APP下载

不同施肥处理对黄泥田团聚体有机碳固持及其组分的影响*

2023-02-17李清华何春梅游燕玲黄毅斌

中国生态农业学报(中英文) 2023年2期
关键词:黄泥粒级贡献率

王 飞, 李清华, 何春梅, 王 珂, 游燕玲, 黄毅斌

(福建省农业科学院土壤肥料研究所 福州 350013)

土壤有机碳(SOC)是土壤肥力的基础, 在促进土壤结构形成方面发挥重要作用[1]。而作为土壤结构的基本单元, 团聚体形成过程也是土壤碳固持的重要机制, 对提高土壤肥力以及调节养分有重要作用[2-3]。土壤团聚体能够反映土壤持水性、通透性、供储养分的能力, 不同粒级团聚体的数量、分布以及性质是决定土壤侵蚀、压实、板结等物理退化过程的重要指标之一[4-5]。土壤中大约有90%的有机碳储存在团聚体中[6]。一般而言, 粉黏粒比大团聚体和微团聚体更具稳定性, 但其固持有机碳的能力有限[7];大团聚体固持有机碳的能力高于微团聚体, 但稳定性稍差[8]。长期施肥能够促进紫色水稻土大团聚体的形成, 从而增强团聚体对有机碳的物理保护作用[9]。另一方面, 土壤中大团聚体的形成及稳定性取决于土壤有机质或碳水化合物的数量, 有机质能够减少团聚体的分散率[10]。有机和无机肥配施(猪粪+氮肥)不仅增加棕壤大团聚体(>0.25 mm)含量, 还提高了团聚体稳定性, 增加了各粒级团聚体SOC含量[11]。黑土中0.25~2 mm粒级团聚体为优势粒级, 长期有机无机肥料配施促进了大团聚体的形成和固碳作用[12]。前人研究施肥对团聚体形成及有机碳固持的影响多集中在北方旱作区, 受气候生态、土壤类型与耕作方式的影响, 施肥对团聚体及固碳能力影响在不同区域研究结果差异较大, 存在不确定性, 且农田有机碳变化是一个长期过程, 区域性土壤需要长时间才可完整掌握变化规律。

黄泥田为南方红黄壤区广泛分布的一类中低产田, 主要分布在山地丘陵、山前倾斜平原、滨海台地和河谷阶地, 约占福建低产田面积的40%, 具有酸、瘦、黏、浅、旱等特性[13]。目前对于有机碳含量低的红黄壤区的黏瘦型黄泥田, 长期施肥下土壤团聚体对有机碳的固持情况尚不明确。此外, 物理分组方法由于破坏性小而成为近些年来研究土壤有机碳组分的主流, 但团聚体系由更多级的微团粒凝聚而成, 不同施肥下黄泥田土壤团聚体内有机碳组分分配情况也缺乏系统研究。因此, 明确不同施肥对该类水稻土团聚体有机碳固持及其组分的影响, 对南方中低产田改良培肥及固碳管理具有重要意义。

本研究借助南方典型黄泥田36年长期定位试验, 采用湿筛和重液悬浮法, 解析各粒级团聚体对总有机碳的固持贡献以及团聚体内有机碳组分质量比重与含量等分配特征, 以期为南方黄泥田培肥模式构建及土壤碳库优化管理提供依据。

1 材料与方法

1.1 试验地概况

试验点位于农业部福建耕地保育科学观测实验站内(福建省闽侯县白沙镇), 地处南亚热带与中亚热带过渡区, 海拔高度15.4 m, 年平均温度19.5 ℃, ≥10 ℃的活动积温6422 ℃, 年降雨量1350.9 mm, 年蒸发量1495 mm, 年日照时数1812.5 h, 无霜期311 d。土壤类型为渗育型水稻土亚类黄泥田土属, 成土母质为低丘坡积物。定位试验从1983年开始, 初始耕层(0~20 cm)土壤基本性质为: pH 4.90, 有机碳12.5 g·kg-1, 碱解氮141 mg·kg-1, 速效磷12 mg·kg-1, 速效钾41 mg·kg-1。

