APP下载

塔河南部一间房组构造裂缝有效性分析

2022-11-03冯振伟梁积伟章佩锋惠峰宗浩常小斌李汉林姜柳青宇振昆郑萌

冯振伟 梁积伟 章佩锋 惠峰 宗浩 常小斌 李汉林 姜柳青 宇振昆 郑萌

摘 要:在裂縫网络系统中,天然裂缝的开启与闭合、人工诱导缝的产生、压裂缝的形成等都受到现今应力场的影响。为对塔河地区南部定向井的施工提供科学依据,通过岩芯观察和全井壁微电阻率成像测井对塔河南部裂缝发育特征进行研究,利用钻井诱导缝方位、偶极声波测井及井壁崩落法对塔河地区南部现今地应力方向进行探讨。结果表明:塔河地区南部裂缝以高角度构造裂缝为主体,与非构造裂缝共同构成了错综复杂的裂缝网络系统;现今应力场最大水平主应力方位为NE-SW向,优势方位为50°~55°。在现今地应力的影响下,当天然裂缝与现今应力场最大水平主应力方向一致时,裂缝开度增大,呈开启状态,有效性变好。定向井尽可能地贯穿有效裂缝,钻井优选方位为NW-SE向,研究结果可为塔河南部定向钻井提供可靠的地质依据。

关键词:现今地应力;构造裂缝;裂缝有效性;诱导缝方位;塔河地区

中图分类号:TE 122

文献标志码:A

文章编号:1672-9315(2022)05-0950-10

DOI:10.13800/j.cnki.xakjdxxb.2022.0514开放科学(资源服务)标识码(OSID):

Analysis of structural fracture effectiveness of Yijianfang Formation in the southern of Tahe area

FENG Zhenwei,LIANG Jiwei,ZHANG Peifeng,HUI Feng,ZONG Hao,CHANG Xiaobin,LI Hanlin,JIANG Liuqing,YU Zhenkun,ZHENG Meng

(1.School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,China;2.No.4 Oil Production Plant,Changqing Oilfield Company,Yulin 718500,China)

Abstract:In the fracture network system,the opening and closing of natural fractures,the generation of artificially induced fractures and the formation of compressive fractures are affected by the current stress field.In order to provide scientific basis for the construction of directional wells  in the southern of Tahe area,the fracture development characteristics in the southern of Tahe area are examined through core observation and Formation MicroScanner Image.The current in-situ stress direction of the study area is discussed by using drilling induced fracture orientation,Dipole Shear Sonic Imager and borehole wall caving method.The results show that the fractures in the southern of Tahe area are dominated by high-angle structural fractures,which  constitutes an intricate fracture network system together with non-structural fractures.The maximum horizontal principal stress orientation of the present stress field is NE-SW direction,and the optimal orientation is 50°~55°.Under the influence of the present in-situ stress,when the direction of the natural fracture and the maximum horizontal principal stress of the present stress field are the same,the opening of the natural fracture increases,and the fracture is in the open state,and the effectiveness becomes stronger.The construction of directional wells should penetrate effective fractures as much as possible,that is,the preferred drilling orientation is NW-SE.The research results can provide a reliable geological basis for directional drilling in the southern of Tahe area.

Key words:present stress field;structural fracture;fracture effectiveness;orientation of induced fractures;Tahe area

