APP下载

北部湾盆地涠西南凹陷古近系流沙港组储层预测

2022-11-03曾晓华姜丽张宇李茂许月明骆逸婷

关键词:油组流沙砂体

曾晓华 姜丽 张宇 李茂 许月明 骆逸婷

摘 要:北部灣盆地涠西南凹陷储层为古近系流沙港组一段。为厘清储层分布特征,落实有利储层区域,利用神经网络分类模式,对流一段储层地震道波形形状和图层数据进行二维地震相分析,采用分级模式进行地震相体分析,运用地震相体均衡切片技术,动态化演示地震相演变特征和过程,确定储层沉积展布特征。用储层岩性反演技术和储层自然伽玛、岩性、孔隙度、渗透率、饱和度等储层参数的神经网络多属性预测,建立与储层参数之间的关系,定位储层叠置关系和横向分布特征,刻画流沙港组一段储层砂体平面分布特征。研究结果表明主力油层L1Ⅴ油组储层砂体发育规模大,由西、中、东部3支朵叶体组成,西部砂体物性较好,为有利目标。关键词:储层预测;地震相;储层反演;流沙港组中图分类号:P 631.18

文献标志码:A

文章编号:1672-9315(2022)05-0935-07

DOI:10.13800/j.cnki.xakjdxxb.2022.0512开放科学(资源服务)标识码(OSID):

Reservoir prediction of Paleogene Liushagang Formation in Weixinan Depression,Beibuwan Basin

ZENG Xiaohua,JIANG Li,ZHANG Yu,LI Mao,XU Yueming,LUO Yiting

(1.Hainan Branch,CNOOC(China),Haikou 570100,China;2.College of Earth Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China;3.Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao 266237,China;

4.Zhanjiang Branch,CNOOC(China),Zhanjiang 524057,China)

Abstract:Weixinan Sag reservoir segment in Beibuwan Basin is the first member of Paleogene Liushagang Formation.In order to clarify the characteristics of reservoir distribution and implement favorable reservoir areas;Under the background of sedimentary study,the neural network classification model was used to analyze the two-dimensional seismic facies of the seismic track waveform shape and layer data of each oil group in the first section.The seismic facies were

examined by hierarchical model,and the seismic facies equalization slicing technique was adopted to demonstrate the evolution characteristics and process of seismic facies in each small section dynamically,so as to determine the characteristics of reservoir deposition

distribution.The reservoir lithology inversion technology was used,as well as GR,lithology,reservoir porosity,permeability,saturation of reservoir parameters such as multi-attribute prediction and neural network, to establish the relationship with reservoir parameters,and to achieve an accurate positioning store relationship and transverse distribution of the cascade,with the oilfield quicksand port group for a period of the oil reservoir sand body of the plane distribution features dipicted in details.The results show that the main reservoir L1Ⅴ oil formation sand bodies are developed on a large scale,which are composed of lobes in the west,middle and east branches.The lithology and physical properties of the north part of Well 3 in the west are better,which is a favorable target for potentially adjusting and exploiting.

Key words:reservoir prediction;seismic facies;reservoir inversion;Liushagang Formation

0 引 言中国南海北部和西北部深水区具良好的油气资源前景,勘探潜力巨大。南海西北部北部湾盆地涠西南凹陷已被钻探证实为富烃凹陷,也是近年来在陆相盆地中发现的典型复式油气区,表现为“断裂沟源、断脊运移、纵向叠置、横向连片、满凹含油”特征,储层段为流沙港组和涠洲组,流沙港组自上而下分为流一段、流二段和流三段。流沙港组岩性圈闭规模较大且紧邻烃源岩,地质条件十分适合油气成藏,有利于大型油气田形成。流沙港组一段主要发育断块和岩性圈闭,以断块油藏为主,砂体平面和纵向分布复杂。

