APP下载

塔里木盆地古城地区走滑断裂特征及其对白云岩气藏的控制作用

2022-09-16张婷婷荆雅莉王海学

中国石油勘探 2022年4期
关键词:碳酸盐岩白云岩储层

刘 洋 冯 军 徐 伟 张婷婷 荆雅莉 王海学

( 1 中国石油大庆油田公司勘探开发研究院;2 中国石油天然气集团有限公司碳酸盐岩储层重点实验室;3 东北石油大学地球科学学院 )

0 引言

从“十二五”开始,塔里木油田就创新提出断控缝洞型新类型的储集体和断溶体油气成藏新模式,以往走滑断裂与碳酸盐岩气藏的关系研究,主要聚焦在石灰岩地层,以断溶体勘探为主,证实走滑断裂体系对油气富集起重要作用。例如,贾承造等阐明了塔里木盆地克拉通内走滑断裂控制了碳酸盐岩储层的发育与油气的富集[1];李国会等论述了塔里木盆地台盆区奥陶系碳酸盐岩走滑断裂发育,控储控藏作用明显[2];林波等探讨了走滑断裂构造变形对油气富集的控制作用[3];刘宝增阐明了塔里木盆地顺北油田是受走滑断裂控制的碳酸盐岩超深层油田,受走滑断裂平面分段性和纵向分层性的影响,油气聚集呈明显的差异性[4];黄少英等论述了塔里木盆地中部满深1断裂带走滑断裂多期持续活动特征[5];孔永吉等阐述了塔里木盆地塔中隆起北部受多期构造应力影响发育大量走滑断裂,具有垂向分层、平面分段、多期次构造叠加的特征[6]。有关走滑断裂在石灰岩地层中的控储控藏作用,前人做了大量深入的研究,塔里木盆地西部台盆区断溶体勘探相继获得重大突破。

相对而言,走滑断裂在白云岩地层中的发育特征及其对油气藏形成的影响还有待深入研究。白云岩和石灰岩从形变特性和溶蚀作用均有较大差异,白云岩脆性强,变形持续时间较长,易产生裂缝,而石灰岩的变形主要发生在初期阶段,但石灰岩的平均溶蚀速度明显大于白云岩[7],同样处于走滑断裂发育区,由于地层岩性差异,走滑断裂对储层形成及油气成藏的控制作用有较大的差异。塔里木盆地古城地区奥陶系鹰山组为大型碳酸盐台地沉积,纵向上下部的鹰四段白云岩发育,中部鹰三段发育白云岩夹薄层石灰岩,上部鹰一段和鹰二段发育石灰岩。平面上中西部为白云岩发育区,东部以石灰岩为主。鹰三段和鹰四段的白云岩厚度大,分布广,近年来在这套地层中发现了天然气藏[8-9],针对奥陶系探井有14口,其中古城6井、古城8井、古城9井、古城17井获工业气流,古城11井、古城12井、古城14井、古城16井获低产气流,虽多口井获得勘探发现,但未获得规模性突破。白云岩储层多表现为裂缝—孔洞型,不同井之间储层物性差异较大、产能差异显著[10-12],白云岩气藏分布规律,尤其是走滑断裂对气藏的控制作用仍不明确,制约了下一步勘探部署方向[13],走滑断裂与白云岩气藏的关系亟待开展深入研究。

古城地区整体处于塔里木盆地走滑断裂体系活动中心东部的边缘区域,活动强度相对较弱,走滑断裂体系相关研究极少。近年来古城地区高精度三维连片地震资料采集面积已达2007km2,为走滑断裂刻画奠定了基础。本文以古城地区三维连片地震资料为基础,通过构造导向滤波、最正曲率地震属性提取分析为指导,将地震属性与断裂地震剖面特征解释结合,使得断裂解释结果更可靠,搞清了包括走滑断裂在内的多组断裂分布特征,结合已有钻井资料、构造物理模拟实验结果,研究古城地区走滑断裂控储、通源及控藏特征,明确了白云岩发育区相对于石灰岩发育区溶蚀作用较弱,难以形成较大规模洞穴型储层,白云岩基质孔隙易于保存,走滑断裂体系改造以造缝为主,增加基质连通性,白云岩储层主要以裂缝—孔洞型为主,裂缝预测成果能够有效指示优质储层分布。古城地区走滑断裂断面直立插入基底,沟通了下部的玉尔吐斯组烃源岩,通源条件好,天然气藏平面沿走滑断裂条带状富集,纵向气柱高度大,利用水平井提产技术,可实现古城地区白云岩气藏的效益勘探。

