油田含聚丙烯酰胺污水生物转化及能源化与资源化
2023-01-28赵兰美包木太
赵兰美,包木太,赵 栋
(1.山东科技大学化学与生物工程学院,山东青岛 266590;2.中国海洋大学海洋化学理论与工程技术教育部重点实验室/海洋高等研究院,山东青岛 266100;3.中国石化集团胜利石油管理局,山东东营 257000)
根据石油市场报告(www.iea.org/topics/oil-marketreport)预测,2022年全球石油类能源需求量将达1.41×107t/d。随着全球能源需求的增长,近海石油开发、运输和沿海石油炼化规模迅速扩大,尤其是聚合物驱油技术成为渤海油田提高原油采收率的主力技术之后,石油开发更是迈上新台阶。驱油助剂水解聚丙烯酰胺(HPAM)是一种高分子质量的水溶性化合物,由丙烯酰胺单体合成。近海石油开发产生的有机污染物,包括HPAM和石油,对大气圈、生物圈、水圈、海岸活动等造成破坏和污染,对生态环境、物种、生物群落、水产品等构成威胁〔1−6〕。近海有机污染物的处置及修复理论和技术是海洋污染环境中面临的问题和亟需解决的难题。
2021年1月,国家发改委等部门共同印发了《关于推进污水资源化利用的指导意见》,意见中指出,应积极推动工业废水的资源化利用,开展试点示范,探索形成可复制、可推广的污水资源化利用模式。低成本、环境友好型的生物降解转化技术已成为处理油田污水中典型有机污染物HPAM的主力技术〔1−2,5,7−8〕。
建立一个可持续的生态环境需要减少污染量以及减少对矿物燃料的依赖,污水生物处理可以同时实现这两个目标。更重要的是,油田含HPAM污水在降解转化的同时,还具有能源化和资源化的潜力〔9〕。近年来出现了一种由处理污染物到利用污染物的模式转变,包括产甲烷厌氧消化、生物制氢和生产有利用价值的生物产品等生物处理策略〔9−11〕。将污染物生物处理与生物炼化相结合对于生态可持续和资源回收具有重要的现实意义。
1 含聚丙烯酰胺污水生物降解转化
1.1 聚丙烯酰胺生物降解菌群
前期研究中,研究人员筛选出不同来源的功能菌,在不同条件下探究了其对不同类型、不同浓度HPAM的降解效能。如经功能菌(Bacillussp. PAM−2和Ochrobactrumsp. PAM−3)强化的好氧活性污泥处理后,HPAM(Mw=2.2×107,500 mg/L)的降解率和TOC去除率分别达到54.69%和70.14%〔2〕。功能菌蜡样芽胞杆菌(Bacillus cereusPM−2)和红球菌(Rho⁃dococcusPAM−F1)用于强化厌氧/好氧活性污泥,经厌氧/好氧污泥耦合处理后,HPAM(Mw=2.2×107,500 mg/L)和TOC去除率分别达到89.8%和32.9%,降黏率达到75.8%,相对分子质量为2.2×107的HPAM被降解为3.5×103的小分子片段〔12−13〕。采用Fenton氧化和功能菌强化的厌氧活性污泥耦合处理后,HPAM(Mw=2.2×107,500 mg/L)的 去除率达到91.06%〔14−15〕。除此之外,HPAM生物降解菌群作为含HPAM污水生物物理化学处理体系的组成部分(图1)〔12−20〕,在含HPAM污水的深度处理上也发挥了重要作用。例如,在生物膜−活性污泥−膜分离耦合系统中,HPAM降解菌与HPAM去除、胞外聚合物(EPS)存在形式和膜污染紧密相关,生物降解效能占污染物总去除效能的55%〔19−20〕。
图1 油田含聚污水生物物理化学处理体系Fig. 1 Bio-physical chemical treatment systems for oilfield HPAM-containing wastewater
笔者总结了此领域的部分代表性成果,见表1。
表1 PAM降解过程中涉及的功能菌群和去除效能Table 1 Functional microorganisms and removal efficiencies involved in HPAM biodegradation
