APP下载

纤维素纳米纤维在食品包装领域的研究进展

2022-12-21陈倩茜常春雨

包装工程 2022年23期
关键词:复合膜食品包装包装材料

陈倩茜,常春雨

专题 生物质基包装材料

纤维素纳米纤维在食品包装领域的研究进展

陈倩茜,常春雨

(武汉大学 化学与分子科学学院,武汉 430072)

对纤维素纳米纤维的制备及其在食品包装领域的研究进行综述,以期为食品包装材料的发展提供理论支持。总结近几年纤维素纳米纤维的不同加工制造方法,关注食品包装材料的气体阻隔性能、抑菌性能、紫外线阻隔性能、疏水性能和新鲜度监测性能等,阐明纤维素纳米纤维在食品包装中的研究进展。可以通过化学法、化学法结合机械法和酶法等方法制备纤维素纳米纤维,但均存在产率低、能耗高、尺寸分布不均匀等问题。纤维素纳米纤维可以应用于气体阻隔、抗菌、防紫外线、疏水及智能包装材料,现阶段的纳米纤维制品很难兼顾多功能性。纤维素纳米纤维食品包装材料有望取代石油基塑料包装,在食品包装领域具有较大的应用前景。

纤维素;纳米纤维;食品包装

塑料污染是全球性问题,目前在海洋、湖泊、河流、土壤和动物体中都可以发现塑料和微塑料[1],据研究估计每年有80亿kg的塑料和15亿kg的微塑料进入海洋[2]。为了解决塑料垃圾造成的环境污染,除了实施塑料管理政策[3],还需要依靠天然聚合物及其他可再生资源构建环保材料[4]。天然聚合物主要包括纤维素、甲壳素、果胶、淀粉、蛋白质等,其中纤维素是自然界中最丰富的可再生聚合物资源,它具有可再生性、无毒、成本低、生物相容性和生物可降解性等优点[5],且采用纤维素制品取代不可降解食品包装塑料已经成为研究热点。

通过化学、物理或生物“自上而下”等方法,可以将天然纤维素原料制备成纤维素纳米晶体和纤维素纳米纤维[6]。其中,纳米纤维具有结晶区和非结晶区交错的结构,与不含非结晶区的纳米晶体相比,其柔韧性更强。纤维素纳米纤维具有高比表面积、高力学强度、低密度、易修饰的表面多羟基结构等特性,被广泛应用于食品包装和功能性食品配料[7]。文中主要阐述纤维素纳米纤维的制备方法,重点关注食品包装材料的气体阻隔性能、抑菌性能、紫外线阻隔性能、疏水性能和新鲜度监测性能等,探讨纤维素纳米纤维在食品包装领域的发展前景,为未来研究纤维素纳米纤维食品包装材料的方向提出建议。

1 纤维素纳米纤维的制备

1.1 化学法

化学法主要采用酸和强氧化剂与纤维素的羟基发生酯化或氧化反应,从而制备纤维素纳米纤维。Neenu等[8]用草酸和硫酸分别水解菠萝渣,结果表明,采用硫酸处理得到的纳米纤维的透光率、结晶度指数和热稳定性均大于经草酸处理的纤维的相应值。Wang等[9]以姜纤维、麦秸、竹浆、木屑和亚麻为原料,用质量分数为64%的硫酸在40 °C及氮气保护条件下将其搅拌水解30 min,成功制备出纳米纤维,将反应液加热至90 °C,并处理4 h,可以得到石墨化碳壳的导电纤维素纳米纤维。Ji等[10]以漂白甘蔗渣为原料,利用柠檬酸,在少量超声辅助下,制备出羧酸的质量摩尔浓度为0.30 mmol/g的纳米纤维。Wang等[11]以废姜纤维为原料,采用3 mol/L柠檬酸和6 mol/L盐酸的混合液,将其在80 °C下搅拌水解4 h,制得长径比为144的羧化纤维素纳米纤维。Tang等[12]采用过氧化氢直接热氧化天然废柚皮,制备了长径比为169、羧酸的质量摩尔浓度为1.71 mmol/g的纳米纤维。化学法的反应条件较严格,常伴随酸和氧化剂对纤维素非结晶区的过度破坏,导致纤维素纳米纤维的产率较低。

1.2 化学法结合机械法

1.2.1 化学预处理结合机械分解两步法

目前广泛采用的方法是2, 2, 6, 6−四甲基哌啶−1− 氧基(TEMPO)介导的氧化。将软木浆等纤维素原料悬浮在水中,以次氯酸钠为氧化剂,以TEMPO和溴化钠为催化剂,在室温和pH 10~11的条件下反应90 min,纤维素重复单元中的C6羟基被选择性氧化成羧基,再经过机械崩解,获得了宽度约为3 nm的TEMPO纤维素纳米纤维(见图1)。由于TEMPO催化剂具有毒性,因此将阻碍其在某些方面的应用[13]。