1 区域地质特征

塔里木盆地北缘为古亚洲体系的天山弧形山链,南缘为特提斯体系的西昆仑—阿尔金弧形山链[14],周缘的天山、昆仑山和阿尔金造山带的活动,控制着塔里木盆地断裂的形成演化[15-17]。古城地区位于中央隆起带古城低凸起(图1),现今为东南高西北低、中部存在北东走向的构造垒带。古城地区发育NEE向、NE向、NNE向、NNW向和NW向5个走向的断裂,分别形成于加里东早期、加里东中期、加里东中期—海西早期、印支期和燕山期—喜马拉雅期5个构造活动时期,其中NE向正断裂和NNE向走滑断裂是区内最重要的两组断裂。古城地区缺失志留系、泥盆系、二叠系及侏罗系,发育上奥陶统/石炭系、三叠系/白垩系两大区域性角度不整合[18];主要勘探目的层为奥陶系鹰三段白云岩滩体、一间房组—鹰二段石灰岩礁滩体、寒武系白云岩丘滩体(图2)。古城地区下寒武统玉尔吐斯组,以及古城以东地区中奥陶统黑土凹组碳酸盐岩为优质烃源岩[19-20],上覆的上奥陶统却尔却克组巨厚“黑被子”地层以泥岩、泥质粉砂岩为主,厚度可达2000m,可作为古城地区优质区域性盖层。NE向和NNE向两组断裂可作为良好的油气垂向运移通道,形成了下生上储的碳酸盐岩天然气藏。

图1 研究区位置图Fig.1 Location map of the study area

2 断裂类型与展布特征

断裂的精细刻画依赖于高品质的三维地震资料,古城地区高精度三维地震资料采集已有6块,满覆盖面积已达2007km2。以古城地区三维连片地震资料为基础,通过构造导向滤波进一步提高剖面信噪比,更突出断裂断面特征,以目前对断裂精细刻画最有效的最正曲率地震属性提取分析为指导,将地震属性与断裂地震剖面特征解释交互,通过三维可视化解释技术,进行三维连片地震资料精细构造解释。从提取的寒武系底面、碳酸盐岩顶面、石炭系底面及白垩系底面4个主要构造层面的曲率地震属性图上(图3),共识别出NEE向、NE向、NNE向、NNW向和NW向5个走向的断裂,通过地震剖面上断裂的断开层位(图4)、纵向断距的大小关系、曲率地震属性平面图上发育情况等,综合判断断裂的活动时期。

NEE向断裂(图4中墨绿色断裂)主要发育在古城16井—古城15井、古城13井—古城17井两个条带上,数量较少,断距大于40m的仅有5条,地震剖面上断距在寒武系底面较大,在寒武系底面曲率地震属性图上可清晰识别(图3a),在寒武系顶面基本无断距,综合判断活动时期为加里东早期,表现为正断裂。NEE向断裂的展布方向与前寒武纪近东西向的裂陷槽应力方向基本一致。

NE向断裂(图4中蓝色断裂)全区分布,断距大、数量多,可划分为6组,控制着古城地区碳酸盐岩地层三隆三凹的构造格局。由于受阿尔金造山带影响,距阿尔金山越近断距越大,反之越小,表现为东南—西北向断距减小的规律。地震剖面上在碳酸盐岩顶面断距最大,向下断至寒武系底面,上部消失在却尔却克组内部,却尔却克组沉积早期地层具有明显同沉积特征,在断裂下降盘一侧,地层明显加厚;在碳酸盐岩顶面曲率地震属性图上最为清晰,寒武系顶面及底面上均可识别出来,在却尔却克组内部地层没有NE向断层响应特征,活动时期可确定为加里东中期,主要表现为正断裂。

NNE向走滑断裂(图4中红色及粉红色断裂)全区共有7组,过古城16井和古城7井的2组走滑断裂活动强度较大,在地震剖面上较易识别,其他5组变形弱、断距小不易识别,结合碳酸盐岩顶面曲率地震属性能够较好地实现走滑断裂解释(图3b)。NNE向走滑断裂多终止在却尔却克组顶部,石炭系底面无明显错动,表明石炭纪以后该组走滑断裂无明显活动,仅在古城西北部局部区域石炭系底面曲率地震属性有弱响应,向下断穿寒武系底面。从图4中可清楚地看出,古城地区NNE向走滑断裂早期活动产生的分支断裂断至鹰二段底面,所以鹰三段沉积末期(加里东中期)是NNE向走滑断裂的第一期活动。古城地区由于石炭系沉积前构造强烈隆升,导致泥盆系、志留系及却尔却克组上段部分遭受剥蚀,NNE向走滑断裂第二期活动时间的确定,需要从地层记录保存较全的邻区肖塘南区块推测。图4中粉红色的第二期活动走滑断裂断至泥盆系顶面,所以确定古城地区NNE向走滑断裂的第二期活动时期为加里东晚期—海西早期,在南部伴生2条NW向同时期的共轭剪断裂。

