磷酸化GluN2B亚基在α-syn A53T转基因小鼠黑质中的表达变化
2022-11-16张佳惠刘恒王玉田姜宏
张佳惠 刘恒 王玉田 姜宏
[摘要] 目的 研究帕金森病转基因模型小鼠中脑黑质(SN)区磷酸化GluN2B(p-GluN2B)亚基的蛋白含量变化。
方法 实验所用动物为12~15月龄α-突触核蛋白(α-syn)A53T转基因小鼠和同窝野生型(WT)小鼠。利用开放旷场实验检测小鼠的运动行为能力,采用蛋白免疫印迹法检测小鼠SN区p-GluN2B及磷酸化α-syn(pS129 α-syn)蛋白表达。
结果 与WT小鼠相比,α-syn A53T转基因小鼠旷场总运动距离减少(t=2.920,P<0.05),平均运动速度减慢(t=2.518,P<0.05),中脑SN区p-GluN2B和pS129 α-syn蛋白表达量明显升高(t=2.470、3.533,P<0.05)。
结论 α-syn A53T 转基因小鼠SN区GluN2B亚基活性增强且可能参与多巴胺能神经元的变性死亡过程。
[关键词] 帕金森病;小鼠,转基因;黑质;α突触核蛋白;GluN2B
[中图分类号] R338.2
[文献标志码] A
[文章编号] 2096-5532(2022)05-0643-03
doi:10.11712/jms.2096-5532.2022.58.166
[开放科学(资源服务)标识码(OSID)]
[网络出版] https://kns.cnki.net/kcms/detail/37.1517.R.20221021.1358.001.html;2022-10-24 09:36:11
CHANGE IN THE EXPRESSION OF PHOSPHORYLATED GLUN2B SUBUNIT IN THE SUBSTANTIA NIGRA OF α-SYNUCLEIN A53T TRANSGENIC MICE
ZHANG Jiahui, LIU Heng, WANG Yutian, JIANG Hong
(State Key Disciplines: Physiology (in Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China);
[ABSTRACT] Objective To investigate the change in the expression of phosphorylated GluN2B (p-GluN2B) subunit in the substantia nigra (SN) of transgenic mice with Parkinsons disease (PD).
Methods The α-synuclein (α-syn) transgenic mice and wild-type (WT) littermates, aged 12-15 months, were used in this experiment. The open field test was used to observe motor behavior abilities, and Western blotting was used to measure the protein expression of p-GluN2B and phosphorylated α-syn (pS129 α-syn) in the SN of mice.
Results The open field test showed that compared with the WT mice, the α-syn A53T transgenic mice had significant reductions in total movement distance (t=2.920,P<0.05) and mean movement speed (t=2.518,P<0.05), and Western blotting showed that compared with the WT mice, the α-syn A53T transgenic mice had significant increases in the protein expression levels of p-GluN2B and pS129 α-syn in the SN of the midbrain (t=2.470,3.533;P<0.05).
Conclusion The activity of GluN2B subunit in the SN of α-syn A53T transgenic mice is enhanced, which may be involved in the degeneration and death of dopaminergic neurons.
[KEY WORDS] Parkinson disease; mice, transgenic; substantia nigra; alpha-synuclein; GluN2B
在帕金森病(PD)中,α-突触核蛋白(α-syn)在Ser-129 位点的磷酸化促进了α-syn的积累及路易小體的形成,对PD的发生发展起到重要作用[1-4]。N-甲基-D-天冬氨酸(NMDA)受体为离子型谷氨酸受体,具有高钙离子通透性,在学习与记忆中发挥重要作用[5-6]。该受体过度激活会导致细胞功能障碍和死亡,被认为是与许多神经系统疾病相关的神经元损伤的介质[7-8]。NMDA受体GluN2B亚基的C末端可以被酪氨酸激酶Fyn激活而发生磷酸化聚集在突触后膜上,而细胞内Fyn的表达可能受到α-syn的调控[9-10]。然而,NMDA 受体参与PD的发病机制仍然不明确。本实验旨在通过检测α-syn A53T 转基因小鼠和野生型(WT)小鼠黑质区(SN)磷酸化GluN2B(p-GluN2B)蛋白表达水平,探究随PD进展GluN2B亚基活性变化,以期为PD提供潜在的治疗靶点。
1 材料与方法
1.1 实验材料
