APP下载

非完美条件下的非正交多址接入星地融合网络性能分析

2023-03-01帅海峰郭克锋朱诗兵李长青

电子与信息学报 2023年2期
关键词:星地信道容量

帅海峰 郭克锋*② 安 康 朱诗兵 李长青

①(航天工程大学航天信息学院 北京 101416)

②(南京航空航天大学电子与信息工程学院 南京 210016)

③(国防科技大学第六十三研究所 南京 210007)

1 引言

星地融合网络(Integrated Satellite-Terrestrial Networks, ISTNs)具有覆盖范围广、传输数据通量高、可连接用户数多和抗毁性强等特性,是在遇到地震、台风等极端自然灾害之后重建通信链路的最有效途径[1]。近年来,随着物联网(Internet-of-Things, IoT)、车联网(Internet-of-Vehicles, IoV)、远程医疗等其他技术的快速发展和急切需求,星地融合网络在学术界和工程领域都获得了巨大的关注[2]。

服务质量(Quality of Service, QoS)和频谱效率是未来星地融合网络发展的两个关键因素。因此,为了提高频谱效率并增强用户的服务体验,非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术被引入到星地融合网络中[3]。NOMA技术采用功率域多址方案,实现利用同一频率资源向多个传感器用户传输内容的目的,从而提高频谱效率,并通过功率分配因子提高传感器用户的服务质量,这有别于传统的正交多址接入( Orthogonal Multiple Access, OMA)技术[4]。由于NOMA技术的优越性,许多研究分析了将NOMA技术应用于卫星通信(Satellite Communication, SatCom)后对于系统性能的提升。文献[5]研究了 NOMA辅助的星地融合网络的中断性能,并推导得到了系统的中断概率(Outage Probability, OP)的闭式解析表达式和渐近表达式。文献[6]建立了基于NOMA的卫星通信系统的功率分配优化模型,提高了传感器用户的服务质量。文献[7]将NOMA方案应用于基于内容分发的星地融合网络,并推导得到了中断概率和命中概率的解析表达式。

多天线技术同样是增强系统传输质量的关键技术。相比基于单天线的NOMA系统,多天线技术的应用可以有效提高系统的容量[8]。文献[9]研究了多天线节点下的星地融合中继网络(Integrated Satellite-Terrestrial Relay Network, ISTRN)的性能,并验证了多天线技术对于系统性能提升的积极影响。文献[10]通过分析比较得出了多天线星地融合网络的中断概率更优。文献[11]讨论了多天线星地融合网络的可靠性和安全性,并通过数值结果验证了多天线技术的优越性。

在实际条件的影响下,基于NOMA的星地融合网络在传输和检测过程中会受到各种非完美因素的影响。在传输过程中,信道通常会经历严重的衰落,如雨、雾等天气的影响,因此,系统很难获得完美的信道状态信息(Channel State Information,CSI)[12]。同时由于信道估计技术的限制,信道估计误差(Channel Estimation Errors, CEEs)不可避免地会出现在信道状态信息估计过程中[13]。文献[14]在陆地移动卫星系统中考虑了不完美CSI,推导得到了系统的精确和渐近中断概率。文献[15]建立了非理想CSI下的卫星通信系统模型,并推导得到了系统的最优能量利用效率。此外,在卫星信号接收检测过程中,NOMA用户采用串行干扰消除(Successive Interference Cancellation, SIC)技术来获取叠加信号中每个传感器用户的目标信号[16]。然而,由于接收器性能的限制,实际条件下很难实现完美的串行干扰消除[17]。文献[18]分析了在非完美SIC下的基于NOMA的卫星通信系统性能,推导得出了每个传感器用户中断概率和渐近中断概率的解析表达式。然而,作者采用了一个独立的干扰因子来表示非完美SIC的影响,缺乏系统性的理论分析。此外,由于频谱资源的重复利用,同频干扰(Co-Channel Interference, CCI)同样会出现在信号传输过程中[19]。文献[20]分别从遍历容量(Ergodic Capacity, EC)、中断概率、平均符号错误率和能量效率等方面评估了同频干扰对星地融合网络的影响。