许多学者对涠西南凹陷流一段储层开展了研究,对流一段油藏进行了储层精细描述,并对成藏条件和控制因素进行了分析,流一段扇三角洲储层砂体横向变化快,储层展布不清,缺乏储层预测方面的研究,为更好地研究砂体分布及连通性,厘清砂体平面展布及发育特征,利用地震相分析和储层反演预测

刻画储层纵向和横向变化规律,落实有利储层区域。

1 地质概况北部湾盆地是南海大陆架西北部一个以新生代沉积为主的盆地(图1(a)),介于海南褶皱带和粤桂古生代褶皱带之间。早侏罗世起至古近纪,北部湾盆地处于长期隆起状态、遭受剥蚀;古近纪始受南海扩张及周围边界断裂活动的影响,开始发生张裂断陷,逐渐演化成北部湾盆地现今的构造格局。北部湾盆地被沿盆地中部NE-SW走向的企西隆起分隔形成北部和南部2个坳陷,涠西南凹陷处于北部坳陷的北部位置,经历了3次张裂和裂后沉降,古近系沉积流沙港组和涠洲组,流沙港组按岩性变化分为流三段、流二段和流一段,涠洲组分为涠四段、涠三段、涠二段和涠一段。研究区位于涠西南凹陷的东北部,处于2号和3号断裂带之间,含油层段有流三段、流一段和涠三段,目的层段为流一段,为滨浅湖-半深湖环境下的缓坡型扇三角洲沉积。

流一段具相对清晰的沉积旋回和稳定的泥岩标志层,属水进体系,可划分出4个中旋回(MSC1~MSC4)和10个短旋回(SSC1~SSC10),MSC1為向上的不对称半中期旋回,MSC2和MSC3为对称型中期旋回,MSC4为向上的不对称型半中期旋回。在中期和短期旋回划分基础上,根据岩性组合、含油性、油水分布、电性对比特征等将流一段划分为5个油组,其中L1Ⅰ,L1Ⅲ,L1Ⅴ油组储层最为发育(图1(b))。L1Ⅰ油组相当于MSC1,在三级层序中为水进体系域;L1Ⅲ油组相当于MSC2的下降半旋回(SSC5,SSC6)和MSC3上升半旋回后期,顶界为三级层序的初始湖泛面;L1Ⅴ油组相当于MSC4(SSC9~SSC10)。

2 地震相分析地震相分析采用层位尖灭识别、主组分分析、统计聚类分级分类、人工神经网络分析等技术方法提取属性,对各种地震属性所呈现出的地质特征进行研究,实现了地震道、多属性数据体的地震相自动识别划分。

利用地震道变化研究地震相,主要有3种方法,即地震道波形形状变化、图层数据(属性)和多地震数据体分类,主要模式有神经网络模式和神经分级模式。神经网络模式是采用神经网络技术把地震波形或属性图作为内部组合地震相分类寻找重复的道模式,组建一个能代表输入数组的典型模式;分类中参考每个道位置或者和相邻道的关联属性后,所获得的地震相就具有地质规律。神经分级模式则采用聚类分析将地震数据样点中的多项数组进行分类,应用分级分类方法将相同点进行分类,并将数据归纳到群,神经分级模式重点区别地震相分类的顺序,使相带变化清晰。

L1Ⅴ油组呈扇三角洲状由南向北展布(图2(a))。水下分流河道发育,主河道在5井-1井-6井方向附近,水下分流河道大致可以分为2支,5井-3井方向由南向北逐渐散开,3井北呈朵叶状水下扇沉积,3井区和6井区为不同沉积相带,与钻井揭示的3井比6井岩性细的特征吻合;5井-2井方向河道,沉积变化快,具条带状特征。L1Ⅲ油组沉积与L1Ⅴ油组类似,呈扇三角洲相向北展布,水下分流河道发育,主河道在6井附近(图2(b))。扇三角洲规模小于L1Ⅴ油组,为间歇性河道沉积,北部扇缘上有朵状次生扇体发育。L1Ⅰ油组扇三角洲相沉积比L1Ⅲ油组规模略大,水下分流河道发育,主河道在3井和6井之间(图2(c))。