0 引 言塔河地区在构造运动和古岩溶作用的共同影响下,形成了以缝-洞储集为主、多期成藏改造的油气藏系统,主要的储集层为中-下奥陶统碳酸盐岩储层。张凤生等综合运用岩芯、常规测井、电成像测井和偶极横波测井等方法准确的评价塔河地区奥陶系储层裂缝的有效性;丁文龙等通过FMI成像测井资料对塔河油田南部地区中-下奥陶统储层裂缝及构造应力场进行了分析,塔河南部裂缝主要为构造开启缝和钻井诱导缝,现今应力场最大主应力方向为NE向,古构造应力场最大水平主应力方向为NNE向和NEE向;高玉飞等研究了塔河油田奥陶系储层裂缝的倾角、走向、长度和充填特征等参数,把裂缝划分为前加里东、加里东、华力西和印支-燕山等4个期次;赫俊民等基于岩芯、测井和薄片资料对塔河地区中-下奥陶统天然裂缝发育特征及影响因素进行研究,把天然裂缝划分为构造裂缝、成岩裂缝和复合成因裂缝3类,裂缝的发育程度受到构造作用、沉积作用和岩溶作用的控制;刘志远等对塔河油田托甫台地区奥陶系一间房组裂缝发育特征进行研究,裂缝主要为高角度裂缝、低角度裂缝、共轭裂缝和诱导裂缝4类,走向主要集中在NEE70°~80°和NW300°~330°,倾角为70°~90°,裂缝发育明显受到构造作用和断层的控制;李晋对塔里木盆地奥陶系缝洞型储层进行研究,探讨了油气藏注水开发机理;姜林等利用流体包裹体均一温度的方法对塔里木盆地轮南地区油气成藏期次进行了厘定。目前,对于塔河地区现今应力场及裂缝有效性的研究较少。现今地应力的方位通常与裂缝的有效性有着较为密切的关系,如果先存裂缝与现今应力场最大水平主应力方向垂直,裂缝在现今地应力作用下趋于闭合,开度变小,对储集空间和渗流通道的贡献弱,有效性变差。如果现今地应力方位与先存裂缝平行,裂缝面受到相对拉张的作用,裂缝开度变大,能够增加储集空间和改善渗流条件,有效性较好。因此,现今地应力方位的研究具有重要的意义。综合利用岩芯观察、全井壁微电阻率成像测井、声波测井等资料对塔河地区南部一间房组裂缝发育特征及现今地应力方向进行研究,以期为定向钻井提供科学依据。

1 地质背景

1.1 构造演化特征塔里木盆地是一个发育在太古代-早中元古代结晶基底与变质褶皱基底之上的多旋回大型叠合盆地。塔河地区在大地构造位置上位于塔里木盆地北部的沙雅隆起中段阿克库勒凸起西部边缘,东西向分别与哈拉哈塘凹陷及草湖凹陷相连,北部为雅克拉断凸,南部与顺托果勒低隆起和满加尔坳陷相连(图1),奥陶纪缝-洞型油气藏是中国目前发现的第一个大型古生代海相碳酸盐岩油气藏。塔河地区南部先后经历了加里东中-晚期、海西期、印支-燕山期及喜马拉雅期等一系列构造演化运动,形成了众多不同级别、多期叠加的断裂体系。加里东中-晚期(中-晚奥陶世),受到原特提斯洋俯冲消减的影响,塔里木盆地的构造体制由大陆伸展环境转为聚敛挤压环境,在南北向挤压作用下,塔河南部形成了多组“X”形NNE向、NNW向剪切断裂和近NE向的走滑断裂。海西早期(中泥盆世晚期),北西-南东向挤压应力不断增强,塔河地区发育多条大规模逆冲断层。海西晚期(晚二叠世)塔河地区处于挤压背景,早期断裂发生左行走滑活动,引发上覆石炭系张扭变形,形成右阶展布的雁列式正断层。印支—燕山期的构造运动相对平静,并未使得塔河地区产生较大变形。喜马拉雅时期,塔河油田的构造地貌发生巨大改变,由早期的北高南低转变为南高北低的北倾单斜构造格局。

1.2 区域地层与沉积特征

沙雅隆起地区沉积地层发育齐全,震旦系-第四系地层自下而上均有发育。奥陶系地层自下而上发育有下统蓬莱坝组(Op)、中-下统鹰山组(Oy)、中统一间房组(Oyj)和上统恰尔巴克组(Oq)、良里塔格组(Ol)、桑塔木组(Os)(图1(c))。塔河地区奥陶系除上统桑塔木组有较多碎屑岩之外,其它各组均为碳酸盐岩,但各组的岩石组合和沉积序列含有較大的差异。塔河地区的沉积体系包括震旦系-泥盆系的海相碳酸盐岩和碎屑岩沉积、石炭系-下二叠统海相-海陆交互相沉积以及上二叠统-第四系陆相沉积等三套沉积体系。早古生代时期,塔里木盆地在海平面上升的背景下呈现出“西台东盆”的格局,至奥陶纪,塔河地区在寒武纪海侵的基础上持续海侵,发育了一套以碳酸盐岩台地-混积陆棚相沉积为主的沉积体系。塔河地区南部在中-下奥陶统为碳酸盐岩台地沉积,主要发育开阔台地相,岩性为块状砂屑灰岩,粉晶-泥晶灰岩及白云岩;晚奥陶世沉积环境的水体较深,属混积陆棚相沉积,岩性主要为灰色泥岩、粉砂岩与灰岩的互层(图1(c))。

