸子解和怪波解等. 这些结果为解释相关物理现象提供了理论依据.

综上,本文从新的2×2离散矩阵谱问题(2)和(4)出发,研究了广义AL方程(3)的无穷守恒律和Darboux变换. 一方面,借助Riccati方程组构造法得到了广义AL方程的无穷守恒律,并给出了其显式表示; 另一方面,通过Lax对和规范变换构造了广义AL方程的Darboux变换,通过选择种子解un=1,vn=1,给出了广义AL方程的显式精确解(9),又通过选择适当的参数,得到了2-扭结孤子,并分析了其动力学行为.

参考文献

[1] BAILUNG H,SHARMA S K,NAKAMURA Y. Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].

Phys Rev Lett,2011,107: 255005-1-255005-4.

[2] YAN Z Y. Vector Financial Rogue Waves [J]. Phys Lett A,2011,375(48): 4274-4279.

[3] HENNIG D,TSIRONIS G P. Wave Transmission in Nonlinear Lattices [J]. Phys Rep,1999,307(5/6): 333-432.

[4] OHTA Y,YANG J K. General Rogue Waves in the Focusing and Defocusing Ablowitz-Ladik Equations [J].J Phys A: Math Theor,2014,47(25): 255201-1-255201-23.

[5] WEN X Y,YAN Z Y. Modulational Instability and Dynamics of Multi-rogue Wave Solutions for the Discrete Ablowitz-Ladik Equation

[J]. J Math Phys,2018,59(7): 073511-1-073511-14.

[6] LENELLS J. Absence of Solitons for the Defocusing NLS Equation on the Half-Line [J]. Lett Math Phys,2016,106(9): 1235-1241.

[7] ABLOWITZ M J,LADIK J F. Nonlinear Differential-Difference Equations [J]. J Math Phys,1975,16: 598-603.

[8] ZHANG H W,TU G Z,OEVEL W,et al. Symmetries,Conserved Quantiti

es,and Hierarchies for Some Lattice Systems with Soliton Structure [J]. J Math Phys,1991,32(7): 1908-1918.

[9] GKTA U,HEREMAN W. Symbolic Computation of Recursion Operators for Nonlinear Differential-Difference Equations [J]. Math Comput Appl,2011,16(1): 1-12.

[10] KHANIZADEH F,MIKHAILOV A V,WANG J P. Darboux Tr

ansformations and Recursion Operators for Differential-Difference Equations [J]. Theoret Math Phys,2013,177(3): 1606-1654.

[11] GENG X G,GONG D. Quasi-periodic Solutions of the Discrete MKdV Hierarchy [J]. Int J Geom Methods Mod Phys,2013,10(3): 1250094-1-1250094-37.

[12] WADATI M. Transformation Theories for Nonlinear Discrete Systems [J]. Prog Theor Phys Suppl,1976,59: 36-63.

[13] ZHU Z N,WU X N,XUE W M,et al. Infinitely Many Conservation Laws for

the Blaszak-Marciniak Four-Field Integrable Lattice Hierarchy [J]. Phys Lett A,2002,296(6): 280-288.

[14] FAN F C,SHI S Y,XU Z G. Positive and Negative Integrable Lattice Hierarchie: Conservation Laws

and N-Fold Darboux Transformations [J]. Commun Nonlinear Sci Numer Simul,2020,91: 105453-1-105453-18.

[15] 谷超豪,胡和生,周子翔. 孤立子理论中的Darboux变换及其几何应用 [M]. 上海: 上海科学技术出版社,1991: 1-271.

(GU C H,HU H S,ZHOU Z X. Darboux Transformation in Soliton Theory and Its Geometric Applications [M]. Shanghai: Shanghai Scientific & Technical Publishers,1991: 1-271.)

[16] 李翊神. 孤子与可积系统 [M]. 上海: 上海科技教育出版社,1999: 1-189.

(LI Y S. Soliton and Integrable System [M]. Shanghai: Shanghai Scientific and Technological Education Publishing House,1999: 1-189.)

[17] 樊方成,周冉. 一类微分-差分方程的孤子解 [J]. 吉林大学学报(理学版),2019,57(4): 762-766.

(FAN F C,ZHOU R. Soliton Solutions of a Class of Differential-Difference Equations [J]. Journal of Jilin University (Science Edition),2019,57(4): 762-766.)

[18] FAN F C,SHI S Y,XU Z G. Infinite Number of Conservation Laws and Darboux Transformations for a 6-Field Integrable Lattic

e System [J]. Internat J Modern Phys B,2019,33(14): 1950147-1-1950147-16.

[19] 樊方成,周冉. 一類离散可积系统的孤子解 [J]. 吉林大学学报(理学版),2020,58(6): 1303-1308.

(FAN F C,ZHOU R. Soliton Solutions of a Class of Discrete Integrable Systems [J]. Journal of Jilin University (Science Edition),2020,58(6): 1303-1308.)

[20] FAN F C,XU Z G,SHI S Y. N-Fold Darboux Transformation and Soliton Solutions for the Relativistic Toda Lattice Equation [J]. Rep Math Phys,2022,89(1): 9-26.

(责任编辑: 赵立芹)