两类支撑3-设计的线性码
2023-04-29刘琪唐春明
刘琪 唐春明
摘 要:代数编码与组合设计的交叉领域一直是近年来的研究热点。虽然长度为q+1的支撑3-设计的线性码的无穷类已经被构造出来了,但是目前已知的构造还非常稀少。综合利用代数编码理论、组合设计和群论,构造出了两类长度为q+1的支撑3-设计的线性码,并且确定了它们的参数。最后证明了这两类线性码的支集构成的集族在一般射影线性群PGL(2,q)的作用下是不变的。
关键词:线性码;t-设计;维数;循环码;一般射影线性群
中图分类号:O157.4;O29 文献标志码:A 文章编号:1673-5072(2023)03-0253-08
3 结束语
本文主要构造出了一类支撑3-设计的6维的长度为q+1的线性码,此类码的维数较大,并给出了这类码及其对偶码的最小距离的范围。今后的工作將进一步缩小最小距离的范围,并寻找其他的支撑3-设计的线性码。
参考文献:
[1] BETH T,JUNGNICKEL D,LENZ H.Design theory:volume 1[M].Cambridge:Cambridge University Press,1999.
[2] COLBOURN C J,DINITZ J H.The CRC handbook of combinatorial designs[M].Boca Raton,FL:CRC Press,2007.
[3] DING C S.Designs from linear codes[M].Singapore:World Scientific,2018.
[4] DING C S,TANG C M,TONCHEV V D.The projective general linear group PGL(2,2m) and linear codes of length 2m+1[J].Designs,Codes and Cryptography,2021,89(7):1713-1734.
[5] STURMFELS B.Two lectures on grbner bases[Z/OL].Mathematical Sciences Research Institute.New Horizons in Undergraduate Mathematics,VMath Lecture Series,Berkeley,California,2005.[2021-12-01].http://www.msri.org/communications/vmath/special_productions/.
[6] STURMFELS B.What is…a Grobner basis?[J].Notices of the American Mathematical Society,2005,52(10):1199.
[7] 牛永锋,陈扬,亓延峰.多变量p元函数构造的小重量线性码[J].西华师范大学学报(自然科学版),2017,38(2):176-183.
[8] DELSARTE P.On subfield subcodes of modified Reed-Solomon codes(Corresp.)[J].IEEE Transactions on Information Theory,1975,21(5):575-576.
[9] GIORGETTI M,PREVITALI A.Galois invariance,trace codes and subfield subcodes[J].Finite Fields and Their Applications,2010,16(2):96-99.
[10]HUFFMAN W C,PLESS V.Fundamentals of error-correcting codes[M].Cambridge:Cambridge University Press,2003.
[11]TANG C M,DING C S.An infinite family of linear codes supporting 4-designs[J].IEEE Transactions on Information Theory,2020,67(1):244-254.
Abstract:The cross field of algebraic coding and combinatorial design has been a research hotspot in recent years.The known structures of infinite classes of linear codes with length q+1supporting 3-design are still very rare despite the construction of some infinite classes.Two classes of linear codes with length q+1supporting 3-design are constructed and their parameters are determined by the algebraic coding theory,combinatorial design and group theory.Finally,it is proved that the set family composed of the supports of these two classes of linear codes is invariant under the action of general projective linear group PGL(2,q).
Keywords:linear codes;t-design;dimension;cyclic code;general projective linear group
基金项目:国家自然科学基金项目(11871058)
作者简介:刘琪(1996—),女,硕士研究生,主要从事基础数学、代数编码理论及应用研究。
通信作者:唐春明(1982—),男,博士,研究员,主要从事基础数学、网络空间安全、通信工程、密码与代数编码理论及应用研究。Email:tangchunmingmath@163.com
引文格式:刘琪,唐春明.两类支撑3-设计的线性码[J].西华师范大学学报(自然科学版),2023,44(3):253-260.