2 裂缝发育特征

依据21口勘探井和10口开发井钻井和测井资料,17口井取芯资料和13口井成像测井资料,对塔河地区南部裂缝进行研究,描述裂缝发育特征。

2.1 岩芯识别裂缝发育特征

岩芯观察是识别裂缝发育特征最为直接有效的方法,通常可以用来识别和描述宏观裂缝,可识别出裂缝的产状、张开度、充填程度、形成期次等特征。塔河地区南部一间房组裂缝类型多样,既有受构造作用产生的构造裂缝,又有受非构造作用产生的溶蚀缝、压溶缝等。其中,以高角度构造缝占主导地位,主要特点为高角度(裂缝倾角75°~90°),规模大,开启程度高,充填物主要为方解石或泥质,构成裂缝网络的主体格架。S112-1井发育一条垂直缝,高度40 cm,切穿岩心直径,裂缝宽2 cm,方解石充填且充填程度达60%~70%(图2(a))。S112-2井中取芯发现一大型直立缝,高度>3 m,宽5~9 mm,方解石充填且充填程度高(图2(b))。S119-1井中发育垂直裂缝,缝宽>2 mm,方解石充填(图2(c),(d))。T759井中发育两条裂缝面互相垂直的泥质半填充的垂直裂缝(图2(e))。

塔河地区南部奥陶系一间房组还发育有大量的水平裂缝及微裂缝。水平裂缝充填物类型大多为泥质充填或方解石充填(图2(f))。微裂缝大多宽约为5~36 μm,长约为1~5 mm,微裂缝的特征通常表现为前期裂缝被方解石充填,后期形成的裂缝切穿鲕粒、亮晶方解石或前期方解石充填的裂缝(图2(g),(h)),微裂缝错综复杂,部分微裂缝呈树枝状及网络状分布。微裂缝的存在,为储集层的储运网络提供了最基本的渗滤通道,裂缝间相互连接,最终形成了以微裂缝为基本渗滤单元,微裂缝网络连通主干裂缝的储运系统,为储集层提供了有效的储运空间。非构造裂缝在研究区发育规模较小,但发育数量多、分布广泛,与构造裂缝共同构成裂缝网络系统(图2(i))。

2.2 测井成像识别裂缝发育特征

全井壁微电阻率成像测井图像具有清晰、直观、分辨率高的特点,可以很好地反映出裂缝在二维剖面上的发育特征,包括裂缝的倾向、走向、张开程度、孔隙度、充填物性质等。标准的裂缝在测井(FMI)图像上表现为正弦曲线,曲线的最高点与最低点的连线方向指示裂缝的倾向,与该连线垂直的方向为裂缝的走向。在成像测井图像上裂缝颜色可以反映充填物类型,开启或被泥质充填的裂缝通常表现为暗色(褐黑色)条纹缝,电阻率低(图3(a)),被方解石等高电阻率矿物充填则表现为亮色(亮黄-白色)条纹缝(图3(b))。

13口井的FMI测井图像资料显示裂缝的充填物类型主要为方解石充填和泥质充填。天然裂缝的走向主要为NE-SW向、NW-SE向和近WE向(图4)。

3 現今地应力方向

现今应力场最大水平主应力方向与裂缝方向的相交关系,会对裂缝产生不同的影响,定向钻井过程中,也应考虑到应力场的方向,尽可能的切穿有效裂缝。依据声波测井的快横波方位、井壁崩落方位和FMI测井所得到的诱导缝方位来综合研究塔河地区南部现今应力场方向。

3.1 诱导缝方向识别现今地应力方向

钻井诱导缝是在钻井过程中,由井壁的拉伸破坏引起的,当井壁应力大于岩石的抗拉强度时形成,受到现今应力场的控制,走向与现今应力场最大水平主应力方向一致。塔河南部诱导缝走向大体上呈北东向50°~55°左右(图5),少量的诱导缝为北东20°左右,可能与相关层段内断层的活动性有关。塔河南部现今最大水平主应力方向应为北东-南西向。