图1 TEMPO氧化法制备纤维素纳米纤维(转载经参考文献[13]授权,版权为(2020)约翰威立国际出版公司)

纤维素Ⅰ型纳米纤维的制备还包括磷酸化、磺乙基化、羧甲基化、醚化、酯化、C2/C3羧基化、高锰酸钾的氧化、低共熔溶剂处理等多种方法。Noguchi等[14]将软木纸浆浸泡在尿素和磷酸二氢铵溶液中,然后在165 °C的热空气中干燥和固化,并通过高压均质化制得宽度为3~4 nm的磷酸化纤维素纳米纤维。Naderi等[15]将商业上从未干燥的漂白纸浆与乙烯基磺酸钠在80 °C下搅拌反应1 h,通过螺旋桨式混合器分散后,在压力170 MPa下对悬浮液进行微流化处理,制备得到磺乙基化纳米纤维。Su等[16]采用一氯乙酸使桉木浆羧甲基化,经异丙醇洗涤干燥后再经高压均质处理,将纤维素粉末转变为宽度为18 nm、长度为数百纳米的纳米纤维。Ho等[17]以氯化氯胆碱为醚化剂,对燕麦秸秆纤维素浆进行阳离子化,经均化器机械分解后,获得了三甲基铵改性的纳米纤维。Iwamoto等[18]用顺丁烯二酸酐在120 °C下酯化硬木粉0.5~6 h,随后将酯化的木粉通过高压均化器处理3次,获得了纳米纤维悬浮液。Beaumont等[19-20]在水存在的情况下对纤维素进行了选择性修饰,纤维素表面C6羟基分别与乙酸酐、异丁酸酐发生酯化反应,酯化的纤维素经微流化器处理6次,分别得到带有C6−乙酰基和C6−异丁酰基的纳米纤维。Liimatainen等[21]首先使用高碘酸钠氧化纤维素C2和C3羟基,以产生醛基,随后使用亚氯酸钠将醛基氧化成的羧基经高压均化器后获得纳米纤维。Liu等[22]将高锰酸钾与软木浆在50 °C下温和氧化反应2 h,随后将纤维素悬浮液在30 MPa压力下均化3次,得到羧基化纳米纤维。Liu等[23]基于低共熔溶剂,用乳酸、甲酸、乙酸、丙二酸、草酸或柠檬酸分别处理硬木浆,通过胶体磨设备机械分解得到纳米纤维。除此以外,将纤维素溶解在四乙基氢氧化铵/二甲亚砜中,经再生和机械处理后,可以得到纤维素Ⅱ型纳米纤维[24]。这些制备方法不可避免地会采用机械处理,存在能源消耗问题。

1.2.2 化学机械一步法

化学机械一步法一般采用球磨与化学试剂结合的方式。Huang等[25]将丁二酸酐或十二烷基丁二酸酐与微晶纤维素置于球磨机中,以二甲亚砜为溶剂,以二甲氨基吡啶为催化剂,球磨时间为2~40 h,最终得到易于分散在水中的亲水性纳米纤维和分散在邻二甲苯中的疏水性纳米纤维。Kang等[26]利用废弃玉米芯,以N, N−二甲基甲酰胺(DMF)为溶剂,以己酰氯为酯化剂,球磨1~24 h,制得取代度高达0.95的疏水纳米纤维。Rao等[27]用甲苯和DMF分别作为球磨的溶剂,以五氟苯甲酰氯为反应试剂,在DMF中得到表面酯化度更高的纳米纤维。Zhang等[28]将玉米芯纤维粉末与磷酸共球磨,得到磷酸化的纳米纤维,进一步与三聚氰胺结合后,使得纤维具有阻燃性。Hou等[29]通过球磨法高效合成油酸纤维素,赋予了纤维素热塑性。Jing等[30]采用3−氨基丙基三乙氧基硅烷结合球磨机处理0~24 h,制备得到疏水纳米纤维。这些方法均能一步制得纳米纤维,但整个过程耗时久、能耗大。

1.3 酶法

酶法利用内切葡聚糖酶、β−葡萄糖苷酶、外切型纤维素酶等对纤维素进行选择性降解,条件温和且能耗低。Rossi等[31]首先用亚氯酸钠和氢氧化钾对甘蔗渣进行了化学预处理,然后采用ThCel7B内切葡聚糖酶、TcXyn10A木聚糖酶和TtLPMO9H多糖单加氧酶制备纳米纤维。Cebreiros等[32]使用CTec3纤维素酶和HTec半纤维素酶在50 °C的醋酸缓冲溶液中进行木浆的酶解,获得了直径为3~10 nm的纤维素纳米纤维。Tibolla等[33]以香蕉皮为原料,采用木糖醇酶从香蕉皮中分离得到纳米纤维。Sanchez−Salvador等[34]以软木和硬木为原料,经机械初步处理、纤维素酶酶解和TEMPO氧化等方式,配合高压均质器处理制备纳米纤维,采用酶法制备的纳米纤维的长径比介于纯机械制备和TEMPO制备纳米纤维的长径比之间。综合而言,酶法仍然受到高操作成本、低产量和长反应时间的挑战,且所得纳米纤维的尺寸分布不均匀。