1.2 试验设计

试验始于1983年。试验设4个处理, 分别为不施肥(CK)、单施化肥(NPK)、化肥+牛粪(NPKM)和化肥+稻秸全量还田(NPKS)。每个处理3个重复,每个小区面积12 m2, 随机区组排列。施肥处理每季统一施用化肥N 103.5 kg·hm-2、P2O527 kg·hm-2、K2O 135 kg·hm-2。牛粪养分平均含量如下: 有机碳249.9 g·kg-1、N 13.2 g·kg-1、P2O58.0 g·kg-1、K2O 8.9 g·kg-1, 干牛粪每茬施用量为3750 kg·hm-2。稻秸施用量是上茬稻秸全部还田, 风干样重量为3660~5150 kg·hm-2, 稻秸多年养分平均含量为有机碳377.3 g·kg-1、N 7.8 g·kg-1、P2O52.1 g·kg-1、K2O 27.1 g·kg-1。供试化肥分别用尿素、过磷酸钙、氯化钾。一半的氮肥和钾肥作基肥, 另一半作分蘖追肥, 磷肥全部作基肥施用。试验地1983-2004年种植双季稻, 2005年始种植单季稻。水稻品种每3~4年更换一次, 与当地主栽品种保持一致。历年水稻(Oryza sativa)品种为‘威优64’ ‘丁优’ ‘豆花’ ‘白沙428’ ‘粤优938’‘宜香优2292’ ‘中浙优1号’ ‘中浙优8号’, 其中2018年供试水稻品种为‘中浙优8号’。

1.3 样品采集与分析

2018年水稻收割后(10月中旬)第2天, 使用不锈钢采土器采集各试验小区0~20 cm耕层土壤样品,每小区随机选取5个取样点, 然后将样品均匀混合作为一个重复。样品带回实验室后, 去除其中的石块、植物残体等杂质, 置于阴凉通风处并适时翻动,将大土块沿土壤自然结构剥成小块土样(5 mm以内), 风干后样品一部分用于土壤团聚体测定, 剩余部分用于SOC含量分析。

团聚体的分级采用湿筛法, 参考Six等[14]与徐江兵等[15]方法, 并稍作改进。称取100 g风干土, 在25 ℃环境下湿润10 min, 然后将土壤放入湿筛筒中完全浸润5 min, 最后通过土壤团粒分析仪(ZY200-Ⅱ型)上下匀速振动5 min, 振幅4 cm, 让土样依次通过2 mm、0.25 mm、0.053 mm的筛子, 得到4种粒级的团 聚 体: >2 mm, 0.25~2 mm, 0.053~0.25 mm, <0.053 mm (差减法), 将各个粒级的团聚体在40 ℃下烘干,并称重。鉴于不同文献对团聚体粒级命名方式不一,本研究将上述4种粒级分别命名为大团聚体、中间团聚体、微团聚体与粉+黏粒[16-17]。

随后对大团聚体和中间团聚体固持的有机碳进行轻组组分与重组组分分级。分别称取大团聚体与中间团聚体5.00 g样品置于50 mL离心管中, 加入相对密度为1.78 g·cm-3的碘化钠重液, 振荡10 min,3500 r·min-1离心15 min, 随后将含有轻组有机碳(LFC)的上清液倒入0.45 μm微孔滤膜中, 用去离子水冲洗滤膜5次。重复上述操作步骤3次, 过滤后的上清液在60 ℃下烘干。再用去离子水清洗剩余重组组分(每次50 mL, 3次), 再加入0.5%的六偏磷酸钠溶液振荡18 h进行分散, 分散后的重组组分依次倒入0.25 mm、0.053 mm筛子, 将留在筛子上的0.25~2 mm和0.053~0.25 mm团聚体内分别记为团聚体内粗颗粒有机碳(CF)和团聚体内细颗粒有机碳(FF), 通过0.053 mm 筛子的记为矿物结合态有机碳(mSOC)[15]。各组分60 ℃烘干称重。

原土、各粒级团聚体和大中团聚体内分离的各组分均研磨过100目筛, 其有机碳含量采用元素分析仪(TruMac CNS Analyzer, LECO, USA)进行检测。

1.4 计算方法

有机碳投入: 包括水稻根系与稻茬碳投入、稻秸碳投入与牛粪碳投入, 计算方法参照Li等[18]与王飞等[19]的方法。各处理有机碳投入量如表1所示。

表 1 不同施肥处理有机碳多年平均投入量Table 1 Multi-year average of organic carbon inputs under different fertilization treatments t(C)·hm-2·a-1