1.2 聚丙烯酰胺生物转化途径
微生物对于HPAM降解具有独特的生化反应途径。研究人员从关键酶的角度提出了HPAM的代谢途 径〔2,8,12,16,21,25〕。Mutai BAO等〔25〕、Guoliang SANG等〔12〕和Lanmei ZHAO等〔26〕分别探寻 了HPAM好 氧和厌氧降解为小分子有机物的途径中关键酶的作用位点,论证了HPAM作为碳源和氮源被微生物利用的依据〔27〕。HPAM的酰胺基团被酰胺酶水解,—OH取代—NH2,释放出—NH2,产生—COOH;在好氧环境中的单加氧酶和辅酶作用下,HPAM第一步水解产生的聚丙烯酸的碳骨架发生断裂,被降解为链长介于22~27碳原子数、相对分子质量介于415~699之间的中间体〔26〕;在厌氧环境中的水解酶和辅酶作用下聚丙烯酸被转化为链长介于17~31碳原子数、相 对 分子质量介 于525~761之间 的 中 间体〔26〕。此外,脱氢酶和脲酶在HPAM好氧和厌氧代谢过程中发挥了重要的作用〔2,21〕。脱氢酶作为一类氧化还原酶,具有参与电子受体与HPAM之间电子转移的功能;脲酶作为氮循环中的胞外酶,具有促进HPAM酰胺基水解的功能。功能菌分泌的脲酶和脱氢酶,分别作用于HPAM的酰胺基和碳链〔21〕。脲酶和脱氢酶与HPAM的降解效能呈正相关,可以作为HPAM好氧和厌氧代谢的指示剂。
Xiaohu DAI等〔16,28〕剖析了PAM生物转化为反丁烯二酸、丁酸、丙酸、乙酸等中间产物的路径。氧化酶和脱氢酶将PAM第一步水解产生的聚丙烯酸降解为乙酰辅酶A和丙酮酸,转移辅酶将丙酮酸转化为反丁烯二酸、羟基丁二酸、丁酮二酸;丙酰辅酶A和转移辅酶将丙酮酸进一步转化为丙酸;磷酸转乙酰酶和乙酸激酶将乙酰辅酶A转化为乙酸;在乙酰辅酶A和乙酰乙酰辅酶A的相互转化过程中,乙酰辅酶A可以转化为丁酰辅酶A,在磷酸转乙酰酶和丁酸激酶的协同作用下,丁酰辅酶A生物转化为丁酸;乙酸和丁酸可以在丁酸激酶、乙酸激酶和磷酸转乙酰酶的协同作用下相互转化。
1.3 聚丙烯酰胺生物降解动力学与热力学
针对HPAM生物降解速率与程度不清的问题,研究人员建立了HPAM生物降解的动力学模型与热力 学 机 会〔1,11,29〕。Lanmei ZHAO等〔29〕建 立 了HPAM生物降解动力学模型,并确定了酶促反应的活化能,结果表明HPAM厌氧降解符合一级动力学模型,最大降解速率常数为2.46 d−1,HPAM好氧降解符合米门公式,最大降解速率常数为16.4 mg(/L·d),活化能Ea为48.99 kJ/mol,相对较小的活化能揭示了典型的生化反应现象。其还以乙酸和H2作为热力学约束变量,绘制了HPAM生物降解热力学机会窗口,从热力学角度解析了HPAM降解为乙酸、H2和CO2的可行性。HPAM可以作为功能菌生长和电子转移的能量源和电子供体,为了扩大HPAM厌氧降解产甲烷 的 机 会,Lanmei ZHAO等〔11〕进 一 步 选 取Fe3+和SO42−作为外源电子受体,绘制了产甲烷的热力学机会窗口,阐释了产甲烷体系的关键限制步骤。结果表明,Fe3+作为电子受体的热力学机会窗口大于SO42−,乙酸发酵型产甲烷的路径占主导地位,乙酸氧化为CO2和H2的路径作为关键限制步骤受到抑制。为了排除外源电子受体对体系的影响,Congcong ZHANG等〔1〕进 一 步 探 索 了HPAM自 身 氮 转 化 对 其生物转化为甲烷的调控作用。热力学约束表明,HPAM降解产生的NOx−进一步提高了甲烷的产生潜力,NO3−作为电子受体对HPAM转化为甲烷的调控作用高于NO2−。
1.4 聚丙烯酰胺生物降解技术现场实施