NNW向断裂(图4中淡绿色断裂)断开层位为石炭系底面至白垩系底面,活动时期为印支期。从石炭系底面曲率地震属性图上可以看出(图3c),NNW向断裂仅在古城西北部局部区域有一定程度发育,断距小、数量少,呈雁行式展布,该时期古城地区构造活动弱,构造稳定,有利于油气保存。

图2 古城地区综合柱状图Fig.2 Comprehensive stratigraphic column in Gucheng area

NW向断裂断开层位为白垩系至现今,活动时期为燕山期—喜马拉雅期,主要表现为小型正断裂(图3d),该时期古城地区构造活动弱,构造稳定,有利于油气保存。

图3 古城地区各主要层位曲率地震属性图Fig.3 Curvature attribute map of main horizons in Gucheng area

图4 古城地区南东—北西向地震剖面断裂解释图Fig.4 Fault interpretation results of SE-NW seismic profile in Gucheng area

针对古城地区5个走向的5期断裂分别开展断裂走向、发育数量、垂直断距及延伸长度数学统计分析(图5)。古城地区自最早期的加里东早期至喜马拉雅期,断裂走向从加里东早期NEE向80°变化为燕山期—喜马拉雅期NW向-30°,走向旋转了110°,代表了古城地区应力场的旋转变化特征。加里东中期发育NE向正断裂151条,断距在80m左右,延伸长度一般为30km;加里东中期—海西早期发育NNE向走滑断裂147条,断距在30m左右,延伸长度一般为10km。NE向和NNE向断裂活动强度大、延伸长,是古城地区最为重要的两组断裂,尤其是加里东中期—海西早期NNE向走滑断裂活动期,塔里木盆地发生大规模火山活动[21],热液流体活动对碳酸盐岩地层发生溶蚀作用,有利于储层改造和油气运移通道的形成,对增加碳酸盐岩储集空间、改善储层渗透能力有至关重要的作用,在两组断裂叠加部位,对储层的形成与油气成藏的意义更大[22-25]。两组断裂均断穿至下寒武统,能够有效沟通下部玉尔吐斯组烃源岩,通源性好,有利于油气规模聚集成藏。

图5 古城地区断裂特征统计分析图Fig.5 Statistical analysis of fault characteristics in Gucheng area

通过提取古城三维连片地震工区碳酸盐岩顶面曲率地震属性(图3b),可以看到古城地区发育的7组NNE向走滑断裂和6组NE向正断裂。NNE向走滑断裂活动强度整体弱于肖塘及以西地区,剖面上表现正花状和负花状样式,断距相对较小,按照活动强度划分均属于Ⅱ级走滑断裂,自西向东依次命名为FNNE1—FNNE7,其中FNNE2、FNNE5、FNNE7活动强度大于另外4组。NE向正断裂是成组分布的,自东南向西北方向活动强度依次减弱,依次命名为FNE1—FNE6,其中FNE1、FNE2、FNE3活动强度明显大于另外3组。古城地区碳酸盐岩顶面东南高、西北低 (图6),NE向正断裂对构造格局具有明显的控制作用,古城地区在FNE3以南整体处于构造高部位,FNE3以北构造逐渐降低,在FNE1及以南、FNE2和FNE3之间存在两个相对较高的构造垒带。

3 走滑断裂对储层的控制作用

经典地质模式及砂箱物理模拟实验分析表明,同一条走滑断裂由于弯曲或侧接,在不同的部位,可同时表现出拉张、挤压和平移3种不同的分段特征,在不同的分段内,受断裂控制的裂缝型储层的发育程度差别较大[26-28]。

