APP下载

天然产物治疗炎症性肠病的研究进展

2022-11-24杨靖亚杨兰珠郭若晖武万强

安徽农业大学学报 2022年5期
关键词:蜂胶黄芩结肠炎

杨靖亚,杨兰珠,郭若晖,李 静,武万强

天然产物治疗炎症性肠病的研究进展

杨靖亚,杨兰珠,郭若晖,李 静,武万强

(上海海洋大学食品学院,上海 201306)

炎症性肠病是一组慢性胃肠道炎症性疾病,临床表现为腹胀、腹泻、腹痛,有时甚至出现血便。目前用于治疗炎症性肠病的药物有氨基水杨酸、糖皮质激素和免疫抑制剂等。这些药物可以减轻或延缓炎症性肠病的发生和发展,但在长期使用后,一些患者可能会出现某种程度的毒副作用。近年来研究发现许多天然产物具有明显的抗炎作用,它们可以降低炎症性肠病的复发率,提高治疗安全性。系统综述了来自几种植物、动物和微生物天然产物的抗炎活性。

天然产物;补充或替代药物;炎症性肠病;克罗恩病;溃疡性结肠炎

根据炎症部位和临床症状的不同,炎症性肠病(inflammatory bowel disease, IBD)可分为溃疡性结肠炎(ulcerative colitis, UC)和克罗恩病(Crohn’s disease, CD)。研究表明用于治疗IBD的传统药物在某些患者体内产生副作用[1]。天然产物富含多种活性成分并且疗效温和,因此可作为传统药物的替代品。针对主要对几种具有代表性的天然产物及其抗炎作用进行综述,以期为今后IBD的临床治疗提供参考。

1 植物天然产物

1.1 黄芩

研究发现黄芩中含有100多种黄酮类化合物,其中根部特有的4’-脱氧黄酮类化合物(4’-deoxyflavones)具有重要的药理活性,如黄芩苷、黄芩素、汉黄芩苷和汉黄芩素等[2]。黄芩作为一种药用植物,在抗肿瘤、抗菌、抗氧化、抗炎和神经保护等方面均发挥重要的作用[3]。Zhu等[4]在活体实验中发现黄芩苷对葡聚糖硫酸钠(dextran sulfate sodium, DSS)诱导的小鼠结肠炎有保护作用,黄芩苷治疗组的疾病活动指数(disease activity index, DAI)评分显著低于DSS模型组(< 0.001)。此外,黄芩苷(50 μmol·L-1)能抑制脂多糖诱导的M1巨噬细胞极化,促进M2巨噬细胞极化,降低肿瘤坏死因子-α(TNF-α)、白细胞介素-23(IL-23)和干扰素调节因子5(IRF5)的表达,增加IL-10、精氨酸酶-1(Arg-1)和IRF4的表达。在DSS诱导前后连续7 d内给小鼠灌胃黄芩素(10 mg·kg-1或25 mg·kg-1),可抑制环氧合酶-2(COX-2)、诱导型一氧化氮合酶(iNOS)和细胞周期蛋白D1的表达,并且黄芩素能通过抑制转录因子核因子κB (NF-κB)的磷酸化和转录激活物(STAT3)与DNA结合来抑制STAT信号转导和NF-κB信号通路[5]。值得注意的是,黄芩素与黄芩苷联合使用效果优于单独使用,且黄芩苷对肠道的保护作用强于黄芩素[6]。这些研究结果提示黄芩可能是治疗IBD的有效药物。然而,研究发现雌性小鼠使用大剂量汉黄芩素会导致胎儿染色体严重畸变,并且孕鼠体重显著增加[7]。因此,黄芩在IBD患者中的应用范围和局限性有待进一步研究。

1.2 白芍

白芍含有200多种化学成分,包括单萜苷、黄酮、单宁、三萜类、甾体类和丹皮酚[8]。其中,单萜苷主要包括芍药苷、芍药内酯苷、羟基芍药苷、苯甲酰芍药苷和苯甲酰羟基芍药苷,统称为白芍总苷[9]。现代药理学研究表明这些化学成分具有广泛的药理活性,包括抗炎、抗氧化、抗癌和治疗自身免疫性疾病[10]。其抗炎活性在已发表的白芍药理学研究中受到广泛关注。