油田含HPAM污水高效生物降解技术在胜利油田孤四污水站成功地进行了2.5×104m3/d的现场实施,处理效果平稳可靠〔8〕。经过检测,处理后污水中含油由170 mg/L下降为20 mg/L,悬浮物由36 mg/L下降到15 mg/L。该技术通过先除聚、后除油除悬的理念,直接采用生化处理技术,不使用化学混凝剂,污泥量仅为处理水量的0.002%,污泥主要成分为无机杂质,不存在化学混凝处理0.2%污泥的后处理难题。试验中回收了污水中含有的90%原油,回收的原油进入污油池后,再打回油站一级脱水罐,对孤四污水站的原油脱水无任何不良影响。该处理技术在试验期间的运行成本合计为0.56元/m3,与应用前的化学处理方法处理费用0.73元/m3相比,每m3水处理成本可降低0.17元。该项技术不使用混凝剂,不产生化学污泥,没有后续的污染物转移及无害化处理的难题。按照孤四污水站污水量为2.5×104m3/d计算,节约药剂费155万元/a,节约污泥处理费160万元/a,且回注污水能够达到油藏注水要求,有利于提高注水开发效果,具有较大的经济效益〔8〕。
2 含聚丙烯酰胺污水能源化
2.1 聚丙烯酰胺生物转化为氢气的潜力
目前,基于生物炼化概念的H2被认为是替代化石燃料最具前景的能源〔30〕:(1)H2是清洁、可再生能源;(2)不会导致温室气体的排放;(3)具有比甲烷(25 ℃,101 325 Pa,55.7 kJ/g)更高的燃烧热(25 ℃,101 325 Pa,142.9 kJ/g)。Lanmei ZHAO等〔9〕剖析了含HPAM污水中生物氢的产生潜力。在产氢体系进水C/N为51时,H2(0.833 L/g)和VFA(465 mg/L)产量达到最大。底物去除率随脱氢酶和氢化酶的活性呈线性增加(R2≥0.990),H2产量随关键酶的活性呈指数型上升(R2≥0.989)〔9〕。芽孢杆菌、假单胞菌属和肠杆菌属既是产H2又是降解HPAM的菌群,对H2产生和底物摄取具有协同作用。H2在HPAM酸化发酵阶段产生〔9〕,HPAM首先在酰胺酶的作用下生物转化为聚丙烯酸〔式(1)〕,然后通过脱氢酶生物转化为丙酮酸和H2〔式(2)〕〔16〕,最后丙酮酸生物转化为乙酸和H2〔式(3)~式(5)〕。丙酮酸和辅酶A先转化为乙酰辅酶A和CO2〔式(6)〕〔11〕,乙酰辅酶A进一步在磷酸转乙酰酶和乙酸激酶的联合作用下生物转化为乙酸,并且产生的能量以ATP的形式释放〔11〕〔式(7)〕。丙酮酸和乙酰辅酶A转化为乙酸的生物过程在热力学上是可行的〔式(5)~式(7)〕。在理论和标准条件下(298.15 K,100 kPa),当乙酸作为最终产物时,单位聚丙烯酸最大H2产量达到0.622 mL/mg〔9〕。
2.2 聚丙烯酰胺生物转化为甲烷的潜力
电子受体的类型是调节HPAM厌氧降解产甲烷的关键因素,研究人员解析了不同外源电子受体对HPAM厌氧降解产甲烷的调控作用〔11〕。在没有外源电子受体、SO42−、Fe3+、SO42−和Fe3+作为电子受体的条件下,HPAM去除率、甲烷产量、乙酸产量、乙酸激酶活性随外源电子受体的加入而升高〔11〕。在没有外源电子受体的体系中存在以H2和CO2为底物产甲烷的趋势;以SO42–和Fe3+分别为电子受体的体系中存在以乙酸为底物产甲烷的趋势。随外源电子受体的加入,乙酸发酵型产甲烷作用占据优势地位,氢营养型产甲烷作用受到抑制。此外,连续搅拌、碱性预发酵和水热预处理也增强了厌氧消化中HPAM的降解和甲烷的收率〔31−33〕。在不同溶解氧体系中通过调节HPAM自身氮转化,Congcong ZHANG等〔1〕阐释了其生物转化为甲烷的潜力。氧气作为电子受体刺激了硝化细菌和HPAM降解菌的增殖,HPAM降解菌产生的脱氢酶促进了HPAM氧化和电子传输,硝化菌分泌的脲酶增强了硝化反应。HPAM水解和氧化产生的NOx−−N反过来作为电子受体刺激了反硝化菌、产酸菌和产甲烷菌的活性,不同功能菌形成了协同效应,共同促进了反硝化和产甲烷过程。
3 含聚丙烯酰胺污水资源化
3.1 聚丙烯酰胺生物转化为聚羟基脂肪酸酯的潜力
聚羟基脂肪酸酯(PHA)是一类可以被微生物作为碳源和能量储存介质积聚的聚合物,与生物废物处理相结合的新型生物塑料生产有望实现污染物的循环利用〔34−36〕。污水中的有机物可以作为合成PHA形式的生物可降解塑料的原料使用〔37〕。PHA最常见的形式包括聚羟基丁酸酯(PHB)和聚羟基戊酸酯(PHV)〔34〕。PHA具有取代传统石油衍生塑料的潜力,PHA的合成过程是低能耗和低二氧化碳排放的,并能最 大限度地 减少剩余 污泥产量〔34,38−39〕。将PHA的生产与污水生物降解相结合对于治理环境污染和缓解能源危机是非常有意义的〔40〕。