3 储层反演预测

分析钻井、地震和测井等多种资料,运用了神经网络和常规反演技术,对流一段L1Ⅰ,L1Ⅲ,L1Ⅴ油组进行了综合储层预测。

神经网络多属性预测是利用已知实际井位的测井与地震等多种数据,研究测井曲线与井道多种地震属性关系,得出最大相关度属性,并用以估算和预测地震数据体属性特征和测井数据体,在算法上采用非线性神经网络算法,克服了以往用单属性进行线性预测的局限性,增加了预测精度。自然伽玛测井曲线对储层的分辨较为敏感,且曲线质量较好,可作为岩相划分的测井标志曲线,有利于储层预测。

3.1 井约束波阻抗反演

从井旁道提取单井和多井子波分析表明,子波为零相位正态子波,主、旁瓣特征明显,每个子波有3~4个旁瓣,有利于提高储层预测的分辨率。应用多井综合子波制作合成记录,流一段的相关性为77.0%。对比提取的地震统计和多井综合子波

发现,地震统计子波效果更优,作为本次反演子波。

从井约束波阻抗反演结果可以看出(图3),L1Ⅴ的阻抗高值区位于中部,又可细分为西、中、东3个条带,即5井-3井条带、1井-6井之西条带和1井-6井条带,中、东2个条带的阻抗高于西条带。L1Ⅲ的阻抗高值区位于2井以西,和L1Ⅴ类似,也可细分为西、中、东3个条带,即5井-3井条带、1井-6井之西条带和1井-6井条带,其中,中条带延伸距离最远。L1Ⅰ段的阻抗异常区具3分条带的格局,和L1Ⅲ,L1Ⅴ相比,L1Ⅰ段的阻抗值相对较低。

3.2 储层参数体反演预测

把井约束波阻抗反演体和属性一起进行单属性估算和误差统计分析,优选较好的地震属性进一步进行多种属性误差的统计分析。对流一段自然伽玛曲线与优选的5类地震属性,采用概率神经网络方法进行学习和训练,使拟合曲线与实际曲线相关性、互相关校验分别达到87%和75%,对地震三维数据体进行分析和概率性计算,形成基于自然伽玛属性的三维数据体。

对预测的储层参数体进行分析,储层变化特征清晰、自然,分辨率高,变化有规律可寻,并且与实钻情况和测井资料相吻合。预测的储层属性参数体能很好的反映出流一段的储层和沉积特征,达到了储层精细描述(图4(a)、(b))。

预测的渗透率与重构和标准化处理的渗透率曲线标准(流一段有效含油储层标准下限为孔隙

度≥14.0%、渗透率≥1.0 mD,含油饱和度≥44.0%)一致,根据国家储层物性分类标准,Ⅰ类储层的渗透率>500.0 mD,为高渗储层;Ⅱ类储层的渗透率介于50.0~500.0 mD,为中渗储层;Ⅲ类储层的渗透率介于1.0~50.0 mD,为低渗储层;无效层渗透率<1.0 mD。重构并标准化的孔隙度曲线与预测的孔隙度采用的标准一致,孔隙度大于16.0%为Ⅰ类和Ⅱ类储层;孔隙度介于14.0%~16.0%为Ⅲ类储层;孔隙度为0的为泥岩。Ⅰ类油层含油饱和度≥50.0%;Ⅱ,Ⅲ类油层含油饱和度介于44.0%~50.0%;水层或无效层含油饱和度<44.0%。