3.2 声波测井识别现今地应力方向

在声波测井(DSI)图上计算出的快横波优势方位可以指示诱导缝发育的方向,其方向通常与现今最大水平主应力方向一致,因此,快横波优势方位也可以用来作为一个确定现今应力场最大水平主应力方向的标志。对塔河南部各单井的快横波优势方位进行研究发现,均为北东向(图6),优选方位为45°~78°。通过声波测井的快横波优势方位与现今应力场最大水平主应力方向的关系推导可知,塔河地区南部现今最大水平主应力方向为北东向,与FMI测井成像的诱导缝方位所确定的现今最大水平主应力方向结果一致。

3.3 井壁崩落方位识别现今地应力方向

井壁崩落主要是由于井壁周围的应力集中造成,当井壁处的压应力集中达到或超过岩石剪切破裂所需的应力时,产生井壁崩落。应力场导致井壁崩落具有明显的长轴优势方位,由于井壁崩落椭圆的长轴优势方位通常与最小水平主应力方向一致,即与最大水平主应力方向垂直,可以利用井壁崩落椭圆来确定现今应力场最大水平主应力方向。通过对塔河地区南部井壁崩落井段的成像资料进行研究(图7),认为井壁崩落方向大体上为NW-SE向,可以判断出研究区现代应力场最大水平主应力方向为NE-SW向。

塔河地区南部快横波方位稳定,基本一致,总体为北东向;FMI测井图像资料显示,诱导缝走向为北东-南西向,优选方位为北东向50°~55°;井壁垮塌崩落的方位大体上呈北西-南东向,现今应力场最大水平主应力方向与之垂直。塔河地区现今应力场最大水平主应力方向为NE-SW向,大致为北东向55°。

4 裂缝有效性

裂缝有效性受充填程度、张开度、构造运动、溶蚀作用及现今应力场方向与裂缝走向的关系等因素影响。塔河地区一间房组裂缝按充填情况可以分为全充填、半充填和未充填裂缝,全充填裂缝为无效裂缝,半充填和未充填裂缝为有效裂缝。统计研究区一间房组裂缝的充填情况,全充填裂缝占55.37%,半充填裂缝占40.93%,未充填裂缝占3.7%,充填物类型主要为方解石充填和泥质充填。

裂缝的有效性还与现今地应力方向密切相关,在现今地应力的影响下,会对垂直或高角度相交于现今最大水平主应力方向的裂缝进行挤压,减小该方向裂缝的开度,裂缝趋于闭合,有效性变差;而对于与现今最大主应力方向平行的裂缝,相应的岩石会向裂缝两侧挤压,裂缝面受到相对拉张的作用,有利于增加裂缝的开度,裂缝呈开启状态,有效性变好。通过对塔河南部天然裂缝的走向与相应的裂缝宽度进行统计得知,裂缝开度较大、有效性较好的裂缝走向主要呈北东-南西向,与现今应力场最大水平主应力方向一致。在定向钻井过程中,与有效裂缝高角度相交的方位为最佳钻井方位,即选择NW向,可以更多地切穿有效裂缝,提高钻井成功率(图8)。

5 结 论

1)塔河南部一间房组裂缝极度发育,其中以高角度构造裂缝占主导地位,构成裂缝网络的主体,溶蚀缝和压溶缝规模相对较小,和构造裂缝共同构成了复杂的裂缝网络系统。

2)塔河南部现今应力场最大水平主应力方向呈NE-SW向。

3)NE-SW向裂缝开度增大,呈开启状态,有效性较好,侧钻方向选择NW-SE向会更多地钻穿有效裂缝,提高钻井成功率。

参考文献(References):

[1]ZHAN Zhaowen,ZOU Yanrong,PAN Changchun,et al.Origin,charging,and mixing of crude oils in the Tahe oilfield,Tarim Basin,China[J].Organic Geochemistry,2017,108:18-29.

[2]李阳,金强,钟建华,等.塔河油田奥陶系岩溶分带及缝洞结构特征[J].石油学报,2016,37(3):289-298.LI Yang,JIN Qiang,ZHONG Jianhua,et al.Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe oilfield,Tarim Basin[J].Acta Petrolei Sinica,2016,37(3):289-298.

[3]李阳,侯加根,李永强.碳酸盐岩缝洞型储集体特征及分类分级地质建模[J].石油勘探与开发,2016,43(4):600-606.LI Yang,HOU Jiagen,LI Yongqiang.Features and hierarchical modeling of carbonate fracture-cavity reservoirs[J].Petroleum Exploration and Development,2016,43(4):600-606.