研究人员剖析了含HPAM污水中PHA的产生潜力〔9〕。PHA产量与底物摄取呈正相关,在产PHA体 系 进水C/N为97、降 解 时 间为42 h时,PHA产 量(54.2% VSS)达到最大。芽孢杆菌属、假单胞菌属和肠杆菌属既是产PHA又是降解HPAM的菌群,对PHA积累和底物的摄取具有协同作用。Lanmei ZHAO等〔41〕进一步探索了不同原油水平对HPAM生物转化为PHA的影响,C/N随原油浓度的升高而增加,而C/N的增加提高了PHA产量。脱氢酶活性变化趋势与PHA产量变化趋势一致;好氧体系中脱氢酶活性高于缺氧体系,与HPAM去除相符。假单胞菌和芽孢杆菌在好氧体系中的主要功能是降解HPAM,在缺氧体系中的主要功能是合成PHA〔41〕。PHA积累型细菌分泌PHA合成酶,将污水中的持久性有机物转化为PHA〔42〕;脱氢酶提高了细胞中的NADH/NAD+比例,进一步促进了HPAM代谢产生的丁酰辅酶A和乙酰辅酶A转化为PHA〔43〕。
3.2 净水资源的汲取潜力
研究人员探索了含HPAM污水中净水资源的汲取潜力〔19−20,44〕。丁万德〔44〕对聚砜(PS)超滤膜进行了多巴胺改性,大幅度提高了膜表面的亲水性能,增强了抗污能力。研究发现,改性后的PS超滤膜能够完全截留模拟含HPAM污水中的HPAM分子,并能够保持较高的水通量,使用高速水流清洗后,水通量恢复率提高到85%。Wande DING等〔45〕进一步制备了以SiO2薄膜为截盐层的杂化纳滤膜,实现了含HPAM模 拟 污 水 中MgSO4、Na2SO4、MgCl2和NaCl四种无机盐离子的高效截留。在此基础上,Lanmei ZHAO等〔19−20〕研究了生物膜−活性污泥−膜分离体系处理含HPAM实际污水过程中净水资源的汲取潜力。HPAM、COD、TOC和TN的 去 除 率 分 别 达 到97.5%、98.5%、98.5%和96.2%。第一次和第二次清洗后,膜的渗透率分别恢复到92%和87%。松散结合的胞外聚合物(LB−EPS)中存在色氨酸类、芳香类和富里酸类蛋白,紧密结合的胞外聚合物(TB−EPS)中呈现多糖类和酪氨酸类蛋白。色氨酸类蛋白仅存在于膜表面污泥的TB−EPS中,并在膜污染中起重要作用。研究人员进一步比较了不同水样重新配制HPAM溶液的黏度大小,顺序为:生物降解后的上清液<膜过滤后的水样≈纯水,该研究为处理油田实际含HPAM污水和提高水回用率方面提供了理论基础和技术支持〔19〕。
4 结论和展望
(1)对于HPAM生物降解转化,功能菌在HPAM降解转化中发挥了举足轻重的作用,关键酶诱导了HPAM的不同转化途径,HPAM生物降解具有不同的动力学模型和热力学机会,生物降解技术在胜利油田孤四污水站成功地进行了2.5×104m3/d的现场实施。
(2)对于HPAM能源化,HPAM具有生物转化为H2和CH4的潜力,HPAM酸化发酵阶段包含不同的产氢途径,H2产量与底物去除和关键酶活性存在不同的数学关联,Fe3+、SO42−和NO3−等作为电子受体扩大了HPAM厌氧降解产CH4的机会。
(3)对于HPAM资源化,含HPAM污水具有转化为PHA和净水资源的潜力,PHA产量与HPAM降解、脱氢酶活性和菌群功能紧密相关,改性过滤膜及与活性污泥的耦合体系实现了对HPAM分子的高效截留。
在目前研究的基础上,今后需进一步深入开展两个方面的研究:(1)从基因工程角度调控与油田产出污水中包括HPAM和原油等复合有机污染物生物转化、增值资源产生相关的功能基因;(2)开发复合有机污染物高效降解酶与生物资源高效合成酶,并建立混合酶体系,评估其在复合有机污染物降解和生物资源合成中的应用潜力,开发复合有机污染物有效防控和转化策略。