L1Ⅴ油组砂体连续分布,从南向北呈扇状展布,岩性由粗到细。1井-6井方向砂体由南向北呈朵叶状展布,砂体规模大、河道延伸远,为水下分流河道沉积;5井-3井方向砂体呈朵叶状由南向北展布,延伸较远;3井、6井之间的砂体由南向北呈条带状分布,砂体规模小、河道延伸短,为不同的分支河道,2井区不发育砂体,为水下分流河道间沉积(图5(a))。与岩性预测反映的砂体平面分布特征类似,孔隙度预测结果也分为西、中、东3个高孔隙度条带,平均孔隙度为15%,渗透率介于2.0~100 000.0 mD(图5(b))。L1Ⅴ油组中部为主河道沉积为Ⅰ类储层;西部为水下分流河道沉积为Ⅱ类储层;东部为Ⅱ~Ⅲ类储层。3个朵体连通性差,含油饱和度属性体预测結果表明L1Ⅴ油组3支朵叶状砂体均具有含油气响应特征。

L1Ⅲ油组有利砂体区呈朵叶状由南向北展布。1井-6井连井方向西部储层规模大,砂体延伸远;5井-3井连井方向储层砂体呈朵叶状展布,砂体规模小;4井-6井连井方向的储层砂体中等;L1Ⅲ油组砂体分布特征反映出主河道向西迁移(图6(a))。

L1Ⅲ油组孔隙度以中-高孔为主。与岩性预测反映的砂体平面分布特征类似,L1Ⅲ油组砂体高孔隙度带呈朵叶状由南向北展布,介于10.0%~20.0%之间,平均孔隙度约为14.0%(图6(b));L1Ⅲ油组的渗透率>50.0 mD,属中渗储层。渗透率预测结果与孔隙度、岩性预测结果类似,有利区带由南向北呈朵叶状展布。L1Ⅲ油组的储层为Ⅱ~Ⅲ类储层。

L1Ⅰ油组岩性预测结果显示为泥质粉砂岩和粉砂岩,1井南侧区域和6井区岩性较好。相对于L1Ⅲ,L1Ⅴ油组,L1Ⅰ油组储层发育规模较小、河道延伸近(图7(a))。

储层属性与岩性预测结果得出的砂体分布规律一致,L1Ⅰ油组以低孔、低渗为特征,孔隙度介于2.0%~16.0%,渗透率介于2.0~50.0 mD(图7(b))为Ⅲ类储层。L1Ⅰ油组储层含油饱和度预测分析3井区附近含油饱和度介于40.0%~45.0%之间,具油水同层响应特征。

4 结 论

1)流一段为水下扇三角洲沉积,扇内水下分流河道发育,中部发育主河道。

2)预测的自然伽玛、岩性、孔隙度、渗透率和含油饱和度等5个数据体中,自然伽玛、岩性和孔隙度数据体可信度更高,预测结果和井资料的吻合程度较高。

3)L1Ⅴ油组砂体发育规模大,分西、中、东部3支朵叶体状南北展布,西部砂体3井岩性较好,3井和6井之间的中部砂体为高孔高渗的有利相带。

参考文献(References):

[1]郭飞飞,王韶华,孙建峰,等.北部湾盆地涠西南凹陷油气成藏条件分析[J].海洋地质与第四纪地质,2009,29(3):93-98.GUO Feifei,WANG Shaohua,SUN Jianfeng,et al.Analysis  on the conditions of petrolem accumulation  in Weixinan sag,Beibuwan Basin[J].Marine Geology & Quaternary Geology,2009,29(3):93-98.

[2]李颂,杨小晏.北部湾盆地涠西南凹陷油气运聚成藏特征[J].世界地质,2012,31(2):365-370.LI Song,YANG Xiaoyan.Characteristics of hydrocarbon migration and accumulation in Weixinan sag of Beibuwan Basin[J].Global Geology,2012,31(2):365-370.

[3]江文荣.涠洲11-4N油田始新统流沙港组一段油藏精细描述[D].成都:西南石油大学,2008.JIANG Wenrong.Fine description of the first section of Liushagang Formation in Eocene in Weizhou 11-4N Oilfield[D].Chengdu:Southwest Petroleum University,2008.