式中: SOCi为各粒级有机碳含量,Wi为各粒级团聚体质量所占比例。

1.5 数据处理

数据处理采用Microsoft Excel 2016、DPS7.05进行统计分析和作图。方差分析采用最小显著性差异法(LSD)进行多重比较(P<0.05)。

2 结果与分析

2.1 长期不同施肥处理对土壤团聚体组成的影响

图1显示, 各处理耕层(0~20 cm)土壤团聚体组成以大团聚体(>2 mm)与中间团聚体(0.25~2 mm)为主。NPKM、NPKS处理后大团聚体质量比重分别比CK处理提高22.0与15.5个百分点, 比NPK处理提高18.1与11.7个百分点, 差异显著(P<0.05)。与CK相比, NPK处理后中间团聚体质量比没有明显变化, 而NPKM与NPKS处理分别使中间团聚体质量比重显著降低14.3与10.2个百分点(P<0.05)。不同施肥处理使耕层土壤微团聚体(0.053~0.25 mm)质量比重较CK降低2.4~6.1个百分点, 其中NPKM处理降低最为明显(P<0.05)。上述结果说明, 长期施肥增加了黄泥田土壤大团聚体的质量比重, 而不同程度降低了其他粒级的比重, NPKM处理表现尤为明显。

表 2 不同施肥处理下各粒径团聚体对全土有机碳固持贡献率Table 2 Contribution rates of organic carbon soil aggregates to bulk soil organic carbon under different fertilizations %

图 1 不同施肥处理对耕层(0~20 cm)土壤团聚体组成的影响Fig.1 Effect of different fertilizations on the percentage of soil aggregates of 0-20 cm soil layer

图 2 不同施肥处理对耕层(0~20 cm)土壤团聚体有机碳含量的影响Fig.2 Effect of different fertilizations on the organic carbon content of soil aggregates in 0-20 cm layer

2.2 长期不同施肥处理对各粒级土壤团聚体有机碳固持贡献的影响

图2显示, 与CK相比各施肥处理的原土有机碳含量显著升高16.9%~43.9% (P<0.05); 与NPK相比,NPKM与NPKS处理的原土有机碳含量分别显著提高23.1%与12.8% (P<0.05)。各粒级团聚体中, 大团聚体(>2 mm)中有机碳含量显著高于其他粒径团聚体(P<0.05), 平均含量为其他粒级的1.3~1.6倍; 而且对原土有机碳固持贡献率最高, 占44.48%~69.53%(表2)。不同施肥处理均提高了大团聚体、中间团聚体(0.25~2.00 mm)、粉黏粒(<0.053 mm)有机碳的含量, 且NPKM与NPKS处理使大团聚体的有机碳含量较NPK处理分别显著提高42.1%与28.3%(P<0.05) (图2)。与CK相比, NPKM与NPKS处理中大团聚体对有机碳固持贡献率分别提高25.1和19.4个百分点(P<0.05), 但施肥处理降低了中间团聚体、微团聚体、粉+黏粒三者粒级对原土有机碳固持贡献率(表2)。上述结果表明长期施肥提高了黄泥田耕层土壤大团聚体的固碳贡献, NPKM处理提升尤为明显。

2.3 长期不同施肥处理对土壤大团聚体和中间团聚体内有机碳组分分配的影响

与CK相比, 施肥处理使大团聚体内轻组有机碳(LF-C)含量显著上升20.7%~32.3% (P<0.05), 以NPKS处理增幅最为明显(图3A); NPKM和NPKS处理分别使大团聚体中LF-C对原土有机碳固持贡献率分别上升8.9与9.3个百分点(表3)。与CK相比, NPKM处理使大团聚体内粗颗粒有机碳(CF-C)和矿物结合态有机碳(mSOC)显著增加(P<0.05) (图3A)。在大团聚体中, 以mSOC组分质量比重最大, 占50.7%~57.7%, 且对原土有机碳固持贡献率最大, 其次为LFC组分质量比重与其有机碳固持贡献(图3B, 表3)。

与CK相比, 不同施肥处理对中间团聚体中LFC、CF-C和mSOC没有显著影响; NPKM处理的FFC显著高于NPKS (P<0.05), 与另外两个处理差异不显著 (图4A)。图4B显示, 中间团聚体内, 以mSOC组分所占比例最大, FF-C组分所占比例最小, 这与大团聚体内的上述两种有机碳组分质量比重分布趋势基本一致。与CK相比, 施肥不同程度提高了LF-C与CF-C组分质量比重, 其中NPKS处理对LF-C组分质量比重的提升效果最明显 (图4B)。中间团聚体中各组分对原土总有机碳含量的分配贡献也有所差别, mSOC组分分配贡献率最高, 对原土有机碳的贡献率为14.30%~26.22% (表4)。表4表明, 与CK及NPK处理相比, NPKM和NPKS处理显著降低了中间团聚体内LF-C、CF-C与mSOC组分对原土有机碳的固持贡献率(P<0.05)。

表 4 不同施肥处理下中间团聚体内有机碳组分对全土有机碳固持的贡献率Table 4 Contribution rates of organic carbon fractions in soil medium-aggregates to bulk soil organic carbon under different fertilizations %