最近,Li等[11]发现芍药苷(paeoniflorin, PF)在DSS诱导的小鼠结肠炎模型中不仅能通过抑制NF-κB信号通路抑制促炎细胞因子的产生,还能抑制嗜酸性粒细胞浸润。PF治疗组(DSS+PF, 20 mg·kg-1)和阳性对照组(DSS+柳氮磺胺吡啶, 20 mg·kg-1)小鼠体重下降和结肠长度缩短均明显小于模型组(DSS诱导)。模型组小鼠结肠长度为(4.56 ± 0.63) cm,PF组和阳性对照组小鼠结肠长度分别为(6.40 ± 0.57) cm和(6.22 ± 0.44) cm。这些结果表明PF治疗能显著改善UC小鼠的炎症症状。同样,Cao等[12]研究发现白芍总苷能够通过抑制Lyn/Snail信号通路来恢复结肠炎小鼠的肠道屏障功能。具体表现为血清和结肠组织中促炎细胞因子水平显著下降、肠通透性降低、肠上皮细胞紧密连接蛋白和粘附连接蛋白表达恢复。此外,Zong等[13]证明丹皮酚对2, 4, 6-三硝基苯磺酸(2, 4, 6-Trinitrobenzene sulfonic acid, TNBS)诱导的小鼠溃疡性结肠炎有抑制作用,且疗效呈剂量依赖关系。模型组小鼠体重减轻、结肠缩短、粘膜损伤,固有层和平滑肌大量中性粒细胞浸润;丹皮酚治疗组小鼠结肠上皮逐渐恢复,炎性细胞浸润减少。作者认为丹皮酚能够通过调节Treg/Th17细胞平衡,抑制促炎细胞因子表达和增加抗炎细胞因子的表达来抑制结肠炎。尽管上述这些体内实验结果说明白芍在结肠炎中具有治疗效果,但它是否对人类具有治疗益处仍有待研究。

表1 其他具有代表性的植物天然产物在IBD中的作用机制

1.3 雷公藤

雷公藤具有良好的免疫调节作用,多年来一直被用于治疗自身免疫性疾病,如类风湿性关节炎和系统性红斑狼疮[14-15]。此外,它还具有很强的抗炎、抗肿瘤、神经保护作用和胰岛素抵抗特性[16-17]。研究表明雷公藤总苷可通过下调肠黏膜促炎细胞因子IL-6、TNF-α、IFN-γ和IL-17A的表达,调节Th17/Treg细胞平衡,从而减轻TNBS诱导的大鼠结肠炎[18]。Th17细胞分泌多种促炎细胞因子,如IL-17、IL-21和IL-22[19];相反,Treg细胞释放抗炎细胞因子,如IL-10和TGF-β[20]。因此,调节Treg和Th17细胞的比例直接影响促炎和抗炎细胞因子的水平,从而控制炎症反应。Yu 等[21]研究表明雷公藤甲素可抑制IL-10−/−小鼠结肠和CD患者体外培养细胞mRNA的表达。MyD88是炎症通路的一个中心节点,它通过同型蛋白相互作用将IL-1受体(IL-1R)或Toll样受体(TLR)家族成员与IL-1R相关激酶(IRAK)家族成员连接起来[22]。炎症反应与TLR4/MyD88/NF-κB信号通路密切相关[23],因此,雷公藤甲素可能通过抑制TLRs/NF-κB信号通路来改善结肠炎。虽然这些研究表明雷公藤有助于改善肠道炎症,但有研究表明雷公藤总苷对肝、肾、心、脾等器官有毒性作用[24]。因此,如何安全使用雷公藤是今后亟待解决的问题。

1.4 其他植物

其他植物活性成分也有可能减轻肠道炎症。表1简要说明了其他植物天然产物发挥抗炎作用的机制。

2 动物天然产物

2.1 蜂胶

蜂胶含有多种化学成分,如酚酸、黄酮、酯类、二萜、倍半萜、木质素、芳香醛和氨基酸等[33]。然而,不同产地的蜂胶在成分上可能存在较大差异。中国蜂胶主要成分是咖啡酸苯乙酯,而巴西绿蜂胶含有丰富的蒿素C (artepillin C)[34]。在过去的几十年里,蜂胶的药理作用在抗菌、抗炎等领域引起了人们的广泛关注[35]。