[4]高玉飞,钟建华.塔河油田四区奥陶系储层裂缝特征及其意义[J].西北地质,2013,46(2):186-194.GAO Yufei and ZHONG Jianhua.The characters of fractures and its significance of the reservoir in Ordovician in Ordovician the Forth Block of Tahe oilfield[J].Northwestern Geology,2013,46(2):1296-1310.

[5]李阳.塔河油田碳酸盐岩缝洞型油藏开发理论及方法[J].石油学报,2013,34(1):115-121.LI Yang.The theory and method for development of carbonate fractured-cavity reservoirs in Tahe oilfield[J].Acta Petrolei Sinica,2013,34(1):115-121.

[6]商晓飞,段太忠,张文彪,等.断控岩溶主控的缝洞型碳酸盐岩内部溶蚀相带表征——以塔河油田10区奥陶系油藏为例[J].石油学报,2020,41(3):329-341.SHANG Xiaofei,DUAN Taizhong,ZHANG Wenbiao,et al.Characterization of dissolution facies belt in fracture-cavity carbonate rocks mainly controlled by fault-controlling karst:A case study of Ordovician reservoirs in the Block 10 of Tahe oilfield[J].Acta Petrolei Sinica,2020,41(3):329-341.

[7]张凤生,司马立强,赵冉,等.塔河油田储层裂缝测井识别和有效性评价[J].测井技术,2012,36(3):261-266.ZHANG Fengsheng,SIMA Liqiang,ZHAO Ran,et al.Log identification and effectiveness evaluation on reservoir fractures in Tahe oilfield[J].Well Logging Technology,2012,36(3):261-266.

[8]丁文龍,漆立新,吕海涛,等.利用 FMI资料分析塔河油田南部中-下奥陶统储层构造应力场[J].现代地质,2009,23(5):853-859.DING Wenlong,QI Lixin,LV Haitao,et al.Analysis of the lower-middle ordovician reservoir tectonic stress field using FMI data in the south of Tahe oilfield[J].Geoscience,2009,23(5):853-859.

[9]高玉飞,钟建华,艾合买提江,等.塔河油田四区奥陶系裂缝特征及其成因机制研究[J].中国地质,2009,36(6):1257-1267.GAO Yufei,ZHONG Jianhua,AHMATJAN,et al.Characteristics and formation mechanism of fissures in Ordovician strata of No.4 Block,the Tahe oilfield[J].Geology in China,2009,36(6):1257-1267.

[10]赫俊民,王小垚,孙建芳,等.塔里木盆地塔河地区中-下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素[J].石油与天然气地质,2019,40(5):1022-1030.HAO Junmin,WANG Xiaoyao,SUN Jianfang,et al.Characteristics and main controlling factors of natural fractures in the Lower-to-Middle Ordovician carbonate reservoirs in Tahe area,Northern Tarim Basin[J].Oil & Gas Geology,2019,40(5):1022-1030.

[11]刘志远,冒海军,鄢宇杰,等.塔河油田托甫台区块奥陶系一间房组裂缝分布特征[J].地质科技情报,2019,38(5):64-80.LIU Zhiyuan,MAO Haijun,YAN Yujie,et al.Distribution characteristics of fractures in the Ordovician Yijianfang Formation in Tuofutai area,Tahe oilfield[J].Geological Science and Technology Information,2019,38(5):64-80.

[12]李晉,郑剑锋,季汉成,等.塔里木盆地奥陶系碳酸盐岩缝洞型油气藏注水开发机理[J].西安科技大学学报,2017,37(6):852-859.LI Jin,ZHENG Jianfeng,JI Hancheng,et al.Water injection development mechanism of carbonate fracture-cave reservoir in Ordovician,Tarim Basin[J].Journal of Xi’an University of Science and Technology,2017,37(6):852-859.

[13]姜林,薄冬梅,周波,等.塔里木盆地轮南地区油气成藏期次分析[J].西安科技大学学报,2015,35(4):444-449.JIANG Lin,BO Dongmei,ZHOU Bo,et al.Hydrocarbon accumulation periods in Lunnan area of Tarim Basin[J].Journal of Xi’an University of Science and Technology,2015,35(4):444-449.

[14]CONNOLLY P,COSGROVE J.Prediction of fracture-induced permeability and fluid flow in the crust using experimental stress data[J].American Association of Petroleum Geologists Bulletin,1999,83(5):757-777.

[15]STEPHEN E,LAUBACH J,OLSON E,et al.Are open fractures necessarily aligned with maximum horizontal stress[J].Earth and Planetary Science Letters,2004,222(1):191-195.