针对以上问题,本文在非完美条件下,即信道估计误差,非完美SIC和同频干扰的影响下,对基于NOMA的星地融合网络的遍历容量性能进行了研究。本文的主要贡献如下:(1)建立了非完美条件下的星地融合NOMA网络的系统模型。由于接收机性能的限制,串行干扰消除是非完美的。由于非完美的信道状态信息,考虑了信道估计误差。同时,频率的重复利用导致了同频干扰。(2)通过遍历容量性能的理论推导,刻画了不同非完美条件参数对于星地融合NOMA网络的影响。(3)采用蒙特卡罗仿真进一步验证了遍历容量性能理论推导的正确性。

2 系统模型和问题建模

如图1所示,本文考虑一个基于NOMA的多天线星地融合网络,其中地球同步卫星(Geosynchronous Earth Orbit, GEO)信号源S采用NOMA技术通过直连链路与地面的传感器用户Ui,i ∈(1,2,...,p,q,...,N)进行通信。地面传感器用户通过分组策略分为多个簇,不失一般性,本文针对一个卫星波束下的两个NOMA用户Ui,i ∈(p,q)进行分析。两用户NOMA场景被3GPP(Third Generation Partnership Project)组织认可为可以增强传感器用户的频谱效率。因此,采用两用户NOMA方案,不仅可以简化系统模型并可以为未来研究多NOMA传感器用户场景提供基础[5]。此外,假设两个地面传感器用户位于卫星多个波束中的同一个波束内。地面传感器用户为了增强天线增益配置了M根天线。同时,由于地面设备频率复用,每一个传感器用户都会受到Ic,c ∈{1,2,...,N}个干扰的影响。

图1 多天线星地融合NOMA网络

2.1 信道模型

在星地融合网络中,采取阵列馈电反射(Array Fed Reflector, AFR)技术固定每个天线的辐射模式来减少控制系统的处理消耗。相比较直接辐射阵列(Direct Radiating Array, DRA)技术,阵列馈电反射技术可以获得更高的天线增益和能量效率[6]。考虑到自由空间损耗、雨衰和天线增益,星地链路的信道分量表达式为

其中,Hmax代表用户天线的最大增益,da代表天线

其中,fmax代表卫星天线最大增益,B1(·)和B3(·)分别表示次序1和3的第1类贝塞尔函数。ri,m=τsinφi,m/sinφ3dB,τ=2.07123 ,其 中φi,m代 表 第m个天线波束中心与用户Ui和卫星直连线路中心的夹角,φ3dB代表3 dB角度。最后,gSUi代表星地链路随机信道分量。目前存在许多的数学模型表示星地链路信道信息,例如Lutz模型、Markov模型以及Karasaw模型。本文采用阴影莱斯(Shadowed-Rician, SR)模型来描绘星地信道。SR分布的模型与实测数据十分吻合,同时计算复杂度相对较低。因此很多文献采用SR分布作为星地融合网络信道模型[5]。根据SR分布,gSUi的 第m个分量可以表示为

其中,X和Y均是独立平稳随机过程,并分别代表直连链路和多径分量的振幅。直连链路和多径分量分别服从Nakagami-m分布和瑞利分布。ς代表直连链路的确定性分量,ϑ代表平稳随机分量,并服从[0,2π)。

通过数学转换,gSUi,m的平方振幅的概率密度函数(Probability Density Function, PDF)可以表示为

假设mSUi,m为正整数,通过代数变换[21],概率密度函数可以重新表示为

2.2 信号模型

S采用叠加编码技术将叠加信号发送给两个地面传感器用户Ui,信号表达式为

2.3 问题建模

考虑到实际系统条件,星地链路的电磁环境和气候环境极其复杂,导致系统无法获得完美的CSI。因此在信道估计过程中会产生信道估计误差。采用均方误差算法,信道估计模型可以表示为

值得说明的是文献[14,15,18,20]都只是分析了非完美条件的特例。本文采用导频信号来估计信道估计误差,这有别于文献[14]。在此基础上,考虑了服从瑞利分布的同频干扰。此外,在文献[18]中,非完美的SIC干扰被看作一个独立的参数,本文将非完美SIC与实际信号处理过程相关联。由此可知,本文所研究的非完美条件与之前所研究的文章有很大区别。