20世纪70年代,Danø等[36]首次证明了蜂胶对UC有治疗效果。自此各种验证蜂胶对治疗IBD是否有效的模型被建立。一项研究表明,与对照组(3%DSS)相比,0.3%蜂胶可显著降低结肠炎大鼠结肠DAI评分(< 0.001或< 0.01),增加结肠长度(< 0.05),改善结肠组织损伤[37]。这项研究显示蜂胶虽然不能改变大鼠消化道中短链脂肪酸(SCFAs)的含量,但能改善肠道微生物区系,特别是显著增加变形杆菌()和酸杆菌门()的数量。Mariano等[38]报道称巴西绿蜂胶水醇提取物(300 mg·kg-1)可显著减轻DSS诱导的小鼠结肠粘膜损伤,提高超氧化物歧化酶(superoxide dismutase, SOD)和谷胱甘肽(glutathione, GSH)的水平,但对MPO活性无明显影响。同样,Wang等[34]发现中国蜂胶和巴西蜂胶均能显著降低结肠炎小鼠体内丙二醛的水平,提高小鼠的总抗氧化能力(total antioxidant capacity, T-AOC),减少拟杆菌属()的数量以及IL-1β、IL-6和单核细胞趋化蛋白的表达,但只有巴西蜂胶能诱导TGF-β的表达,且只有中国蜂胶能增加肠道菌群的多样性和丰富度。总之,这些结果表明蜂胶具有抗炎和抗氧化的特性,可以作为一种潜在的新型疗法来改善结肠炎。

2.2 鱼油和磷虾油

鱼油和磷虾油中富含包括二十二碳六烯酸(docosahexaenoic acid, DHA)和二十碳五烯酸(eicosapentaenoic acid, EPA)在内的-3多不饱和脂肪酸(-3 polyunsaturated fatty acids,-3 PUFAs)[39-40]。此外磷虾油还含有丰富的虾青素,这是一种天然的抗氧化剂[41]。因此,鱼油和磷虾油可通过它们的抗炎和抗氧化特性来治疗炎症。

在DSS诱导的实验性结肠炎模型中,Sharma等[42]发现鱼油(含有180 mg EPA和120 mg DHA)可以减轻小鼠的炎症症状,包括腹泻、体重减轻和结肠缩短。与对照组相比,鱼油可下调TNF-α和COX-2的表达,维持肠道完整性。一项研究发现磷虾油能恢复猪鞭毛虫()引起的肠道微生物失调,显著提高厚壁菌门和拟杆菌门的比例(, F/B)。低F/B值与肠道菌群失调密切相关,F/B值恢复正常被认为是肠道菌群失衡恢复的关键指标[43]。在Sakai等[44]的研究中,虾青素显著抑制DSS诱导的结肠炎小鼠肠粘膜中促炎细胞因子mRNA的表达,抑制MAPKs和NF-κB信号通路的活化。虽然体内和体外研究已经证明-3 PUFAs在实验性IBD模型中具有潜在的抗炎活性,但从临床研究中获得的数据并不是那么明确。Ajabnoor等[40]系统地研究了-3、-6和总多不饱和脂肪酸对IBD和炎症标志物的长期影响。83项随机对照试验(41 751名参与者)的结果表明-6和总多不饱和脂肪酸对IBD的影响有限,而-3 PUFAs对IBD产生的影响也是相互矛盾的。因此-3 PUFAs是否对肠道炎症有效仍有待研究。

3 微生物天然产物

3.1 蕈菌

根据蕈菌的用途可分为食用菌和药用菌,如蘑菇、木耳、灵芝、桑黄等[45]。多糖是蕈菌的主要活性成分,主要是指与植物多糖不同的β-D-葡聚糖[46]。Hao等[47]研究表明金针菇多糖可以通过调节肠道菌群和代谢过程改善C57BL/6小鼠的肠道健康。16S rRNA基因序列分析显示金针菇多糖可提高肠道中F/B值。研究表明灵芝多糖能够改善DSS诱导的小鼠结肠炎,增加SCFAs的生成和结肠长度,显著抑制抗炎细胞因子TNF-α、IL-1β、IL-6和IL-17A的分泌,影响Th17细胞、B细胞、NK细胞和NKT细胞的数量,减少小肠和盲肠中等病原菌的数量[48-49]。此外,在脂多糖诱导的炎性细胞模型中,桑黄多糖显著降低促炎细胞因子的表达,抑制MAPK信号通路和NF-κB的转位[50]。总之,这些研究表明蘑菇多糖可以被认为是促进肠道健康的有效成分。

