爆炸地震动下箱体贮液结构隔震试验与分析
2023-01-06王琼婷宋春明龙志林张浩天邢文政
王琼婷,宋春明,龙志林,张浩天,邢文政
(1.湘潭大学 土木工程与力学学院, 湖南 湘潭 411105; 2.陆军工程大学 爆炸冲击防灾减灾国家重点实验室, 南京 210007)
1 引言
伴随高新技术的研发和武器装备的日益先进,地下工程的防护研究面临着新的挑战。贮液结构广泛地运用于给水排水、石油化工等战略资源储备工程中,但由于贮液结构自身的抗震能力较弱,当受到武器打击及偶然爆炸袭击时,强烈的冲击地震动会对箱体贮液结构的安全造成巨大威胁,除提高自身强度外,箱体贮液结构可有效采用合理的隔震措施来提高其抗震性能。
在地震动作用下箱体贮液结构的动力响应控制措施中,隔震是较有效的选择[1]。Malhotr[2]研制出一种贮液结构的隔震方法,发现隔震可显著降低结构侧壁的应力和倾覆力矩。Huang等[3]对比了隔震前后结构的抗震性能,并对隔震结构的安全性进行了评估。Saha等[4]研究了储液罐的基础隔震技术,提出隔震系统能够有效降低储液结构地震失效概率的观点。Shekari等[5-6]用数值算法对基础隔震贮液结构在水平地震激励下的动响应进行研究,认为贮液结构在长周期地震动作用下的隔震系统设计需给予重视。此外,在贮液结构受地震动作用的抗震性能方面,贮水液位高度、结构高度和地震动作用强度等因素对贮液结构抗震性能有较大的影响[7-8]。
橡胶隔震是结构基础隔震中比较成熟的技术,并广泛地运用于工程结构中。Kelly和Chalhoub等[9-10]在贮液结构的橡胶隔震振动台试验研究中,发现结构加速度和结构壁面流体动压力在隔震后显著减少。Yang等[11]对板式橡胶隔震贮液结构的动力特性和地震反应进行了反应谱分析,得出隔震技术可有效控制结构的位移、速度和加速度响应的结论。Chen等[12-13]研究了橡胶隔震矩形贮液结构在地震动作用下结构位移、应力和液位晃动高度等动响应规律,并发现带限位装置的滑动基础隔震能有效降低贮液结构壁面应力和液位高度。孙建刚[14]对钢储罐进行模型试验研究,分析了橡胶隔震贮液结构在在不同周期地震动下的动响应变化情况,发现橡胶隔震在中短周期地震动下减震效果更加明显。
基于武器打击产生的爆炸地震动,众多学者计算出精确地爆炸地冲击参数[15],并研制出可以模拟爆炸冲击震动环境的一系列大型试验设备[16]。然而现有研究大多集中在天然地震动作用,对爆炸地震动下箱体贮液结构的隔震试验和分析尚少,缺少相关规律性的发现。因此,本文中对箱体贮液结构进行爆炸地震动隔震试验研究,通过改变爆炸地震动强度,分析无水和贮水液位状态时结构不同位置的加速度和应变动响应。同时运用LS-DYNA数值模拟软件对无水箱体结构试验所测的动响应进行验证,为贮液结构的爆炸冲击震动隔震研究提供参考。
2 爆炸冲击震动台隔震试验
2.1 试验概况
箱体贮液结构隔震试验在陆军工程大学爆炸冲击防灾减灾国家重点实验室研制的爆炸冲击震动模拟平台[17]上进行。试验装置通过落锤撞击震动台从而实现对台面的加载,平台可提供单次近半正弦加速度,通过调整落锤高度与台面前的缓冲垫块厚度来改变加载加速度的峰值与脉宽。该设备用以模拟因武器爆炸产生的地震动环境,如图1所示。挂钩1用可调节长度钢丝绳固定在桁架,用于控制落锤释放高度,挂钩2通过钢丝绳与卷扬机相连用于升降落锤。具体操作如下:① 用挂钩2钩住锤子尾部,启动卷扬机将落锤提升到一定高度;② 用已调节好长度的挂钩1勾住锤子尾部,使落锤位于加载高度,延长挂钩2的钢丝绳至落锤可撞击台面的适用长度;③ 释放挂钩1,落锤自然下落撞击缓冲柔性垫块后,从而对震动台实施加载,撞击同时启动限位系统将落锤及时拉回防止造成二次撞击。