1.1.1 实验动物 α-syn A53T转基因小鼠购自南京大学模式动物研究所,进行基因型鉴别,获得α-syn A53T+/+小鼠和α-syn A53T+/-小鼠。本实验选择12~15月龄的α-syn A53T+/+小鼠和同窝WT小鼠各5只作为研究对象。小鼠饲养于SPF级环境中,设定室温为(22±2)℃、白昼与黑夜的光照时间为1∶1。
1.1.2 仪器及试剂 p-GluN2B抗体(ABcam);磷酸化α-syn(pS129 α-syn)抗体、GAPDH抗体(Cell Signaling Technology);山羊抗兔二抗(Absin);BCA试剂盒、SDS-PAGE loading buffer、RIPA裂解液、分离胶缓冲液和浓缩胶缓冲液(康为世纪);ECL显色发光液、PVDF膜(Millipore);电泳仪、电转仪(BioRad);凝胶成像系统(General Electric Company)。
1.2 实验方法
1.2.1 旷场实验 应用50 cm×50 cm的方盒旷场,方盒周壁及底部的颜色均不透明,将方盒底部平均分为4×4的16个小方格。摄像头置于方盒上方,可观察整个旷场,将小鼠轻轻放置在方盒中,黑暗中进行10 min的视频录制。每只小鼠测试结束后,清理方盒并应用乙醇消除气味后晾干,以防对下一只小鼠测试产生影响。采用SMART软件分析小鼠总运动距离及平均运动速度等数据。
1.2.2 蛋白免疫印迹法检测SN区蛋白表达 小鼠麻醉后断头取脑,在冰上按照脑图谱完整取出中脑SN区。向脑组织中加入100 μL RIPA蛋白裂解液静置,置于研磨机中研磨。在4 ℃下以12 000 r/min离心20 min,离心结束后取上清液80 μL,在酶标仪上用BCA 法测定蛋白浓度。加入5×蛋白loading buffer混匀,100 ℃金属浴煮沸,根据BCA法检测数据确定上样量。按照所需蛋白分子量配胶,电泳完成以后转膜(300 mA、100 min)。按照Marker切下需要的目标条带,用100 g/L脱脂奶粉封闭,室温孵育2 h;分别加入用一抗稀释液配制的p-GluN2B抗体(1∶1 000)、pS129 α-syn 抗体(1∶1 000)、GAPDH抗体(1∶10 000),置低速摇床上4 ℃孵育过夜;以TBST缓冲液洗脱3次,半小时后加入山羊抗兔的二抗(1∶10 000,TBST缓冲液配制),置摇床上室温孵育1 h;以TBST缓冲液洗脱3次,擦干TBST后,加入适量ECL化学发光液进行显影。采用Image J软件分析条带灰度值,结果以p-GluN2B、pS129 α-syn与内参GAPDH 灰度值的比值表示。
1.3 统计学分析
应用GraphPad Prism 8软件进行统计学分析。计量资料结果以±s表示,两组比较采用t检验,以P<0.05为差异有统计学意义。
2 结 果
2.1 α-syn A53T+/+小鼠运动行为能力改变
α-syn A53T+/+小鼠和WT小鼠在开放旷场的总运动距离分别为(2 575.0±293.7)、(3 655.0±225.1)cm(n=5),α-syn A53T+/+小鼠旷场总运动距离较WT小鼠减少,差异具有统计学意义(t=2.920,P<0.05)。α-syn A53T+/+小鼠和WT小鼠的平均运动速度分别为(4.302±0.480)、(5.898±0.415)cm/s(n=5),α-syn A53T+/+小鼠平均运动速度较WT小鼠减慢,差异具有统计学意义(t=2.518,P<0.05)。
2.2 α-syn A53T+/+小鼠中脑SN区p-GluN2B 和pS129 α-syn蛋白表达变化
α-syn A53T+/+小鼠和WT 小鼠中脑SN区p-GluN2B蛋白的表达水平分别为1.115±0.141和0.706±0.087(n=5),α-syn A53T+/+小鼠SN区p-GluN2B蛋白的表达水平较WT小鼠明显升高,差异具有统计学意义(t=2.470,P<0.05)。α-syn A53T+/+小鼠和WT 小鼠SN区pS129 α-syn 蛋白的表达水平分别为1.277±0.219和0.433±0.094(n=5),差異具有统计学意义(t=3.533,P<0.05)。
3 讨 论
NMDA受体为谷氨酸门控离子通道,在中枢神经系统中广泛表达,并在兴奋性突触传递中起着关键作用[11]。NMDA受体共包含3种类型的亚基(GluN1~3),亚基结构间具有高度同源性,均由氨基端、配体结合区、跨膜区及羧基末端4个结构域组成[12-13]。越来越多的研究表明,在PD细胞模型和PD病人脑组织中,纹状体和伏隔核中谷氨酸与NMDA受体结合显著增加,而这可能会加速神经元退化过程[14-15]。有文献报道,在亚急性1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)小鼠模型中,可以通过抑制mGlu2/3受体配体影响突触后Fyn/NMDA受体的功能[16]。最新的研究结果表明,在鱼藤酮小鼠模型中,GluN2B在mGluR5介导的内质网应激和DNA损伤中发挥着重要作用[17]。
上述研究揭示,在PD的进展过程中,NMDA受体介导的谷氨酸兴奋性毒性发挥作用。本文研究结果显示,12~15月龄α-syn A53T+/+小鼠运动能力受损,与之前有关研究报道相吻合[18]。本文结果还显示,α-syn A53T+/+小鼠SN区pS129 α-syn和p-GluN2B蛋白表达水平明显升高,说明在SN区出现了α-syn聚集,从而可能过度激活Fyn使GluN2B亚基表达过磷酸化。有研究报道,Fyn在Tyr1472处磷酸化GluN2B会抑制与网格蛋白接头AP-2的结合,最终会抑制细胞表面含有GluN2B的NMDA受体的内化[19-20]。因此我们推测,当p-GluN2B增多时,由于Fyn活性增强使GluN2B内化减少,导致大量Ca2+内流,这可能成为神经元损伤的重要原因。本研究为阐明NMDA受体参与PD发生发展的机制提供了思路,其具体机制还有待进一步探讨。
[參考文献]
[1]PRZEDBORSKI S. The two-century journey of Parkinson di-
sease research[J]. Nature Reviews Neuroscience, 2017,18(4):251-259.