3.2 益生菌

最常见的益生菌包括乳酸杆菌、双歧杆菌、唾液链球菌、大肠杆菌Nissle 1917和布拉氏酵母菌[51]。最近研究发现clusters IV、、、、和与益生菌具有相似的功效,这些菌株被描述为新一代益生菌[52]。肠道菌群失衡是肠道炎症的典型症状之一,而益生菌在一定程度上能够调节肠道菌群紊乱。Javed等[53]观察到婴儿双歧杆菌(, BI)可能对TNBS诱导的小鼠结肠炎具有保护作用。与对照组相比,在BI喂养的小鼠体内观察到肌层、粘膜下层和固有层中的炎性细胞浸润以及杯状细胞损伤减少。一些研究发现布拉酵母菌()可显著降低大鼠体内促炎细胞因子IL-1β的数量,改善负责维持上皮完整性和屏障功能的蛋白质表达水平[54]。开菲尔是一种含有多种益生菌的发酵乳制品,其中乳酸杆菌是开菲尔中的优势菌群[55]。一项研究发现开菲尔中含有6种不同的乳酸杆菌,定期使用开菲尔可以对CD患者的生化指标产生积极的影响[55]。在一项包括UC和CD患者在内的短期、双盲、随机和安慰剂对照临床试验中,益生菌已被证明能有效地减轻UC患者的肠道炎症,而对CD患者无效[56]。因此,还需要进一步的研究来确定益生菌对肠道炎症的疗效。

4 总结与展望

近年来,随着传统药物不良反应的逐渐显现,迫切需要新的更安全的方法来治疗IBD。现有的研究表明,天然产物在预防和治疗IBD方面发挥着至关重要的作用。本文揭示了几种具有代表性的天然产物治疗IBD的潜在药用价值。我们发现这些天然产物治疗IBD的作用机制与修复肠道屏障、调节肠道菌群及其代谢产物或调节免疫应答有关,并且在各种体内和体外研究中均显示出良好的效果。

目前对天然产物治疗肠道炎症的研究主要集中在药用植物和药食两用植物上,这与植物资源分布广、种类多、可再生等特点有关。此外,大部分植物的药理作用均在典籍中有记载,因此更具有研究价值和理论依据。然而,目前对非植物来源的天然产物治疗肠道炎症的研究还不够深入,研究种类不够丰富,只有少数几种,如蜂胶、鱼油、益生菌等,并且疗效不够显著。因此,还需要进一步的研究来证明其他来源的天然产物治疗IBD的有效性。

尽管研究表明天然产物在治疗IBD方面有很大的潜力,但大部分实验都是在体外和小鼠模型上研究同一化合物在不同剂量下的治疗效果。目前还没有明确的临床试验来阐明它们治疗IBD的可行性,因此我们还需要更多的数据来确定它们的安全性和最佳剂量。此外,未来应更加关注新的未经测试的天然产物,从而为IBD的临床药物治疗提供更好的指导,并为其他炎症性疾病提供新的治疗策略。

[1] CROUWEL F, BUITER H J C, DE BOER N K. Gut microbiota-driven drug metabolism in inflammatory bowel disease[J]. J Crohns Colitis, 2020, 15(2): 307-315.

[2] SHEN J, LI P, LIU S S, et al. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus[J]. J Ethnopharmacol, 2021, 265: 113198.

[3] WANG Z L, WANG S, KUANG Y, et al. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of[J]. Pharm Biol, 2018, 56(1): 465-484.

[4] ZHU W, JIN Z S, YU J B, et al. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype[J]. Int Immunopharmacol, 2016, 35:119-126.

[5] ZHONG X C, SURH Y J, DO S G, et al. Baicalein inhibits dextran sulfate sodium-induced mouse colitis[J]. J Cancer Prev, 2019, 24(2): 129-138.

[6] LIANG S, DENG X, LEI L, et al. The comparative study of the therapeutic effects and mechanism of baicalin, baicalein, and their combination on ulcerative colitis rat[J]. Front Pharmacol, 2019,10:1466.