图1 试验设备示意图Fig.1 Schematic diagram of test equipment
试验模型为201不锈钢材质的矩形无盖箱体贮液结构,质量331 kg,外形尺寸为1 200 mm×900 mm×750 mm,壁厚10 mm,贮水情况下水位高度为500 mm,如图2所示。模型与台面之间的结构隔震橡胶垫板厚3 cm,界面之间采用改性丙烯酸酯胶粘剂粘结。待胶粘剂达到使用强度后,用设备的最大加速度对模型进行加载,观测到结构、隔震橡胶垫板和台面之间固结良好,保证了试验加载时三者之间无相对滑移,可模拟实际工程中结构的橡胶垫层隔震措施。
通过数据采集系统记录结构在冲击时的加速度和应变响应数据,型号为DH5960动态信号采集仪,该数采具有16个通道,分辨率为24 bit,最大采样频率为200 kHz,本试验采用的采样频率为10 kHz。采取对应传感器来记录本试验数据,型号为KD1020电荷型加速度传感器,频率响应为0.5~2 000 Hz,加速度测量范围为0~5 000 m/s2,传感器布置如图3所示。编号为A1~A4的加速度传感器用于测结构的加速度时程响应,A0加速度传感器置于台面上,用于记录加载时输入震动台面的加速度;编号为S1~S3的应变片记录结构应变数据。
图2 结构模型试验现场图Fig.2 Structure model test site
图3 结构模型传感器布置示意图Fig.3 Structure model sensor layout
2.2 试验方案
根据《建筑结构抗震规范》[18],在工程结构受地震作用的响应研究中,通常取峰值加速度(PGA)作为地震动强度指标。本试验将震动台面的加速度作为加载加速度。选取3种不同落锤高度(50 cm、70 cm、90 cm)下落测得的爆炸冲击震动平台的加速度峰值(PGA)作为爆炸冲击地震动加载的强度标准。分别对模型进行无水和贮水2种情况下的橡胶板隔震试验,2种情况下得到的地震动参数如表1所示。3种摆锤高度下落后测得的PGA范围为12.7~21.8 g,震动台面的加速度持时脉宽无水和贮水的均值分别为10.3 ms和12.6 ms。
表1 不同工况下试验加载参数
由表1可以看出箱体内部贮水后,整个箱体贮液结构的质量增大,因此落锤在相同高度下落后对震动台面产生的加载PGA变小,脉宽持时变大。以落锤下落高度为90 cm为例,震动台面的在无水和贮水2种情况下加速度加载曲线如图4所示,可以看出贮液后台面加载加速度曲线峰值下降20.6%,脉宽延长26.5%。
图4 2种工况下震动台加速度加载曲线Fig.4 Shaking table acceleration loading curves under two working conditions
3 试验结果分析
3.1 加速度响应分析
3.1.1加速度时程响应
A4测点位置为无盖贮液结构侧向壁板的加速度最大响应位置,具体分析该位置结构的加速度时程响应。图5分别为落锤加载高度90 cm时,空箱和贮水2种工况下隔震前后测点A4结构加速度随时间的变化曲线,由图5可看出,隔震前后的加速度时程曲线有明显的区别。在各自的加载脉宽内(无水=10.2 ms,贮水=12.9 ms),隔震后的结构加速度响应峰值均小于未隔震状态时结构的加速度响应峰值,箱内贮水时加速度峰值下降的更多,从非隔震时的47.12 g下降至隔震后的23.24 g,下降50.68%,同时隔震后结构响应的脉冲周期变长,无水与贮水时分别增加了19.80%和37.82%。加速度时程的峰值降低、周期变长,这一规律与已有结构隔震研究结果一致[19]。加载结束后,2种工况下隔震结构的加速度响应衰减较快且迅速趋于零,因此橡胶板隔震整体上对箱体贮液结构产生了良好的减震效果。