[2]JANKOVIC J, TAN E K. Parkinsons disease: etiopathoge-
nesis and treatment[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2020,91(8):795-808.
[3]HENDERSON M X, TROJANOWSKI J Q, LEE V M Y. α-Synuclein pathology in Parkinsons disease and related α-synucleinopathies[J]. Neuroscience Letters, 2019,709:134316.
[4]ROCHA E M, DE MIRANDA B, SANDERS L H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinsons disease[J]. Neurobiology of Di-
sease, 2018,109:249-257.
[5]ZHANG Z, ZHANG S Q, FU P F, et al. Roles of glutamate receptors in Parkinsons disease[J]. International Journal of Molecular Sciences, 2019,20(18):4391.
[6]IOVINO L, TREMBLAY M E, CIVIERO L. Glutamate-induced excitotoxicity in Parkinsons disease: the role of glial cells[J]. Journal of Pharmacological Sciences, 2020,144(3):151-164.
[7]HARDINGHAM G. NMDA receptor C-terminal signaling in development, plasticity, and disease[J]. F1000Research, 2019,8:F1000 Faculty Rev-1547.
[8]BINVIGNAT O, OLLOQUEQUI J. Excitotoxicity as a target against neurodegenerative processes[J]. Current Pharmaceutical Design, 2020,26(12):1251-1262.
[9]ROY B, JACKSON G R. Interactions between Tau and α-synuclein augment neurotoxicity in a Drosophila model of Parkinsons disease[J]. Human Molecular Genetics, 2014,23(11):3008-3023.
[10]YAMASAKI T, FUJINAGA M, KAWAMURA K, et al. Dynamic changes in striatal mGluR1 but not mGluR5 during pathological progression of Parkinsons disease in human alpha-synuclein A53T transgenic rats: a multi-PET imaging study[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2016,36(2):375-384.
[11]PAOLETTI P, NEYTON J. NMDA receptor subunits: function and pharmacology[J]. Current Opinion in Pharmacology, 2007,7(1):39-47.
[12]HANSEN K B, YI F, PERSZYK R E, et al. Structure, function, and allosteric modulation of NMDA receptors[J]. The Journal of General Physiology, 2018,150(8):1081-1105.
[13]SHERWANI Z A, KHALIL R, NUR-E-ALAM M, et al. Structure-based virtual screening to identify negative allosteric modulators of NMDA[J]. Medicinal Chemistry (Shariqah (United Arab Emirates)), 2022,18(9):990-1000.
[14]GUO H Q, CAMARGO L M, YEBOAH F, et al. A NMDA-receptor calcium influx assay sensitive to stimulation by glutamate and glycine/D-serine[J]. Scientific Reports, 2017,7(1):11608.
[15]WANG J, WANG F S, MAI D M, et al. Molecular mechanisms of glutamate toxicity in Parkinsons disease[J]. Frontiers in Neuroscience, 2020,14:585584.
[16]TAN Y, XU Y, CHENG C, et al. LY354740 reduces extracellular glutamate concentration, inhibits phosphorylation of Fyn/NMDARs, and expression of PLK2/pS129 α-synuclein in mice treated with acute or sub-acute MPTP[J]. Frontiers in Pharmacology, 2020,11:183.
[17]GU L, LUO W Y, XIA N, et al. Upregulated mGluR5 induces ER stress and DNA damage by regulating the NMDA receptor subunit NR2B[J]. Journal of Biochemistry, 2022,171(3):349-359.
[18]LU J, DOU F F, YU Z H. The potassium channel KCa3.1 represents a valid pharmacological target for microgliosis-induced neuronal impairment in a mouse model of Parkinsons disease[J]. Journal of Neuroinflammation, 2019,16(1):273.
[19]PRYBYLOWSKI K, CHANG K, SANS N, et al. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2[J]. Neuron, 2005,47(6):845-857.
[20]BLAND T, ZHU M Y, DILLON C, et al. Leptin controls glutamatergic synaptogenesis and NMDA-receptor trafficking via Fyn kinase regulation of NR2B[J]. Endocrinology, 2020,161(2):bqz030.
(本文編辑 马伟平)