[16]ZENG L B,LI X Y.Fractures in sandstone reservoirs with ultra-low permeability:A case study of the Upper Triassic Yanchang Formation in the Ordos Basin,China[J].American Association of Petroleum Geologists Bulletin,2009,93(4):461-477.

[17]王珂,杨海军,张惠良,等.超深层致密砂岩储层构造裂缝特征与有效性——以塔里木盆地库车坳陷克深 8 气藏为例[J].石油与天然气地质,2018,39(4):719-729.WANG Ke,YANG Haijun,ZHANG Huiliang,et al.Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir:A case study of Keshen 8 gas pool in Kuqa Depression,Tarim Basin[J].Oil and Gas Geology,2018,39(4):719-729.

[18]史今雄,曾联波,谭青松,等.沁水盆地南部煤岩储层天然裂缝有效性及对煤层气开发的影响[J].石油与天然气地质,2020,41(3):617-626.SHI Jinxiong,ZENG Lianbo,TAN Qingcong,et al.Effectiveness of natural fractures in CBM reservoirs and its influence on CBM development in the southern Qinshui Basin[J].Oil and Gas

Geology,2020,41(3):617-626.

[19]趙向原,胡向阳,曾联波,等.四川盆地元坝地区长兴组礁滩相储层天然裂缝有效性评价[J].天然气工业,2017,37(2):52-61.ZHAO Xiangyuan,HU Xiangyang,ZENG Lianbo,et al.Evaluation on the effectiveness of natural fractures in reef-flat facies reservoirs of Changxing Fm in Yuanba area,Sichuan Basin[J].Natural Gas Industry,2017,37(2):52-61.

[20]HE B Z,JIAO C L,XU Z Q,et al.The paleotectonic and paleogeography reconstructions of the Tarim Basin and its adjacent areas (NW China) during the late Early and Middle Paleozoic[J].Gondwana Research,2016,30:191-206.

[21]MA X X,SHU L S,SANTOSH M,et al.Paleoproterozoic collisional orogeny in central Tianshan:Assembling the tarim block within the columbia supercontinent[J].Precambrian Research,2013,228:1-19.

[22]LIN C S,YANG H J,LIU J Y,et al.Sequence architecture and depositional evolution of the Ordovician carbonate platform margins in the Tarim Basin and its response to tectonism and sea-level change[J].Basin Research,2011,24:1-24.

[23]TIAN F,JIN Q,LU X B,et al.Multi-layered ordovician paleokarst reservoir detection and spatial delineation:A case study in the Tahe oilfield,Tarim Basin,Western China[J].Marine and Petroleum Geology,2016,69:53-73.

[24]WU J,FAN T L,GAO Z Q,et al.Identification and characteristic analysis of carbonate cap rock:A case study from the Lower-Middle Ordovician Yingshan Formation in Tahe oilfield,Tarim Basin,China[J].Journal of Petroleum Science and Engineering,2018,164:362-381.

[25]康玉柱.中国海相油气田勘探实例之四:塔里木盆地塔河油田的发现与勘探[J].海相油气地质,2005,10(4):31-38.KANG Yuzhu.Cases of discovery and exploration of marine fields in China (Part 4):Tahe oilfield in Tarim basin[J].Marine Origin Petroleum Geology,2005,10(4):31-38.

[26]王斌,杨毅,曹自成,等.塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义[J].地球科学,2021,46(9):3203-3216.WANG Bin,YANG Yi,CAO Zicheng,et al.U-Pb dating of calcite veins developed in the Middle-Lower Ordovician reservoirs in Tahe oilfield and its petroleum geologic significance in Tahe oilfield[J].Earth Science,2021,46(9):3203-3216.

[27]DENG S,LI H L,ZHANG Z P,et al.Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J].American Association of Petroleum Geologists Bulletin,2019,103(1):109-137.

[28]张文彪,段太忠,李蒙,等.塔河油田托甫台区奥陶系断溶体构型类型及表征方法[J].石油勘探与开发,2021,48(1):1-12.ZHANG Wenbiao,DUAN Taizhong,LI Meng,et al.Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai,Tahe oilfield,NW China[J].Petroleum Exploration and Development,2021,48(1):1-12.

[29]LI S Z,ZHAO S J,LIU X,et al.Closure of the proto-tethys ocean and early paleozoic amalgamation of microcontinental blocks in east asia[J].Earth-Science Reviews,2018,186:37-75.