2 纤维素纳米纤维食品包装材料

在食品工业中,包装材料在食品保存和运输过程中起着至关重要的作用。材料的气体渗透性、抑菌性和防紫外线性能都是影响食品保质期的因素,且材料的疏水性是替代塑料的关键性能。消费者和食品行业从业者希望获得可对食品新鲜程度进行可视化监测的智能包装材料。

2.1 气体阻隔性能

气体阻隔性指包装材料避免渗入氧气或水蒸气的性能,具有该性能可以有效防止因氧化或水合/脱水造成的食品变质。纤维素纳米纤维的固有阻挡性能可以很好地提高复合材料的气体阻隔性能[35]。Trifol等[36]将质量分数为75%的纤维素纳米纤维(CNF)和质量分数为25%的木质纤维素纳米纤维(LCNF)混合制膜,木质素作为纳米纤维之间的化学黏合剂,且不同尺寸的纳米纤维为气体分子创造了曲折的路径,与纯CNF和LCNF薄膜相比,复合膜的水蒸气透过率分别降低了约16%和35%,氧气透过率分别降低了约53%和60%。Naidu等[37]以玉米秸秆为原料,采用化学与机械相结合的方法生产纳米纤维,当质量分数为10%的CNF被加入木聚糖−海藻酸钠基质中时,薄膜的水蒸气透过率降低了约45%。Kim等[38]用丁二酸酐化纤维素纳米纤维(SCNF)制膜,其氧气透过率比聚对苯二甲酸乙二醇酯(PET)膜的氧气透过率降低了约97%。当采用SCNF和含氟聚合物复合成膜时,其氧气透过率比纯SCNF膜的氧气透过率降低了约23%。此外,SCNF也可作为PET膜的涂层,能有效提高复合材料的氧气阻隔性能。Thuy等[39]将带负电荷的纤维素纳米纤维和带正电荷的壳聚糖纳米晶须喷涂在PET薄膜上,两者的协同作用降低了氧传输速率。由于以纤维素纳米纤维为基础的干性材料对水有较强的亲和力,因此在湿态情况下材料的阻隔性降低,这将降低其在包装材料市场上与石油基塑料的竞争力。

2.2 抑菌性能

食品是细菌繁殖的主要媒介之一,因此具有抗菌性能的食品包装材料是保证食品品质的关键。Dai等[40]以海藻酸钠/纤维素纳米纤维为载体,并加入主要化学成分为百里香酚和儿茶酚的花生红皮提取物,通过Ca2+交联制备了复合抗菌膜(SCCP−4),它对鼠伤寒沙门氏菌、金黄色葡萄球菌、大肠杆菌和单核增生李斯特菌的抗菌率依次为94.48%、93.38%、79.88%、71.50%,将SCCP−4涂于果实表面,果实在第7天仍未出现细菌菌落,表明SCCP−4具有良好的抗菌活性,可以延缓果实的变质进程(见图2)。Wang等[41]设计了一种负载聚六亚甲基盐酸胍的木质素球形颗粒(PHGH−LNP),其平均直径为135 nm,它与CNF悬浮液混合均匀后通过溶剂浇铸可以得到PHGH−LNP/CNF薄膜,该薄膜对单核细胞增多性乳杆菌和大肠杆菌的抑制率均为100%。Jiang等[42]通过京尼平将CNF与壳聚糖交联构建基底,将载有异硫氰酸苄酯(BITC)的季铵化纤维素纳米晶体以喷涂的方式涂于基底表面,BITC是一种挥发性活性物质,会严重影响细菌的完整性,导致其部分沉淀,使复合材料对革兰氏阳性菌和革兰氏阴性菌均有较好的抑制作用。Ezati等[43]将CNF与含氮碳点混合制备复合膜(CNF/NGCD),它对单核细胞增生李斯特菌、大肠杆菌、黄曲霉均有较好的抑制作用。用CNF/NGCD包覆柑橘和草莓果实后,果实表面真菌的生长受到抑制,保质期分别延长了10 d和2 d以上。Wu等[44]将氧化锌纳米颗粒和牛至油制备的皮克林乳液与CNF共混制备活性包装膜,皮克林乳液均匀地分散在薄膜中,形成了微胶囊,从而将牛至油完全包裹在薄膜中,该膜对李斯特菌的抗菌活性为89.61%。同时,Wu等[45]用接枝了聚乙烯亚胺的纳米晶须和牛至油制备的皮克林乳液与CNF制备成膜,该膜对李斯特菌和大肠杆菌的抑制率分别为97.28%、97.23%。Montero等[46]研制了包埋肉桂精油(EO)的纤维素纳米纤维与聚己二酸/对苯二甲酸丁二酯(PBAT)复合薄膜(NC−EO−PBAT),该膜具有抗沙门氏菌和李斯特菌的特性。当采用NC−EO−PBAT包覆草莓时,草莓的贮藏时间可以延长至15 d,且不受真菌侵染。采用纤维素纳米纤维与一些具有抗菌性能的添加剂结合制备包装材料,可以抑制食源性致病菌(如沙门氏菌、大肠杆菌、李斯特菌、金黄色葡萄球菌等)的污染,延长食品的保质期,这对确保食品安全有着重要作用,也对取代传统包装材料具有重要意义。