表 5 团聚体有机碳组分含量与水稻产量及有机碳投入的相关性Table 5 Relationship between rice yield, soil organic carbon and organic carbon input

图 3 不同施肥处理对土壤大团聚体(>2 mm)内有机碳组分含量(A)与质量比例(B)的影响Fig.3 Effect of different fertilizations on contents (A) and mass proportions (B) of different organic carbon fractions in soil macroaggregates (>2 mm)

图 4 不同施肥处理对土壤中间团聚体有机碳组分含量(A)与质量比例(B)的影响Fig.4 Effect of different fertilizations on contents (A) and mass proportions (B) of different organic carbon fractions in soil mediumaggregates

表 3 不同施肥处理下土壤大团聚体(>2 mm)有机碳组分对原土有机碳固持的贡献率Table 3 Contribution rates of organic carbon fractions in soil macro-aggregates to bulk soil organic carbon under different fertilizations %

2.4 团聚体有机碳及其组分含量与有机碳投入以及水稻产量的关系

表5显示, 水稻产量与原土总有机碳含量、大团聚体有机碳含量以及该团聚体内的LF-C均呈极显著正相关(P<0.01), 与大团聚体内的CF-C组分含量和mSOC含量呈显著正相关(P<0.05); 全土总有机碳含量、大团聚体有机碳含量以及该粒级的LF-C含量与有机碳投入量也均呈极显著正相关(P<0.01)。对中间团聚体而言, 水稻产量与中间团聚体有机碳呈显著正相关(P<0.05), 但与中间团聚体有机碳组分相关性不明显。进一步定量化方程拟合显示, 水稻产量与原土有机碳含量、大团聚体有机碳含量呈对数函数关系(P<0.01), 与大团聚体中轻组有机碳含量呈幂函数关系(P<0.01); 原土有机碳含量和大团聚体有机碳含量与有机碳投入呈幂函数关系(P<0.01), 大团聚体中轻组有机碳含量与有机碳投入呈对数函数关系(P<0.01, 图5)。上述表明, 大团聚体有机碳含量及该团聚体内的轻组组分含量与黄泥田有机碳投入以及生产力关系密切。

图 5 土壤和团聚体有机碳含量与水稻产量和有机碳投入的拟合方程Fig.5 Fitting curves between soil organic carbon content with grain yield and organic carbon input

3 讨论

3.1 长期不同施肥处理对黄泥田不同粒径团聚体质量比及有机碳含量的影响

不同粒径团聚体对土壤养分的供应和保持作用不同, 其既决定于土壤的水力性质, 也反映土壤结构稳定性和抗侵蚀能力[20]。因此, 探明土壤有机碳及养分的转化和利用, 需关注各粒径团聚体的分布及其有机碳的固持特征。瘠薄红壤水稻土长期秸秆还田配施粪肥尤其是配施化肥显著增加了>0.25 mm粒级团聚体的含量[21]。周萍等[22]研究表明, 200~2000 μm的粗团聚体颗粒作为新增有机碳的主要载体, 随不同耕作和施肥变化最为强烈。本研究中, 黄泥田土壤以>2 mm、0.25~2 mm的大、中间团聚体为主(图1),二者质量比重合计占81.9%~89.6%。与CK和NPK相比, 施用有机肥显著增加>2 mm团聚体的质量比,而降低0.25~2 mm团聚体的质量比(图1)。陈晓芬等[23]的研究结果也表明, 施用有机肥提高水稻土>2 mm团聚体的质量比。有机碳可以通过化学或物理过程结合土壤细颗粒, 是土壤颗粒聚集效应的重要结合剂[24-25]。水稻秸秆还田和施用牛粪增加了水稻土有机物质的输入, 直接增加了土壤有机碳含量, 提高微生物活性, 促进有机质腐殖化和有机胶结物质的形成, 土壤颗粒在有机胶结物质的作用下不断粘结形成大团聚体[26-27]。