[4]李茂.涠洲11-4N油田流一段强非均质储层评价及开发策略[D].东营:中国石油大学,2010.LI Mao.Evaluation and development strategy of strong heterogeneous reservoir in the first section of Liushagang Formation of Weizhou 11-4N Oilfield[D].Dongying:China University of Petroleum,2010.

[5]郭飞飞,郭小文,孙建峰,等.北部湾盆地涠西南凹陷C洼烃源岩热史及成熟史模拟[J].海洋地质与第四纪地质,2010,30(2):87-93.GUO Feifei,GUO Xiaowen,SUN Jianfeng,et al.Source rock thermal and maturity history modeling in C sag of Weixinan Depression of Beibuwan Basin[J].Marine Geology & Quaternary Geology,2010,30(2):87-93.

[6]王健,操应长,刘明全,等.涠西南凹陷西部古近系流一段三角洲前缘滑塌浊积岩分布规律[J].石油地球物理勘探,2010,45(6):879-884.WANG Jian,CAO Yingchang,LIU Mingquan,et al.Fluxotur bidite  distribution for Paleogene

Liu-1 interval west delta front,wei south-west Depression[J].Oil Geophysical Prospecting,2010,45(6):879-884.

[7]刘震,谭卓,蔡东升,等.北部湾盆地涠西南凹陷流沙港组岩性圈闭形成条件[J].现代地质,2008,22(2):239-246.LIU Zhen,TAN Zhuo,CAI Dongsheng,et al.Analysis on forming conditions of lithologic trap in Liushagang Formation,Weixinan Depression of BBW Basin[J].Geoscience,2008,22(2):239-246.

[8]徐新德,王碧维,李旭红,等.北部湾盆地涠西南凹陷流沙港组隐蔽油气藏油源及成藏特征[J].天然气地球科学,2012,23(1):92-98.XU Xinde,WANG Biwei,LI Xuhong,et al.Oil sources of concealed reservoirs in Liushagang Formation of the Weixinan Sag and accumulation feature,Beibuwan Basin[J].Natural Gas Geoscience,2012,23(1):92-98.

[9]严恒,王丽君,高凌,等.涠西南凹陷流一段沉积相研究及岩性地层圈闭识别[J].中国矿业,2017,26(S2):207-212.YAN Heng,WANG Lijun,GAO Ling,et al.Research on sedimentary facies on the first member of Liushagang Formation in Weixinan Depression and lithologic-stratigraphic traps identification[J].China Mining Magazine,2017,26(S2):207-212.

[10]譚程鹏,李茂,于兴河,等.涠西南凹陷涠洲11区南部流沙港组流一段沉积微相特征[J].沉积与特提斯地质,2012,32(1):62-71.TAN Chenpeng,LI Mao,YU Xinghe,et al.Sedimentary microfacies in the first member of the Liushagang Formation in southwestern Weizhou Depression,Guangxi[J].Sedimentary Geology and Tethyan Geology,2012,32(1):62-71.

[11]刘杰,操应长,王健,等.涠西南凹陷A井区古近系流沙港组一段砂体沉积特征及分布规律[J].沉积学报,2013,31(1):56-66.LIU Jie,CAO Yingchang,WANG Jian,et al.Sedimentary characteristics and distribution law of sandbodies of the first member of Liushagang Formation of Paleogene of A well field in Weixinan Depression[J].Acta Sedimentologica Sinica,2013,31(1):56-66.

[12]王心怿.涠西南凹陷流沙港组古地貌特征及砂体分布[D].青岛:中国石油大学(华东),2018.WANG Xinyi.Paleogeomorphologic characteristics and sand body distribution of Liushagang Formation in Weizhou Southwest Depression[D].Qingdao:China University of Petroleum,2018.