[7] ZHAO L, CHEN Z, ZHAO Q, et al. Developmental toxicity and genotoxicity studies of wogonin[J]. Regul Toxicol Pharmacol, 2011, 60(2): 212-217.

[8] TONG N N, ZHOU X Y, PENG L P, et al. A comprehensive study of three species ofstem and leaf phytochemicals, and their antioxidant activities[J]. J Ethnopharmacol, 2021, 273: 113985.

[9] TAN Y Q, CHEN H W, LI J, et al. Efficacy, chemical constituents, and pharmacological actions ofrubra andalba[J]. Front Pharmacol, 2020,11: 1054.

[10] LI P, SHEN J, WANG Z Q, et al. Genus: a comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology[J]. J Ethnopharmacol, 2021, 269:113708.

[11] LI J J, REN S Y, LI M, et al. Paeoniflorin protects against dextran sulfate sodium (DSS)-induced colitis in mice through inhibition of inflammation and eosinophil infiltration[J]. Int Immunopharmacol, 2021, 97: 107667.

[12] CAO X Y, NI J H, WANG X, et al. Total glucosides of paeony restores intestinal barrier function through inhibiting Lyn/Snail signaling pathway in colitis mice[J]. Phytomedicine, 2021, 87: 153590.

[13] ZONG S Y, PU Y Q, XU B L, et al. Study on the physicochemical properties and anti-inflammatory effects of paeonol in rats with TNBS-induced ulcerative colitis[J]. Int Immunopharmacol, 2017, 42:32-38.

[14] LUO D, ZUO Z Y, ZHAO H Y, et al. Immunoregulatory effects ofHook F and its extracts in clinical practice[J]. Front Med, 2019,13(5): 556-563.

[15] SONG X Q, ZHANG Y, DAI E Q. Therapeutic targets of thunder God vine (hook) in rheumatoid arthritis (Review)[J]. Mol Med Rep, 2020, 21(6): 2303-2310.

[16] LV H W, JIANG L P, ZHU M D, et al. The genus: a phytochemistry and pharmacological review[J]. Fitoterapia, 2019, 137:104190.

[17] GAO J, ZHANG Y F, LIU X H, et al. Triptolide: pharmacological spectrum, biosynthesis, chemical synthesis and derivatives[J]. Theranostics, 2021, 11(15): 7199-7221.

[18] ZHANG C, JU J Y, WU X H, et al.polyglycoside ameliorated TNBS-induced colitis in rats via regulating Th17/treg balance in intestinal mucosa[J]. J Inflamm Res, 2021,14: 1243-1255.

[19] ZHANG Y Z, LI Y Y. Inflammatory bowel disease: pathogenesis[J]. World J Gastroenterol, 2014, 20(1):91-99.

[20] MA L L, LING Y, FANG M Y, et al. The cytokines (IFN-γ, IL-2, IL-4, IL-10, IL-17) and Treg cytokine (TGF-β1) levels in adults with immune thrombocytopenia[J]. Pharmazie, 2014, 69(9): 694-697.

[21] YU C, SHAN T, FENG A W, et al. Triptolide ameliorates Crohn's colitis is associated with inhibition of TLRs/NF- κB signaling pathway[J]. Fitoterapia, 2011, 82(4): 709-715.

[22] DEGUINE J, BARTON G M. MyD88: a central player in innate immune signaling[J]. F1000Prime Rep, 2014, 6: 97.

[23] XIAO Z, KONG B, YANG H J, et al. Key player in cardiac hypertrophy, emphasizing the role of toll-like receptor 4[J]. Front Cardiovasc Med, 2020, 7: 579036.

[24] XI C, PENG S J, WU Z P, et al. Toxicity of triptolide and the molecular mechanisms involved[J]. Biomed Pharmacother, 2017, 90: 531-541.

[25] LI H B, CHEN X H, LIU J Y, et al. Ethanol extract ofalleviated dextran sulfate sodium-induced colitis: restoration on mucosa barrier and gut microbiota homeostasis[J]. J Ethnopharmacol, 2021, 267:113445.

[26] DE VLVARES GOULART R, BARBALHO S M, LIMA V M, et al. Effects of the use of curcumin on ulcerative colitis and Crohn's disease: a systematic review[J]. J Med Food, 2021, 24(7): 675-685.