图2 抗菌膜在水果保鲜中的应用(转载经参考文献[40]授权,版权为(2022)爱思唯尔有限公司)

2.3 紫外线阻隔性能

紫外线辐射可能会导致包装膜中的脂质氧化,从而导致不良风味和气味的发生,最终降低食品的货架寿命,因此食品包装具有紫外线阻隔性能是非常重要的。纤维素纳米纤维具有一定紫外屏蔽功能,但需要添加一些富含紫外光吸收基团的物质来增强,使复合材料具有良好的紫外线阻隔性能。Qin等[47]制备了辣椒叶蛋白和纤维素纳米纤维的复合膜,辣椒叶蛋白具有丰富的羰基,同时CNF本身具有防紫外线功能,从而使复合膜具有足够的紫外线阻隔性能。Deng等[48]将CNF与插层不同有机分子的层状双金属氢氧化物(LDH)混合液抽滤成膜,有机阴离子之间的协同作用及有机阴离子与金属阳离子之间的相互作用,可显著增强CNF/LDH复合膜的紫外屏蔽能力。Li等[49]以接枝了聚乙烯亚胺的木质纤维素纳米纤维为填料,当其添加量(质量分数)达到6%时,聚乙烯醇复合膜对紫外光具有完全屏蔽作用。Zhang等[50]采用浇注法制备了壳聚糖与姜黄素接枝纤维素纳米纤维(CGTOCNF)的生物纳米复合膜,姜黄素的酚部分具有较强的紫外线吸收能力,当添加质量分数为10%的CGTOCNF时,复合膜的紫外线屏蔽性能比纯壳聚糖膜提高了1倍左右。Kriechbaum等[51]通过将二醛纤维素纳米纤维与明胶的复合膜浸泡在单宁酸溶液中,制得含有丰富酚类基团的复合膜,它对200~315 nm的紫外线具有100%的阻隔作用,且对315~400 nm紫外线的阻隔率达到88%左右。

2.4 疏水性能

与对水分不敏感的合成塑料包装材料相比,纤维素纳米纤维的固有亲水性不利于其在湿态下的阻隔性能和力学性能,因此制备防水纤维素纳米纤维基包装材料有助于解决该问题。纤维素纳米纤维的疏水改性主要依靠表面引入低表面能的长链烷基、含氟基团等化学成分的修饰。Lakshmibalasubramaniam等[52]采用香草酸和丁香酸分别与纯CNF膜发生酯化反应,酚酸的酯化显著改善了薄膜的疏水性,水接触角为94°±3°。Liu等[53]将纯CNF膜浸泡在聚二甲基硅氧烷和疏水气相二氧化硅混合溶液中,将其取出经干燥后得到的改性膜具有超疏水性,水接触角达到155°。Zhang等[54]利用小麦秸秆提取得到木质纤维素纳米纤维与淀粉的混合浆液,经高速离心后小麦秸秆的化学成分出现分层现象,蜡质和木质素作为疏水组分位于膜表面,提高了膜的水屏障性能,水接触角超过110°。Shi等[55]制备了具有不同二氧化硅纳米粒子含量的CNF/PBAT复合膜,相较于CNF,其疏水性得到了提高,水接触角为80°~90°。Oberlintner等[56]通过氟碳等离子体处理纯CNF膜(见图3),薄膜被暴露在CF4等离子体中不到10 s就实现了亲水到疏水的转换,水接触角约为130°±5°。Arun等[57]选择废弃椰子壳为原料制备了纳米纤维,然后将CNF与亚麻籽油和柠檬油一起掺入聚乙烯醇(PVA)中,得到了PVA/CNF/油基复合膜,精油和CNF的加入提高了膜的疏水性,水接触角为92.2°。