施用肥料可增加>2 mm、0.25~2 mm、<0.053 mm团聚体的有机碳含量, 尤其是>2 mm团聚体有机碳含量显著增加(图2), 对原土有机碳贡献率最高(占47.70%~69.53%) (表2)。>2 mm和0.25~2 mm团聚体有机碳含量与水稻产量呈显著正相关(表5), 表明黄泥田水稻土有机碳主要贮存在这两种团聚体中。红壤长期定位试验表明, 有机碳在1~2 mm团聚体中含量最高, >2 mm团聚体对原土有机碳贡献率最大[23]。对不同粒径团聚体有机碳含量变化而言, 相较于微团聚体, 大团聚体中有更多新增加的有机碳和不稳定物质[28], 运用13C示踪法发现大团聚体比微团聚体中含有更多有机碳[29]。在旱地红壤团聚体中, 有机碳含量随团聚体粒级减小而降低[16]。本研究中, 大团聚体、中间团聚体、微团聚体这3种团聚体组成的有机碳含量随粒径减小而降低, 但粉+黏粒团聚体有机碳含量再次上升, 并高于中间团聚体与微团聚体有机碳含量(图2)。相关研究也发现, <0.053 mm团聚体中有机碳含量最高, 这可能是因为<0.053 mm粒级由粉粒和黏粒组成, 具有较大的比表面积和较高的永久表面电荷, 能够吸附和稳定有机碳[30], 也可能是该粒径团聚体黏粒含量较高, 受到根系和真菌的作用粘合在一起, 易与有机碳形成复合体[31]。NPKM处理每年有机碳投入仅为NPKS处理的83.4% (双季稻年份)与72.4% (单季稻年份) (表1), 但NPKM处理的原土与各粒径团聚体有机碳含量均不同程度高于NPKS处理(图2), 这可能与牛粪基质纤维素含量高、微生物利用困难有关[32-33]。因此, 相对稻秸而言,牛粪矿化速率要低, 可固持更多的有机碳, 从中可看出不同来源有机物质在黄泥田固碳潜力方面存在较大差异, 这可为黄泥田定向培肥提供参考。

3.2 长期不同施肥处理对黄泥田大、中团聚体有机碳组分分配的影响

施用粪肥与秸秆还田是农田培肥的重要措施。不同施肥措施对团聚体中有机碳的分子结构特征影响不同。活性有机碳是有机碳的重要组成。土壤活性碳组分在土壤中移动快、易矿化分解且循环周期短, 能更敏感地反映土壤有机碳的动态变化[34]。轻组有机碳(LF-C)属于活性有机碳, 具有较强的生物活性, 对土壤养分积累、肥力调节等有重要作用。本研究中, 施肥处理后大团聚体内的LF-C组分含量增幅20.7%~32.3%, 也提高了大团聚体内LF-C组分对全土有机碳固持的贡献率(图3和表3)。大团聚体内LF-C含量与水稻产量呈显著正相关关系(表5)。相关研究表明, 有机肥和秸秆还田与化肥配合施用是提高南方双季稻田土壤活性有机碳组分和水解酶活性的有效措施[35]。5年定位试验表明, 与常规施肥相比, 紫云英(Astragalus sinicus)、作物秸秆、商品有机肥、紫云英+商品有机肥处理的稻田土壤LF-C含量分别提高30.7%~98.7%[36]。本研究结果表明, 长期有机无机肥配施影响黄泥田土壤团聚体内LF-C组分变化, 尤其是NPKM和NPKS处理, 也明显促进了大团聚体内LF-C的分配贡献。另一方面, 重组有机碳作为土壤稳定的碳库, 对于维持团聚体结构具有十分重要的意义。重组有机碳主要由高度分解后的物质组成, 其所占比重较大, 分解速率缓慢[37]。本研究条件下, 与单施化肥相比, 无机肥和有机肥配施显著增加大团聚体中重组矿物结合态有机碳(mSOC)对原土有机碳固持贡献率(表3), 而降低中间团聚体中各组分对原土有机碳固持贡献率(表4), 这可能与有机无机肥配施处理降低原土中间团聚体质量比重有关。

4 结论

大团聚体与中间团聚体是黄泥田有机碳的主要载体。无机肥配施有机肥, 尤其是无机肥配施牛粪对原土总有机碳固持贡献率明显高于单施化肥。施肥显著提高了大团聚体内轻组有机碳组分含量, 尤其是无机肥配施秸秆和无机肥配施牛粪处理。大团聚体有机碳含量及其轻组有机碳含量与有机碳投入量及水稻产量关系密切, 是南方黄泥田生产力的关键指示。

猜你喜欢

黄泥粒级贡献率
国外某大型铜矿选矿厂流程考查与分析①
黄泥水
山地暗棕壤不同剖面深度的团聚体分布
一种通用的装备体系贡献率评估框架
粗骨料最佳级配的试验研究
关于装备体系贡献率研究的几点思考
Journal of Japanese Invation ofChina and Nanjing Massacre
В первой половине 2016 года вклад потребления в рост китайской экономики достиг 73,4 процента
长期不同施肥对土壤各粒级组分中氮含量及分配比例的影响
长期不同施肥对南方黄泥田水稻子粒与土壤锌、硼、铜、铁、锰含量的影响