[27] GAO Z F, YU C C, LIANG H Y, et al. Andrographolide derivative CX-10 ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: involvement of NF-κB and MAPK signalling pathways[J]. Int Immunopharmacol, 2018, 57: 82-90.

[28] KIM S E, KAWAGUCHI K, HAYASHI H, et al. Remission effects of dietary soybean isoflavones on DSS-induced murine colitis and an LPS-activated macrophage cell line[J]. Nutrients, 2019, 11(8): 1746.

[29] LIU C, WANG J N, YANG Y, et al. Ginsenoside rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice[J]. Biochem Pharmacol, 2018,155: 366-379.

[30] LI L, WAN G W, HAN B, et al. Echinacoside alleviated LPS-induced cell apoptosis and inflammation in rat intestine epithelial cells by inhibiting the mTOR/STAT3 pathway[J]. Biomed Pharmacother, 2018, 104: 622-628.

[31] QU C, YUAN Z W, YU X T, et al. Patchouli alcohol ameliorates dextran sodium sulfate-induced experimental colitis and suppresses tryptophan catabolism[J]. Pharmacol Res, 2017,121:70-82.

[32] JIA Y Q, YUAN Z W, ZHANG X S, et al. Total alkaloids ofL. ameliorated murine colitis by regulating bile acid metabolism and gut microbiota[J]. J Ethnopharmacol, 2020, 255: 112775.

[33] BRAAKHUIS A. Evidence on the health benefits of supplemental[J]. Nutrients, 2019, 11(11): 2705.

[34] WANG K, JIN X L, LI Q Q, et al.from different geographic origins decreases intestinal inflammation andspp. populations in a model of DSS-induced colitis[J]. Mol Nutr Food Res, 2018, 62(17): e1800080.

[35] SANTOS L M, FONSECA M S, SOKOLONSKI A R, et al.: types, composition, biological activities, and veterinary product patent prospecting[J]. J Sci Food Agric, 2020, 100(4): 1369-1382.

[36] DANØ P, MØLLER E H, JARNUM S. Effect of the natural producton ulcerative colitis and Crohn's disease[J]. Ugeskr Laeger,1979,141(28):1888-1890.

[37] WANG K, JIN X L, YOU M M, et al. Dietaryamelioratesdextran sulfate sodium-induced colitis and modulates the gut microbiota in rats fed a western diet[J]. Nutrients, 2017, 9(8): 875.

[38] MARIANO L N B, ARRUDA C, SOMENSI L B, et al. Brazilian greenhydroalcoholic extract reduces colon damages caused by dextran sulfate sodium-induced colitis in mice[J]. Inflammopharmacol, 2018, 26(5): 1283-1292.

[39] MARTON L T, GOULART R A, CARVALHO A, et al.fatty acids and inflammatory bowel diseases: an overview[J]. Int J Mol Sci, 2019, 20(19): 4851.

[40] AJABNOOR S M, THORPE G, ABDELHAMID A, et al. Long-term effects of increasing omega-3, omega-6 and total polyunsaturated fats on inflammatory bowel disease and markers of inflammation: a systematic review and meta-analysis of randomized controlled trials[J]. Eur J Nutr, 2021, 60(5): 2293-2316.

[41] LIU F, SMITH A D, SOLANO-AGUILAR G, et al. Mechanistic insights into the attenuation of intestinal inflammation and modulation of the gut microbiome by krill oil usingandmodels[J]. Microbiome, 2020, 8(1): 83.

[42] SHARMA M, KAUR R, KAUSHIK K, et al. Redox modulatory protective effects of ω-3 fatty acids rich fish oil against experimental colitis[J]. Toxicol Mech Methods, 2019, 29(4): 244-254.

[43] LEE W T, TUNG Y T, WU C C, et al. Camellia oil (Abel.) modifies the composition of gut microbiota and alleviates acetic acid-induced colitis in rats[J]. J Agric Food Chem, 2018, 66(28): 7384-7392.

[44] SAKAI S, NISHIDA A, OHNO M, et al. Astaxanthin, a xanthophyll carotenoid, prevents development of dextran sulphate sodium-induced murine colitis[J]. J Clin Biochem Nutr, 2019, 64(1): 66-72.

[45] GONG P, WANG S Y, LIU M, et al. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: a mini-review[J]. Carbohydr Res, 2020, 494:108037.