2.5 新鲜度监测性能

当食物变质时,酸或胺化合物会改变食物或周围环境的pH值,智能包装材料可以监测pH值的变化,并根据pH值(颜色的改变程度)来评估食品的新鲜度。纤维素纳米纤维与pH敏感染料(如花青素、紫草素、茜素等)复合,可制备出颜色传感智能包装材料。Zhou等[58]采用3D打印技术制备了含有花青素的CNF基的纤维外壳,并将含1−甲基环丙烯的壳聚糖加载到纤维的中空微通道中,经3D打印的标签可以将荔枝的货架期延长6 d,同时可以灵敏地反应出荔枝新鲜度的变化情况,花青素在酸性条件下呈红色,随着pH值的增加,逐渐变为蓝色,当pH大于10时呈黄色。Roy等[59]将质量分数为10%的紫草素均匀地分散在CNF基质中,形成相容的红色薄膜,其在pH值为2~12时显示出从红色到蓝色的颜色变化。Ezati等[60]通过茜素和CNF复合成膜,在pH值为2~12时,茜素的颜色由黄色转变为紫色。此外,也可以设计出对生物胺敏感的包装材料。Quan等[61]以异硫氰酸荧光素修饰的CNF作为指示剂,以卟啉Ⅸ改性的CNF作为内参比,将两者按比例混合成膜,随着生物胺浓度的增加,材料逐渐从红色变为黄绿色,其中对生物胺的检测限低至1 mg/L,可用于虾和猪肉的新鲜度检测。

图3 等离子体系在纤维素纳米纤维疏水改性中的应用(转载经参考文献[56]授权,版权为(2022)爱思唯尔有限公司)

3 结语

纤维素是自然界中储量最丰富的天然聚合物,迄今为止,化学法和化学法结合机械法仍然是制备纤维素纳米纤维的主要方法,但它们存在产率低、能耗高、对环境有害等问题,因此需要寻找高产率、低能耗、环保和可持续的技术制备纤维素纳米纤维。纤维素纳米纤维可应用于气体阻隔、抗菌、紫外线屏蔽、疏水及智能材料,展示了纤维素纳米纤维食品包装取代传统不可降解包装材料的潜力。现阶段以纳米纤维成膜的材料很难兼顾多功能性,将来需要设计出综合性更均衡的纤维素纳米纤维包装材料,使其得到广泛运用。

[1] LUAN Xiao-yu, KOU Xiao-hui, ZHANG Long, et al. Estimation and Prediction of Plastic Losses to the Environment in China from 1950 to 2050[J]. Resources, Conservation and Recycling, 2022, 184: 106386.

[2] LAU W W Y, SHIRAN Y, BAILEY R M, et al. Evaluating Scenarios Toward Zero Plastic Pollution[J]. Science, 2020, 369(6510): 1455-1461.

[3] YU Jin-kai, MA Xing-yun. Exploring the Management Policy of Marine Microplastic Litter in China: Overview, Challenges and Prospects[J]. Sustainable Production and Consumption, 2022, 32: 607-618.

[4] MOHANTY A K, VIVEKANANDHAN S, PIN J M, et al. Composites from Renewable and Sustainable Resources: Challenges and Innovations[J]. Science, 2018, 362(6414): 536-542.

[5] WANG Sen, LU Ang, ZHANG Li-na. Recent Advances in Regenerated Cellulose Materials[J]. Progress in Polymer Science, 2016, 53: 169-206.

[6] TU H, ZHU M, DUAN B, et al. Recent Progress in High-Strength and Robust Regenerated Cellulose Materials[J]. Advanced Materials, 2021, 33(28): e2000682.

[7] LI Zi-qian, ZHANG Yan, ANANKANBIL S, et al. Applications of Nanocellulosic Products in Food: Manufacturing Processes, Structural Features and Multifaceted Functionalities[J]. Trends in Food Science & Technology, 2021, 113: 277-300.

[8] NEENU K V, MIDHUN DOMINIC C D, BEGUM P M S, et al. Effect of Oxalic Acid and Sulphuric Acid Hydrolysis on the Preparation and Properties of Pineapple Pomace Derived Cellulose Nanofibers and Nanopapers[J]. International Journal of Biological Macromolecules, 2022, 209: 1745-1759.

[9] WANG Duan-chao, YU Hou-yong, QI Dong-ming, et al. Confined Chemical Transitions for Direct Extraction of Conductive Cellulose Nanofibers with Graphitized Carbon Shell at Low Temperature and Pressure[J]. Journal of the American Chemical Society, 2021, 143(30): 11620-11630.

[10] JI Hui, XIANG Zhou-yang, QI Hai-song, et al. Strategy towards One-Step Preparation of Carboxylic Cellulose Nanocrystals and Nanofibrils with High Yield, Carboxylation and Highly Stable Dispersibility Using Innocuous Citric Acid[J]. Green Chemistry, 2019, 21(8): 1956-1964.

[11] WANG Duan-chao, YU Hou-yong, FAN Xue-meng, et al. High Aspect Ratio Carboxylated Cellulose Nanofibers Cross-Linked to Robust Aerogels for Superabsorption-Flocculants: Paving Way from Nanoscale to Macroscale[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20755-20766.

[12] TANG Feng, YU Hou-yong, YASSIN HUSSAIN ABDALKARIM S, et al. Green Acid-Free Hydrolysis of Wasted Pomelo Peel to Produce Carboxylated Cellulose Nanofibers with Super Absorption/Flocculation Ability for Environmental Remediation Materials[J]. Chemical Engineering Journal, 2020, 395: 125070.

[13] ISOGAI A. Emerging Nanocellulose Technologies: Recent Developments[J]. Advanced Materials, 2021, 33(28): e2000630.