[30]WANG Q,LI S Z,ZHAO S J,et al.Early paleozoic tarim orocline:Insights from paleogeography and tectonic evolution in the Tarim Basin[J].Geological Journal,2017,52(1):1-13.

[31]张三,金强,孙建芳,等.塔河地区奥陶系岩溶斜坡峰丘高地的形成及油气地质意义[J].石油勘探与开发,2021,48(2):303-313.ZHANG San,JIN Qiang,SUN Jianfang,et al.Formation of hoodoo-upland on Ordovician karst slope and its significance in petroleum geology in Tahe area,Tarim Basin,NW China[J].Petroleum Exploration and Development,2021,48(2):303-313.

[32]韩剑发,苏洲,陈利新,等.塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J].石油学报,2019,40(11):186-194.HAN Jianfa,SU Zhou,CHEN Lixin,et al.Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J].Acta Petrolei Sinica,2019,40(11):186-194.

[33]CHEN Q L,ZHAO Y Q,LI G R,et al.Features and controlling factors of epigenic karstification of the ordovician carbonates in Akekule arch,Tarim Basin[J].Journal of Earth Science,2012,23(4):506-515.

[34]FAN H,SHI J Y,FAN T L,et al.Sedimentary microfacies analysis of carbonate formation based on FMI and conventional logs:A case study from the ordovician in the Tahe oilfield,Tarim Basin,China[J].Journal of Petroleum Science and Engineering,2021,203(1):1-15.

[35]LIU J Y,LIN C S,YANG H J,et al.Three depositional models interpreting the late ordovician deep-water gravity flow systems in the Tarim Basin,Western China[J].Geological Journal,2018,53(5):1-18.

[36]梁积伟,李宗杰,刘昊伟,等.塔里木盆地塔河油田S108井区奥陶系一间房组裂缝性储层研究[J].石油实验地质,2010,32(5):447-452.LIANG Jiwei,LI Zongjie,LIU Haowei,et al.Characteristics of fracture reservoir of Ordovician Yijianfang Formation in S108 area of Tahe oilfield,Tarim Basin[J].Petroleum Geology & Experiment,2010,32(5):447-452.

[37]郝明强,刘先贵,胡永乐,等.微裂缝性特低渗透油藏储层特征研究[J].石油学报,2007,28(5):93-98.HAO Mingqiang,LIU Xiangui,HU Yongle,et al.Reservoir characteristics of micro-fractured ultra-low permeability reservoirs[J].Acta Petrolei Sinica,2007,28(5):93-98.

[38]ZHU G Y,ZOU C N,YANG H J,et al.Hydrocarbon accumulation mechanisms and industrial exploration depth of large-area fracture cavity carbonates in the Tarim Basin,Western China[J].Journal of Petroleum Science and Engineering,2015,133:889-907.

[39]KHOSHBAKHT F,AZIZZADEH M,MEMARIAN H,et al.Comparison of electrical image log with core in a fractured carbonate reservoir[J].Journal of Petroleum Science and Engineering,2012,86:289-296.

[40]TINGAY M,MORLEY C,KING R,et al.Present-day stress field of Southeast Asia[J].Tectonophysics,2010,482(1):92-104.

[41]周倫先.成像测井技术在车镇凹陷地应力研究中的应用[J].新疆石油地质,2009,30(3):369-372.ZHOU Lunxian.Application of imaging logging to study of terrestrial stress in Chenzhen sag,Shengli oilfield[J].Xinjiang Petroleum  Geology,2009,30(3):369-372.

[42]徐杰,周本刚,计凤桔,等.中国东部海域及其邻区现代构造应力场研究[J].地学前缘,2012,19(4):1-7.XU Jie,ZHOU Bengang,JI Fengju,et al.The recent tectonic stress field of offshore of China mainland and adjacent areas[J].Earth Science Frontiers,2012,19(4):1-7.

[43]曾维特,丁文龙,张金川,等.渝东南-黔北地区下寒武统牛蹄塘组页岩裂缝有效性研究[J].地学前缘,2016,23(1):96-106.ZENG Weite,DING Wenlong,ZHANG Jinchuan,et al.Research on the fracture effectiveness of the Lower Cambrian Niutitang shale in the southeastern Chongqing and northern Guizhou areas[J].Earth science Frontiers,2016,23(1):96-106.