3.1.2减震效果分析
基于爆炸冲击震动台隔震试验所测数据,首先对橡胶隔震结构的加速度响应进行分析,同时与非隔震结构的加速度动力响应结果进行对比。为了更加具体地研究在橡胶板隔震后箱体贮液结构的减震效果,将非隔震时传感器A1测出的结构底板加速度动响应作为基准参照,现定义减震率λ为
(1)
式中:Af,max为非隔震结构底板峰值加速度,m/s2;Ag,max为隔震后结构底板加速度峰值,m/s2。
图6为空箱和500 mm贮水2种工况下隔震前后结构底板加速度峰值及减震率,由式(1)计算加速度减震率,其中隔震后结构加速度峰值明显低于非隔震下的加速度峰值,减震率最大可达48.24%,且3种加载下贮水状态的减震率均大于空箱状态的减震率,这说明橡胶板隔震在箱体结构贮水状态时的减震效果更明显。
图5 隔震前后测点A4结构加速度时程曲线Fig.5 Comparison of time-history curves of A4 structure acceleration before and after isolation
图6 结构底板加速度峰值和减震率直方图Fig.6 Comparison of peak acceleration and damping rate of structure base plate
3.1.3加速度峰值放大系数分析
试验加载过程中,沿侧壁板高度h从上至下共布置4个加速度传感器,其中A2、A3、A4主要为测量壁板在250 mm、500 mm、750 mm高度位置的加速度响应。在不同落锤高度加载下,对无水和贮水工况下结构侧壁不同高度位置的加速度响应进行分析,采用无量纲的加速度峰值(PGA)放大系数来研究,从而得出隔震结构沿竖直高度的加速度放大效应,并与非隔震对比观测放大系数的变化情况。便于分析,将加速度峰值放大系数用结构任一测点的加速度响应峰值与输入震动台面加速度响应峰值比值来定义。图7为3种加载下,隔震前后加速度峰值(PGA)放大系数沿结构高度的变化规律。
从图7(a)、图7 (b)空箱与贮水2种工况的PGA放大系数随壁面高度的变化来看,非隔震结构沿整个壁高范围的放大系数均大于1,表明在爆炸地震波加载作用下,结构壁板沿高度的响应加速度相对震动台面输入值均有放大,且在结构顶部(h=750 mm)的放大系数最大,放大效应最为明显。隔震后结构沿高度的放大系数较非隔震时显著减小,结构底部及低高度(h=250 mm)内的放大系数小于1,说明隔震后结构在低高度范围内不产生放大效应;受结构自身响应的影响,隔震后在结构顶部及中高度(h=500 mm)范围内的放大系数在1~1.5,加速度响应产生了一定的放大效应。无水条件下,隔震前后的PGA放大系数从加速增长变为线性增长的趋势;贮水条件下,由于液体附加质量效应,水位以下的放大系数从加速增长变为减速增长,因此橡胶板隔震对箱体贮液结构峰值加速度的放大效应具有削弱作用,且箱内贮水时削弱作用更强。
图7 隔震前后沿结构高程加速度峰值放大系数的变化曲线Fig.7 Variation of amplification coefficient of peak acceleration along structural elevation before and after isolation
3.2 应变响应分析
3.2.1应变时程响应
根据在贮液结构内壁布置的应变片所测数据,分析隔震前后结构的应变响应。S1测点位置为应变响应峰值最大处,对该测点在隔震前后的应变时程曲线进行对比分析。