[14] NOGUCHI Y, HOMMA I, MATSUBARA Y. Complete Nanofibrillation of Cellulose Prepared by Phosphorylation[J]. Cellulose, 2017, 24(3): 1295-1305.

[15] NADERI A, KOSCHELLA A, HEINZE T, et al. Sulfoethylated Nanofibrillated Cellulose: Production and Properties[J]. Carbohydrate Polymers, 2017, 169: 515-523.

[16] SU Ling-feng, OU Yang-hao, FENG Xiao, et al. Integrated Production of Cellulose Nanofibers and Sodium Carboxymethylcellulose through Controllable Eco-Carboxymethylation under Mild Conditions[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3792-3800.

[17] HO T T T, ZIMMERMANN T, HAUERT R, et al. Preparation and Characterization of Cationic Nanofibrillated Cellulose from Etherification and High-Shear Disintegration Processes[J]. Cellulose, 2011, 18(6): 1391-1406.

[18] IWAMOTO S, SAITO Y, YAGISHITA T, et al. Role of Moisture in Esterification of Wood and Stability Study of Ultrathin Lignocellulose Nanofibers[J]. Cellulose, 2019, 26(8): 4721-4729.

[19] BEAUMONT M, OTONI C G, MATTOS B D, et al. Regioselective and Water-Assisted Surface Esterification of Never-Dried Cellulose: Nanofibers with Adjustable Surface Energy[J]. Green Chemistry, 2021, 23(18): 6966-6974.

[20] BEAUMONT M, TARDY B L, REYES G, et al. Assembling Native Elementary Cellulose Nanofibrils via a Reversible and Regioselective Surface Functionalization[J]. Journal of the American Chemical Society, 2021, 143(41): 17040-17046.

[21] LIIMATAINEN H, VISANKO M, SIRVIÖ J A, et al. Enhancement of the Nanofibrillation of Wood Cellulose through Sequential Periodate-Chlorite Oxidation[J]. Biomacromolecules, 2012, 13(5): 1592-1597.

[22] LIU Ya-li, ZHANG Su-feng, LIN Rui, et al. Potassium Permanganate Oxidation as a Carboxylation and Defibrillation Method for Extracting Cellulose Nanofibrils to Fabricate Films with High Transmittance and Haze[J]. Green Chemistry, 2021, 23(20): 8069-8078.

[23] LIU Su-ling, ZHANG Qing, GOU Sha-heng, et al. Esterification of Cellulose Using Carboxylic Acid-Based Deep Eutectic Solvents to Produce High-Yield Cellulose Nanofibers[J]. Carbohydrate Polymers, 2021, 251: 117018.

[24] SIRVIÖ J A, LAKOVAARA M. A Fast Dissolution Pretreatment to Produce Strong Regenerated Cellulose Nanofibers via Mechanical Disintegration[J]. Biomacromolecules, 2021, 22(8): 3366-3376.

[25] HUANG Pei, ZHAO Yang, KUGA S, et al. A Versatile Method for Producing Functionalized Cellulose Nanofibers and Their Application[J]. Nanoscale, 2016, 8(6): 3753-3759.

[26] KANG Xing-ya, SUN Pei-pei, KUGA S, et al. Thin Cellulose Nanofiber from Corncob Cellulose and Its Performance in Transparent Nanopaper[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2529-2534.

[27] RAO Xian-meng, KUGA S, WU Min, et al. Influence of Solvent Polarity on Surface-Fluorination of Cellulose Nanofiber by Ball Milling[J]. Cellulose, 2015, 22(4): 2341-2348.

[28] ZHANG Tong-ling, WU Min, KUGA S, et al. Cellulose Nanofibril-Based Flame Retardant and Its Application to Paper[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10222-10229.

[29] HOU De-fa, LI Meng-lei, YAN Cong, et al. Mechanochemical Preparation of Thermoplastic Cellulose Oleate by Ball Milling[J]. Green Chemistry, 2021, 23(5): 2069-2078.

[30] JING Meng-fan, ZHANG Li-jie, FAN Zheng-bing, et al. Markedly Improved Hydrophobicity of Cellulose Film via a Simple One-Step Aminosilane-Assisted Ball Milling[J]. Carbohydrate Polymers, 2022, 275: 118701.

[31] ROSSI B R, PELLEGRINI V O A, CORTEZ A A, et al. Cellulose Nanofibers Production Using a Set of Recombinant Enzymes[J]. Carbohydrate Polymers, 2021, 256: 117510.

[32] CEBREIROS F, SEILER S, DALLI S S, et al. Enhancing Cellulose Nanofibrillation of Eucalyptus Kraft Pulp by Combining Enzymatic and Mechanical Pretreatments[J]. Cellulose, 2021, 28(1): 189-206.

[33] TIBOLLA H, PELISSARI F M, MARTINS J T, et al. Banana Starch Nanocomposite with Cellulose Nanofibers Isolated from Banana Peel by Enzymatic Treatment:Cytotoxicity Assessment[J]. Carbohydrate Polymers, 2019, 207: 169-179.