3 性能分析

本节首先将会给出阴影莱斯信道和瑞利信道的信道统计特征的概率密度函数和累积分布函数(Cumulative Distribution Function, CDF),在此基础上,将推导得到系统遍历容量的闭式解。

3.1 信道统计特征

3.2 遍历容量分析

遍历容量是经常用来评估星地融合网络性能的重要指标,是指整个通信网络所有信道的容量上限。基于NOMA的多天线星地融合网络的EC定义为不同地面接收机的信干噪比的平均瞬时互信息之和,其表示为

将不同用户处的信干噪比式(14)、式(15)和式(16)代入EC表达式中,经过数学变换后,EC可以表示为

同理可以得到其余部分对应的PDF。

同时,本文将EC公式改写为

采用文献[22]中的公式8.4.6.5,并利用Meijer-G函数[21],可以得到

同理可以得到其他分量的表达式。

在此基础上,经过简单的整理,最终EC的表达式可以推导为

4 数据校验

图2给出了遍历容量随功率分配因子的变化趋势。首先,可以发现仿真值与理论值相一致,证明了理论推导的正确性。其次,仿真结果随着功率分配因子ap的增大而升高。然而,从实际角度来看,当ap趋于1时,传感器用户Uq的QoS和公平性要求无法满足。同时,由于功率分配的减少,用户Uq的遍历容量也会损失。基于实际公平性考虑,ap的值通常选取在( 0.7,0.8)之 间,其余仿真均采用ap=0.75作为仿真参数。最后,仿真结果显示遍历容量随着衰落程度的减轻而增强,这与实际相一致。

图2 遍历容量随功率分配因子的变化

图3分析了遍历容量随非完美SIC系数的变化趋势,其中ξ=0表示完美SIC。非完美SIC对于遍历容量的影响十分明显,随着ξ的增大,系统的遍历容量明显变差。这是因为NOMA传感器用户在接收端采用SIC技术来接收信号,由于接收端的性能较差,即SIC技术非完美,这将对系统的传输能力造成很大的负面影响,从而减少系统的遍历容量。

图3 遍历容量随非完美SIC的变化

图4给出了遍历容量随信道估计误差的变化。由图4(a)可以看出,当系统分配更多的功率用于信号传输时,系统的遍历容量将会更高。由图4(b)可知,随着导频信号长度的增加,系统的信道估计误差将会减小,从而提升系统的遍历容量。此外,随着系统平均信噪比的增强,导频信号长度对于遍历容量的影响会减少。通过对不同信道估计误差参数的仿真可以得出,当系统具有较高的平均信噪比时,可以获得更好的CSI减轻估计误差对于系统性能的影响。

图4 遍历容量随信道估计误差的变化

表1 系统参数

表2 信道参数

图5反映了不同CCI情况对于遍历容量的影响,其中γ¯I=−∞代表不存在同频干扰。首先,存在同频干扰时,系统的遍历容量会有明显的减弱。此外,随着干扰功率的增大以及干扰数量的增多,系统的遍历容量会明显减小,这与现实情况相一致。

图5 遍历容量随同频干扰的变化

5 结论

本文结合现实条件,包括信道估计误差、非完美串行干扰消除和同频干扰,建立了一个基于NOMA的星地融合网络。这些非完美条件将会影响基于NOMA的多天线星地融合网络的遍历容量性能。为了揭示每个非完美条件参数对于系统遍历容量的影响,本文推导得到了非完美条件下的遍历容量解析表达式。最后,通过蒙特卡罗仿真对理论推导的正确性进行了验证。仿真结果揭示了每个非完美条件参数对于星地融合NOMA网络遍历容量性能的影响,从侧面反映了具备完美系统场景对于实际网络的重要性,对工程实践具有重要的指导作用。

猜你喜欢

星地信道容量
水瓶的容量
IQ下午茶,给脑容量加点料
基于星地和星间链路联合的北斗卫星精密轨道确定
星地星间联合时间比对与卫星钟预报
星地时间异步条件下快速建链方法
北京星地恒通信息科技有限公司
基于导频的OFDM信道估计技术
一种改进的基于DFT-MMSE的信道估计方法
基于MED信道选择和虚拟嵌入块的YASS改进算法
改进等效容量法在含风电配网线损计算中的应用