隔震前后的加速度和应变响应变化规律基本相似,差异主要体现在脉冲幅值和脉宽的不同上,加载锤高90 cm时,隔震前后S1测点的应变时程曲线如图8所示。结构应变时程曲线的第一个脉冲峰值在隔震后降低,但持时脉宽变长。在无水条件下,隔震后的应变峰值相较于非隔震时下降13.65%,脉宽延长12.97%;而在贮水条件下,隔震后的应变峰值减少45.41%,脉宽增加41.50%,结构应变响应的隔震效应在箱内贮水时效果更好。与非隔震时的应变响应变化不同,隔震后结构的应变快速衰减,以无水工况为例,隔震后的第二个应变峰值较第一个峰值下降了57.69%,说明隔震措施对结构的应变响应有明显的削弱效果。
图8 隔震前后测点S1的应变时程曲线Fig.8 Comparison of strain time history curves of S1 before and after isolation
3.2.2应变峰值沿结构高程分析
选取应变时程响应曲线的第一个脉冲峰值作为该应变峰值,图9为隔震前后不同加载下、无水和贮水时结构应变峰值沿壁板高度的变化曲线。可以看出,无水条件下加载过程中结构侧壁的动态应变从底部至顶部呈现减速增大的趋势,在结构顶部达到最大值;相比于空箱结构,箱内有水时应变峰值沿壁面高度的分布情况发生变化,从底部至贮水液面的应变峰值逐渐增大,水位以上的应变沿壁高开始减小,在贮水水位处动态应变峰值为最大值。在无水和有水2种工况下,隔震仅改变了贮液结构应变的峰值大小,并未改变应变峰值沿壁板高度的整体变化规律。
3.2.3隔震对应变沿高度分布的影响分析
为定量研究橡胶板隔震对结构应变峰值的削弱作用,以非隔震时结构应变峰值作基准参照,将应变峰值减少率μ的计算公式为:
(2)
式中:Ef,max为非隔震时结构应变峰值,με;Eg,max为隔震后结构底板加速度峰值,με。
不同高度下结构壁板的应变峰值减少率μ由式(2)求出,图10为无水和贮水时沿壁高的分布曲线。可以看出,箱内有水和无水时的随结构高程的增大而变大,均呈现正相关趋势;但贮水时不同壁高的均大于无水。因此,隔震对结构应变峰值的削弱受结构自身高程的影响,在结构顶部达到最大值。
图9 隔震前后结构应变峰值沿壁板高度变化曲线Fig.9 The structural strain peak varying along the height of the panel before and after isolation
图10 隔震后应变峰值减少率沿高程分布曲线Fig.10 The peak strain reduction rate distributed along the elevation after seismic isolation
4 数值模拟分析
在模拟试验的基础上,运用数值模拟对爆炸地震动下箱体贮液结构的振动响应进一步分析。
4.1 物理模型及参数设定
采用LS-DYNA软件对爆炸地震动下箱体结构隔震试验进行模拟。箱体结构外尺寸为1 200 mm×900 mm×750 mm,壁厚10 mm,隔震板尺寸1 400 mm×1 000 mm×30 mm,震动台面尺寸2 000 mm×1 300 mm×100 mm。箱体网格尺寸为5 mm,隔震板网格尺寸10 mm,震动台面网格尺寸为50 mm时,数值模拟结果收敛,如进一步减少各部分网格尺寸对模拟结果影响不大,但会增加计算时长和内存溢出风险。有限元分析模型如图11所示。
图11 有限元网格模型示意图Fig.11 Finite element mesh model
箱体、橡胶隔震板、震动台面部分采用八节点单点积分实体单元进行模拟。为了避免加载过程中可能出现的零能变形模式,最大沙漏能量控制在总能量的5%以下来保证数值模拟的精确性。箱体与隔震板、隔震板与震动台面均采用共节点方式连接,不考虑箱体、隔震板和震动台面之间的相对滑移,与试验工况符合。