[34] SANCHEZ-SALVADOR J L, CAMPANO C, BALEA A, et al. Critical Comparison of the Properties of Cellulose Nanofibers Produced from Softwood and Hardwood through Enzymatic, Chemical and Mechanical Processes[J]. International Journal of Biological Macromolecules, 2022, 205: 220-230.

[35] ZHAO Ya-dong, TROEDSSON C, BOUQUET J M, et al. Mechanically Reinforced, Flexible, Hydrophobic and UV Impermeable Starch-Cellulose Nanofibers (CNF)-Lignin Composites with Good Barrier and Thermal Properties[J]. Polymers, 2021, 13(24): 4346.

[36] TRIFOL J, MORIANA R. Barrier Packaging Solutions from Residual Biomass: Synergetic Properties of CNF and LCNF in Films[J]. Industrial Crops and Products, 2022, 177: 114493.

[37] NAIDU D S, JOHN M J. Cellulose Nanofibrils Reinforced Xylan-Alginate Composites: Mechanical, Thermal and Barrier Properties[J]. International Journal of Biological Macromolecules, 2021, 179: 448-456.

[38] KIM J K, CHOI B, JIN J. Transparent, Water-Stable, Cellulose Nanofiber-Based Packaging Film with a Low Oxygen Permeability[J]. Carbohydrate Polymers, 2020, 249: 116823.

[39] THUY V T T, HAO L T, JEON H, et al. Sustainable, Self-Cleaning, Transparent, and Moisture/Oxygen-Barrier Coating Films for Food Packaging[J]. Green Chemistry, 2021, 23(7): 2658-2667.

[40] DAI Qing-yin, HUANG Xi, JIA Rui-jing, et al. Development of Antibacterial Film Based on Alginate Fiber, and Peanut Red Skin Extract for Food Packaging[J]. Journal of Food Engineering, 2022, 330: 111106.

[41] WANG Wei, QIN Cheng-rong, LI Wei, et al. Design of Antibacterial Cellulose Nanofibril Film by the Incorporation of Guanidine-Attached Lignin Nanoparticles[J]. Cellulose, 2022, 29(6): 3439-3451.

[42] JIANG Jing-hui, CHEN Xiao-xia, ZHANG Gong-liang, et al. Preparation of Chitosan-Cellulose-Benzyl Isothiocyanate Nanocomposite Film for Food Packaging Applications[J]. Carbohydrate Polymers, 2022, 285: 119234.

[43] EZATI P, RHIM J W, MOLAEI R, et al. Cellulose Nanofiber-Based Coating Film Integrated with Nitrogen-Functionalized Carbon Dots for Active Packaging Applications of Fresh Fruit[J]. Postharvest Biology and Technology, 2022, 186: 111845.

[44] WU Min, ZHOU Zhi-long, YANG Jian, et al. ZnO Nanoparticles Stabilized Oregano Essential Oil Pickering Emulsion for Functional Cellulose Nanofibrils Packaging Films with Antimicrobial and Antioxidant Activity[J]. International Journal of Biological Macromolecules, 2021, 190: 433-440.

[45] WU Min, YANG Jian, CHEN Shun-li, et al. TOCNC--PEI Nanoparticle Encapsulated Oregano Essential Oil for Enhancing the Antimicrobial Activity of Cellulose Nanofibril Packaging Films[J]. Carbohydrate Polymers, 2021, 274: 118654.

[46] MONTERO Y, SOUZA A G, OLIVEIRA É R, et al. Nanocellulose Functionalized with Cinnamon Essential Oil: A Potential Application in Active Biodegradable Packaging for Strawberry[J]. Sustainable Materials and Technologies, 2021, 29: e00289.

[47] QIN Qing-yu, LI Wen-hu, ZHANG Xin-yan, et al. Feasibility of Bionanocomposite Films Fabricated Using Capsicum Leaf Protein and Cellulose Nanofibers[J]. Food Chemistry, 2022, 387: 132769.

[48] DENG Yuan, LI Kai, GUAN Qing-qing, et al. Novel CNFS-Based Organic UV-Adsorber Intercalated ZnAl-LDHS Composited Films with Superior Photothermal Stability and Mechanical Properties[J]. Industrial Crops and Products, 2022, 178: 114555.

[49] LI Y, CHEN Y, WU Q, et al. Improved Hydrophobic, UV Barrier and Antibacterial Properties of Multifunctional PVA Nanocomposite Films Reinforced with Modified Lignin Contained Cellulose Nanofibers[J]. Polymers, 2022, 14(9): 1705-1717.

[50] ZHANG X, LI Y, GUO M, et al. Antimicrobial and UV Blocking Properties of Composite Chitosan Films with Curcumin Grafted Cellulose Nanofiber[J]. Food Hydrocolloids, 2021, 112: 106337-106347.