本文砂箱物理模拟,设计了相同位移量条件下的左旋伸展应力场和右旋挤压应力场两组实验,目的是研究不同应力场对以白云岩为主的碳酸盐岩地层走滑断裂、裂缝型储层发育程度的控制作用。模型为60cm×40cm矩形框,下基底板为刚性有机玻璃板,实验开始一侧基底板移动。有机玻璃板东、西两侧放置挡板固定,左侧钢板为固定钢板,右侧板北部与马达相连,为移动板,在伸展过程中形成左旋剪切位移,挤压过程中形成右旋剪切位移,基底位移向上传播,实验温度为25℃。首先,在基底钢板上铺设4cm厚的白色石英砂;之后,利用右侧基底板北部马达对刚性有机玻璃板加载应力,电动机带动螺杆驱动,以恒定速度移动,加载速度为0.5mm/min,拍摄照片记录实验过程。结果表明(图7),左旋伸展应力场背景作用下,形成拉张型断裂叠覆区,走滑断裂表现为左旋左阶特征;右旋挤压应力场背景作用下,形成挤压型断裂叠覆区,走滑断裂表现为右旋左阶特征。两组实验分别形成了拉张型断裂叠覆区和挤压型断裂叠覆区,在位移量相同条件下,虽然拉张型断裂叠覆区变形范围较挤压型小,但断裂破碎带裂缝发育,储层条件更好;挤压型叠覆区变形范围更大,但断裂破碎带的裂缝发育程度不如拉张型,储层横向非均质性更强。

图6 古城三维连片地震工区碳酸盐岩顶面构造图Fig.6 Structural map of top carbonate rock in 3D continuous seismic work area in Gucheng area

在不同位移量条件下,拉张型、平移型和挤压型3种断裂叠覆区裂缝发育程度相互关系不同(图8)。受力强度越大,也就是位移量越大,走滑断裂叠覆区的变形强度越大,裂缝型储层越发育。反之受力强度越小,位移量越小,走滑断裂叠覆区的变形强度越小,裂缝型储层不发育。在小位移情况下,断控裂缝型储层发育程度由好至差依次为拉张型断裂叠覆区、平移型断裂叠覆区和挤压型断裂叠覆区。当位移量超过临界值时,也就是在大位移情况下,挤压型断裂叠覆区裂缝发育程度明显变好,而平移型断裂叠覆区变化不大,裂缝发育程度由好至差依次为拉张型断裂叠覆区、挤压型断裂叠覆区和平移型断裂叠覆区。也就是说,拉张型断裂叠覆区和大位移挤压型断裂叠覆区是断控裂缝型储层的有利发育部位。

白云岩与石灰岩在形变特性和溶蚀作用等方面均有较大差异。白云岩与石灰岩相比脆性强,在构造应力作用下变形的持续时间较长,易于产生裂缝,机械压实作用对白云岩晶间孔几乎没有影响,历经白云石化作用产生的基质孔隙也容易保存下来,构造裂缝能够有效增加基质孔隙的连通性,使得储层物性变好。但是白云岩的溶蚀作用较弱,很难形成规模洞穴型储层,规模洞穴在地震剖面上表现为串珠反射,与石灰岩相比白云岩层段串珠发育数量少,规模小,基质孔隙叠加改造裂缝是白云岩储层储集空间的主要类型。高、低能相带交替发育区,白云岩储集体的围岩为滩间等低能沉积的碳酸盐岩灰泥,而古城地区古城601井、古城17井、古城18井3口井在鹰三段目的层段169.6m取心分析表明高能滩体较为发育、错叠连片,滩地比高达78%以上,基质孔隙形成了准层状储层,在走滑断裂作用区内储层物性最好,优质储层与差储层缓慢过渡,无明显界线,所以白云岩发育区表现为“非储非盖”的特征。

图7 相同位移量条件下的不同应力场砂箱物理实验模拟图Fig.7 Simulation diagram of sandbox physical experiment with different stress fields given the same displacement

图8 不同位移量条件下的砂箱物理实验模拟图Fig.8 Simulation diagram of sand box physical experiment with different displacements

石灰岩的变形主要发生在初期阶段,后期变化较小,且机械压实作用对石灰岩储层影响较大,准同生期及早成岩期基质孔隙损失殆尽,构造应力作用下产生的裂缝为岩溶流体提供了优质通道,加大了溶蚀作用,容易产生大型溶洞型储层,围绕断裂特别是走滑断裂活动区,集中发育规模大、数量多的串珠或串珠集合体,规模洞穴叠加裂缝是石灰岩储层的主要储集空间特征。储集体与围岩具有明显的界线,古城石灰岩发育区钻探的城探1井、城探2井、城探3井是以寒武系为目的层,选择奥陶系断裂和储层不发育区部署,地震剖面上无串珠反射特征,也无明显的断裂发育,自然伽马、深浅侧向电阻率及声波时差曲线平直,气测全烃显示低于1%,无储层响应特征。这3口井以东的台缘礁滩体发育区,叠加FNNE7走滑断裂作用,典型串珠密集发育,好储层特征极为明显,最近的典型串珠距离城探2井1.1km,表明离开断裂作用影响区域突变为围岩,所以石灰岩发育区表现为“非储即盖”的特征。