[13]董贵能.涠西南凹陷流一段扇三角洲沉积特征及其对隐蔽油气藏形成的控制作用[J].中国海上油气,2008,20(5):298-301.DONG Guineng.Fan delta sedimentary features and its controls over subtle hydrocarbon reservoirs of Liu-1 member in Weixinan sag[J].China Offshore Oil and Gas,2008,20(5):298-301.

[14]董贵能,李俊良.北部湾盆地涠西南凹陷流一段非构造油气藏[J].石油勘探与开发,2010,37(5):552-560.DONG Guineng,LI Junliang.Subtle hydrocarbon reservoirs in Liu-1 member of the Weixi’nan Sag,Beibuwan Basin,China[J].Petroleum Exploration and Development,2010,37(5):552-560.

[15]赵楠,蒋利平,李茂,等.涠西南凹陷L1段油藏特征及规律统计分析[J].海洋石油,2010,30(4):70-75.ZHAO Nan,JIANG Liping,LI Mao,et al.Reservoir characteristics and statistical analysis of L1 segment in Weixi’nan Depression[J].Offshore Oil,2010,30(4):70-75.

[16]张辉,李茂,蒋利平,等.储层非均质性评价技术研究及应用:以涠洲A油田流一段为例[J].中国海上油气,2011,23(3):175-178.ZHANG Hui,LI Mao,JIANG Liping,et al.A technique to evaluate reservoir heterogeneity and its application:A case of member-1 of Liushagang Formation in Weizhou A oilfield[J].China Offshore Oil and Gas,2011,23(3):175-178.

[17]张辉,姜平,蔡军,等.涠西南凹陷流沙港组一段储层物性影响因素研究[J].海洋石油,2013,33(2):8-14.

ZHANG Hui,JIANG Ping,CAI Jun,et al.Control factors on physical property of Liu-1 member of Liushagang Fm in Weixinan sag,Beibuwan Basin[J].Offshore Oil,2013,33(2):8-14.

[18]李勇,张辉,曾小明.涠州A油田流沙港组一段Ⅱ油组沉积微相及优质储层预测[J].科学技术与工程,2017,17(22):182-190.LI Yong,ZHANG Hui,ZENG Xiaoming,et al.Sedimentary microfacies and high quality reservoirs prediction of the 2nd oil Series in the first member of Liushagang Formation in Weizhou A Oilfield[J].Science Technology and Engineering,2017,17(22):182-190.

[19]陶倩倩,孫文钊,李珊珊,等.扇三角洲相储层“甜点”预测技术在涠州A油田的应用[J].地质科技情报,2017,36(6):279-285.TAO Qianqian,SUN Wenzhao,LI Shanshan,et al.Application of  Fan delta facies“Sweet Point”  reservoir prediction technology in Weizhou A Oilfield[J].Bulletin of Geological Science and Technology,2017,36(6):279-285.

[20]李珊珊,彭松,陶倩倩,等.涠西南凹陷南斜坡晚始新世扇三角洲复杂储层预测关键技术及油气地质意义[J].海洋地质与第四纪,2017,37(2):160-168.LI Shanshan,PENG Song,TAO Qianqian,et al.Key techniques for prediction of late Eocene fan deltaic reservoir complex on southern slope of weixinan depression and their petroleum geological significcance[J].Marine Geology & Quatemary Geology,2017,37(2):160-168.

[21]王猛,叶青,袁丙龙,等.基于量化参数的储层非均质性分布规律研究——以涠西南凹陷为例[J].断块油气田,2020,27(5):597-602.WANG Meng,YE Qing,YUAN Binglong,et al.Distribution regularity research of reservoir heterogeneity based on quantitative parameters:A case study of weixinan sag[J].Fault-Block oil and Gas Field,2020,27(5):597-602.