[46] SCHWARTZ B, HADAR Y. Possible mechanisms of action of mushroom-derived glucans on inflammatory bowel disease and associated cancer[J]. Ann Transl Med, 2014, 2(2):19.

[47] HAO Y T, WANG X D, YUAN S J, et al.polysaccharide improves C57BL/6 mice gut health through regulation of intestine microbial metabolic activity[J]. Int J Biol Macromol, 2021, 167: 1308-1318.

[48] WEI B, ZHANG R, ZHAI J B, et al. Suppression of Th17 cell response in the alleviation of dextran sulfate sodium-induced colitis bypolysaccharides[J]. J Immunol Res, 2018, 2018: 2906494.

[49] XIE J, LIU Y, CHEN B, et al.polysaccharide improves rat DSS-induced colitis by altering cecal microbiota and gene expression of colonic epithelial cells[J]. Food Nutr Res, 2019, 63: 1559.

[50] HU T, LIN Q L, GUO T, et al. Polysaccharide isolated frommycelia exerts anti-inflammatory effects via MAPK and PPAR signaling pathways[J]. Carbohydr Polym, 2018, 200: 487-497.

[51] SARTOR R B. Probiotic therapy of intestinal inflammation and infections[J]. Curr Opin Gastroenterol, 2005, 21(1): 44-50.

[52] BASSO P J, CÂMARA N O S, SALES-CAMPOS H. Microbial-based therapies in the treatment of inflammatory bowel disease-an overview of human studies[J]. Front Pharmacol, 2019, 9: 1571.

[53] JAVED N H, ALSAHLY M B, KHUBCHANDANI J. Oral feeding of probioticinfantis: colonic morphological changes in rat model of TNBS-induced colitis[J]. Scientifica, 2016, 2016: 9572596.

[54] RODRÍGUEZ-NOGALES A, ALGIERI F, GARRIDO- MESA J, et al. Intestinal anti-inflammatory effect of the probioticin DSS-induced colitis in mice: impact on microRNAs expression and gut microbiota composition[J]. J Nutr Biochem, 2018, 61: 129-139.

[55] YILMAZ I, DOLAR M E, OZPINAR H, et al. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: a randomized controlled trial[J]. Turk J Gastroenterol, 2019, 30(3): 242-253.

[56] BJARNASON I, SISSION G, HAYEE B. A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn's disease[J]. Inflammopharmacol, 2019, 27(3): 465-473.

Advances of natural product for the treatment of inflammatory bowel disease

YANG Jingya, YANG Lanzhu, GUO Ruohui, LI Jing, WU Wanqiang

(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306)

Inflammatory bowel disease is a group of chronic gastrointestinal inflammatory disease, and its clinical manifestations are bloating, diarrhea, abdominal pain, and even occasionally bloody stools. Currently, many drugs are available for the treatment of inflammatory bowel disease, such as aminosalicylates, corticosteroids and immunosuppressants. These drugs can reduce or alleviate the occurrence and development of inflammatory bowel disease, but certain toxic side effects may develop in some patients after long-term use. In recent years, studies have found that many natural products have obvious anti-inflammatory effects, which can reduce the recurrence rate of inflammatory bowel disease and improve the safety of treatment. This article systematically summarized the anti-inflammatory properties of several natural products derived from plants, animals and microorganisms.

natural products; complementary or alternative medicine; inflammatory bowel disease; Crohn’s disease; ulcerative colitis

R282.7; R93

A

1672-352X (2022)05-0855-06

10.13610/j.cnki.1672-352x.20221111.010

2022-11-14 10:13:06

[URL] https://kns.cnki.net/kcms/detail/34.1162.S.20221111.1112.020.html

2022-01-13

国家自然科学基金青年项目(82103844)资助。

杨靖亚, 副教授。E-mail:jyyang@shou.edu.cn 杨兰珠,硕士。E-mail:yanglanzhuy@163.com

猜你喜欢

蜂胶黄芩结肠炎
“结肠炎”背后的亲子关系问题
黄芩的高产栽培技术
张永新:种植黄芩迷上了“茶”
黄芩使用有讲究
2018版蜂胶国家标准解读
本期热点追踪蜂胶:去伪存真 国标助力
黄芩苷脉冲片的制备
中西医结合治疗溃疡性结肠炎40例
辨证论治慢性腹泻型结肠炎45例
治疗脾肾阳虚型溃疡性结肠炎30例