[51] KRIECHBAUM K, BERGSTRÖM L. Antioxidant and UV-Blocking Leather-Inspired Nanocellulose-Based Films with High Wet Strength[J]. Biomacromolecules, 2020, 21(5): 1720-1728.

[52] LAKSHMIBALASUBRAMANIAM S, HOWELL C, TAJVIDI M, et al. Characterization of Novel Cellulose Nanofibril and Phenolic Acid-Based Active and Hydrophobic Packaging Films[J]. Food Chemistry, 2022, 374: 131773.

[53] LIU S, LIU X, WANG Q, et al. Superhydrophobic, Strong and Transparent Paper Made from Cellulosic Fibers[J]. Cellulose, 2022, 29(3): 1993-2003.

[54] ZHANG C, ZHANG P, CHENG L, et al. A Strong, Hydrophobic, Transparent and Biodegradable Nano-Lignocellulosic Membrane from Wheat Straw by Novel Strategy[J]. Journal of Cleaner Production, 2022, 356: 131879-131887.

[55] SHI Lan-jie, KANG Lei, GONG Jie, et al. Cellulose Nanofibrils Reinforced Films without Chemical Modification, Hydrophobic, High Elongation, and Foldability[J]. Industrial Crops and Products, 2022, 180: 114742.

[56] OBERLINTNER A, SHVALYA V, VASUDEVAN A, et al. Hydrophilic to Hydrophobic: Ultrafast Conversion of Cellulose Nanofibrils by Cold Plasma Fluorination[J]. Applied Surface Science, 2022, 581: 152276.

[57] ARUN R, SHRUTHY R, PREETHA R, et al. Biodegradable Nano Composite Reinforced with Cellulose Nano Fiber from Coconut Industry Waste for Replacing Synthetic Plastic Food Packaging[J]. Chemosphere, 2022, 291: 132786.

[58] ZHOU Wei, WU Zheng-guo, XIE Feng-wei, et al. 3D Printed Nanocellulose-Based Label for Fruit Freshness Keeping and Visual Monitoring[J]. Carbohydrate Polymers, 2021, 273: 118545.

[59] ROY S, RHIM J. Fabrication of Cellulose Nanofiber-Based Functional Color Indicator Film Incorporated with Shikonin Extracted from Lithospermum Erythrorhizon Root[J]. Food Hydrocolloids, 2021, 114: 106566-106575.

[60] EZATI P, RHIM J W, MORADI M, et al. CMC and CNF-Based Alizarin Incorporated Reversible PH-Responsive Color Indicator Films[J]. Carbohydrate Polymers, 2020, 246: 116614.

[61] QUAN Z, HE H, ZHOU H, et al. Designing an Intelligent Nanofiber Ratiometric Fluorescent Sensor Sensitive to Biogenic Amines for Detecting the Freshness of Shrimp and Pork[J]. Sensors and Actuators B: Chemical, 2021, 333: 129535-129546.

Research Progress of Cellulose Nanofibers in Food Packaging

CHEN Qian-qian, CHANG Chun-yu

(College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China)

The work aims to review the preparation of cellulose nanofibers (CNFs) and their applications in food packaging, to provide theoretical support for development of food packaging materials. Different manufacturing methods of CNFs in recent years were summarized. This work focused on the gas barrier performance, antimicrobial properties, UV barrier function, hydrophobicity and freshness monitoring property of food packaging materials, and illustrated the research progress of CNFs in food packaging. The results indicated that CNFs could be fabricated by chemical method, chemical method combined with mechanical method, and enzymatic method, but there were some problems such as low yield, high energy consumption and uneven size distribution. CNFs could be used as gas barrier, antibacterial, UV protection, hydrophobic and smart packaging materials. However, the current nanofiber products were difficult to combine versatility. In summary, cellulose nanofibers-based food packaging materials are expected to replace petroleum-based plastic packaging, and have a great prospect in food packaging.

cellulose; nanofibers; food packaging

TS206.4

A

1001-3563(2022)23-0001-08

10.19554/j.cnki.1001-3563.2022.23.001

2022−06−29

国家自然科学基金(52073217,51873164);国家重点研发计划(2018YFE0123700);湖北省重点研发计划(2020BCA079)

陈倩茜(1995—),女,博士生,主要研究方向为纤维素疏水薄膜材料。

常春雨(1982—),男,博士,教授,主要研究方向为天然高分子功能材料。

责任编辑:彭颋

猜你喜欢

复合膜食品包装包装材料
中国造纸学会纸基绿色包装材料及制品专业委员会
食品包装设计优秀作品选登
食品包装设计优秀作品选登
山东碧海包装材料有限公司
食品包装机械的自动化技术
牙周膜干细胞BMP-2-PSH复合膜修复新西兰兔牙槽骨缺损
消毒供应中心包装材料的合理应用
纳米包装材料对杏鲍菇保鲜效果的研究
PVA/CuSO4·5H2O复合膜的制备及其结构与性能研究
食品包装发展趋势