[22]胡德胜,范彩伟,朱红涛,等.涠西南凹陷流一段高位体系域湖底扇沉积特征及勘探意义[J].中国石油勘探,2020,25(5):23-31.HU Desheng,FAN Caiwei,ZHU Hongtao,et al.Sedimentary characteristics and exploration significance of sub-lacustrine fan of highstand system tract in the first member of Liushagang Formation in the Weixinan sag[J].China Petroleum Exploration,2020,25(5):23-31.

[23]蔡冬梅,程耀清,杜娟.地震资料属性分析技术在渤海复杂油气田储层预测中的应用[J].中国石油和化工标准与质量,2013,34(4):112-113.CAI Dongmei,CHENG Yaoqing,DU Juan.Application of seismic attribute analysis technique in complex oil and gas field reservoir prediction of Bohai Sea[J].China Petroleum and Chemical Standard and Quality,2013,34(4):112-113.

[24]彭軍,周家雄,隋波,等.利用岩性阻抗识别砂岩、泥岩以及砂体叠置——以北部湾盆地涠A油田为例[J].海相油气地质,2017,22(1):89-94.PENG Jun,ZHOU Jiaxiong,SUI Bo,et al.Identification of superimposed sangbody by using lithology impedance in Weizhou:An oilfield,Beibuwan Basin[J].Marine origin Petroleum Geology,2017,22(1):89-94.

[25]朱剑兵,王兴谋,冯德永,等.基于双向循环神经网络的河流相储层预测方法及应用[J].石油物探,2020,59(2):250-257.ZHU Jianbing,WANG Xingmou,FENG Deyong,et al.Predicting fluvial reservoirs using seismic data based on a Bi-recurrent neural network[J].Geophysical Prospecting for Petroleum,2020,59(2):250-257.

[26]王俊,曹俊兴,尤加春,等.基于门控循环单元神经网络的储层孔渗饱参数预测[J].石油物探,2020,59(4):616-627.WANG Jun,CAO Junxing,YOU Jiachun,et al.Prediction of reservoir porosity,permeability,and saturation based on a gate recurrent unit neural network[J].Geophysical Prospecting for Petroleum,2020,59(4):616-627.

[27]韩刚,高红艳,龙凡,等.叠前反演在西湖凹陷致密砂岩储层“甜点”预测中的应用[J].石油物探,2021,60(3):471-478.HAN Gang,GAO Hongyan,LONG Fan,et al.Prestack elastic inversion for sweet-spot prediction in tight reservoirs in Xihu sag[J].Geophysical Prospecting for Petroleum,2021,60(3):471-478.

[28]黄江波,左中航,侯栋甲,等.叠前密度反演技术在沙南凹陷中深层储层预测中的应用[J].海洋地质前沿,2021,37(2):46-53.HUANG Jiangbo,ZUO Zhonghang,HOU Dongjia,et al.Application of pre-Stack density inversion technology to middle-deep reservoir prediction in Shanan Depression[J].Marine Geology Frontiers,2021,37(2):46-53.

[29]张国印,王志章,林承焰,等.基于小波变换和卷积神经网络的地震储层预测方法和应用[J].中国石油大学学报(自然科学版),2020,44(4):83-93.ZHANG Guoyin,WANG Zhizhang,LIN Chengyan,et al.Seismic reservoir prediction method based on wavelet transform and convolutional neural network and its application[J].Journal of China Universisty of Petroleum(Edition of Natural Science),2020,44(4):83-93.

猜你喜欢

油组流沙砂体
河流相复合砂体不连续界限等效表征方法探讨
CSAMT法在柴北缘砂岩型铀矿勘查砂体探测中的应用
奈曼油田九上段分层系开发效果分析
流沙说
流沙!流沙!不要怕
风华是一指流沙
文昌19-1油田珠江组二段I油组沉积相研究
双河油田Ⅷ-Ⅸ油组油砂体评价分类及挖潜对策研究
砂体构型对剩余油分布控制研究—以文中油田文25东油藏为例
辫状河流相薄砂体地震子波效应和识别方法