计算中,箱体选用*MAT_PLASTIC_KINEMATIC模型(MAT_3),该模型可较好地反映201不锈钢在爆炸地震动下的动响应;橡胶板采用*MAT_ELASTIC模型(MAT_1),由橡胶板生产厂家提供的橡胶材料相关试验数据和橡胶的力学性能[20]来计算模型参数;不考虑震动台面的变形,认为震动台面为刚体,采用*MAT_RIGID模型(MAT_20)。数值模型中相关参数见表2所示。震动台面使用刚体材料模型,在平台上施加空箱无水试验时A0所测加载加速度,对试验进行模拟。
表2 数值模拟中材料参数
4.2 试验与模拟的加速度响应对比
依据试验时箱体上的4个加速度传感器位置提取模型对应位置的加速度时程曲线,并与试验结果对照分析。图12是震动台面加载加速度PGA为21.8g,脉宽为10.2 ms时,非隔震与隔震后箱体不同测点加速度的数值模拟结果与试验结果曲线。
图12 不同测点加速度数值模拟与试验结果曲线Fig.12 Comparison of numerical simulation and experimental results of acceleration at different measuring points
从图12可以看出,数值结果与试验结果基本一致,结构加速度时程曲线的峰值与周期吻合较好,隔震前后模拟加速度与试验加速度的峰值偏差最大位置在箱体结构顶部的A1测点处,偏差分别为4.6%和8.1%,结果偏差均在合理误差范围内。因此本文所采用的数值模拟方法和参数合理,验证有限元模型的正确性。
4.3 结构整体响应分析
图13为箱体结构在10 ms、20 ms、30 ms时刻的位移云图,用其可以表现出结构在结构在受爆炸地震动作用过程中的位移响应情况。地震动对非隔震结构造成影响的最大区域主要集中在沿加载方向的两侧板中间,双向侧板形成主要由板一阶振型决定的位移云图;由于橡胶隔震垫的滤波和耗能作用,隔震后侧板位移的最大区域逐渐不明显,从下至上侧壁的位移分布呈现分层现象,地震动从结构底板至顶部的传递出现滞缓。
爆炸地震动过程中,箱体结构的动力响应主要发生在弹性阶段。由图13可知,加了橡胶隔震垫的侧壁板位移峰值远远小于非隔震箱体结构,非隔震结构在10 ms时的最大位移为1.38 mm,隔震后的最大位移为0.43 mm,下降了68.84%。表明橡胶垫层具有十分显著的隔震作用,起到很好的隔震效果。
图13 加载过程中箱体结构位移云图Fig.13 Cloud diagram of box structure displacement during loading
5 结论
在爆炸冲击震动模拟平台上对箱体贮液结构开展了橡胶垫板隔震试验研究,分析不同爆炸地震动强度、贮水和无水2种液位状态下隔震结构的动力响应,并结合数值模拟进行验证,对结构整体进行响应分析,得出的主要结论有:
1) 结构在贮水状态下的减震率大于空箱状态,隔震后贮液结构的加速度响应峰值下降、周期变长。隔震后结构在低高程内不产生放大效应,在结构顶部及中高程内有一定的放大效应。橡胶板隔震对箱体贮液结构的PGA放大系数具有削弱作用,且箱内贮水时削弱作用更强。
2) 隔震仅使结构的应变响应峰值降低,但未改变应变峰值沿壁板高度的整体变化规律。隔震结构应变峰值的减少率沿结构高程呈正相关,在结构顶部减少率达到最大,应变响应的隔震效应在箱内有水时更显著。
3) 通过试验与模拟结果对比,两者误差在合理范围内。隔震后结构侧板的位移分布呈现分层现象,地震动从结构底板至顶部的传递过程出现滞缓。