4 走滑断裂与油气聚集关系

塔里木盆地塔西台地区走滑断裂发育,沿走滑断裂勘探是目前最重要的勘探思路,顺北、富满等油气田相继获得重大突破的勘探实践证实[29-32],NNE向走滑断裂体系控储、控藏、控富集,呈以断裂为主控因素的复式成藏特征,平面上受断裂发育程度、通源有效性等因素影响差异富集[33-36]。NNE向走滑断裂活动中心在塔西台地中部及西部,古城处于相对较弱的东部,虽然断裂变形相对较弱,但发育数量多,且多发育6组NE向的正断裂,NE向正断裂断距大、数量多,与NNE向走滑断裂约40°夹角相交,组成了空间立体网状的断裂体系,对古城地区优质储层形成、高效输导体系及天然气聚集成藏起重要的控制作用。

古城地区已钻井揭示烃类气体中甲烷含量超过98%,为典型的干性气藏,甲烷是最小分子的烃类气体,易于扩散,微小孔隙即可移动。古城中部及西部地区中—下奥陶统的鹰三段、鹰四段发育高能白云岩滩体、错叠连片[37],厚度大,分布范围广,晶间孔、晶间溶孔等基质孔隙较为发育,孔隙度在3%左右,优质储层与差储层缓慢过渡,无明显界限,在断裂带的构造破裂、岩体错位形成的构造增容作用下[38],物性明显变好,孔隙度最高可达15.1%。漫长的地质历史时期中天然气在白云岩地层中普遍存在,并沿断裂带高效富集,储集体准层状分布。古城东部以石灰岩为主,与顺北、富满地区石灰岩断溶体发育特征极为相似,储集空间主要来自于构造应力作用下产生的断裂及裂缝空腔,以及强溶蚀作用下产生的大型溶洞,沿走滑断裂活动区集中发育。储集体与围岩具有明显的界限,在走滑断裂作用区1.5km范围内储层物性极好,然后突变为围岩,几乎无储集性能,储集体为断裂控制的“竖直板状”独特的空间样式。

古城地区烃源岩有3套:(1)下寒武统玉尔吐斯组烃源岩,古城区内均有分布;(2)中—上寒武统斜坡相烃源岩,仅分布在古城东部镶边台地向海方向斜坡部位,呈南北条带状展布;(3)古城地区以东的奥陶系黑土凹组斜坡—盆地相烃源岩。3套烃源岩埋藏较深,古城地区均无钻井揭示,在研究区东部塔东隆起带上塔东1井、塔东2井和东探1井均钻揭了玉尔吐斯组和黑土凹组这两套烃源岩,黑土凹组烃源岩厚度为56~187m,TOC为0.21%~ 2.18%,Ro为1.73%~2.8%;玉尔吐斯组烃 源 岩厚 度 为54~109m,TOC为0.12%~7.69%,Ro为2.31%~2.9%,烃源岩厚度大、生烃潜力高。

NNE向走滑断裂近南北走向10°,断面直立、直入基底,有效沟通了下部的玉尔吐斯组烃源岩;NE向正断裂走向50°,断距最大可达80m,能够有效沟通下部的玉尔吐斯组烃源岩,还能沟通古城东部地区的黑土凹组和中—上寒武统斜坡相烃源岩。NNE向走滑断裂和NE向正断裂组成的网状输导体系,可为天然气聚集提供垂向和横向双向高效运移通道。

古城地区碳酸盐岩刚性地层与上覆的上奥陶统却尔却克组塑性地层界线清晰,两套地层能干性的差异导致走滑断裂带自下而上的变形样式有所不同,走滑断裂带普遍具有纵向分层变形、垂向多期叠加的演化特征[32],各期之间连通性差,有利于油气保存。上覆巨厚的却尔却克组以泥岩、泥质粉砂岩为主,单层厚度大,可作为古城地区优质区域性盖层。古城中西部与东部地区表现为两种不同的气藏类型。古城中西部白云岩发育区的“非储非盖”特征,储层准层状分布,使得天然气藏底部气水界面相对统一,形成了受构造背景控制的准层状岩性气藏,沿断裂带高效富集,气藏规模大,资源量计算时不仅考虑沿断裂带的高效富集带,还需要充分考虑基质孔隙的贡献。古城东部石灰岩发育区的“非储即盖”特征,可按照典型断溶体研究思路,横向非均质性极强,仅沿走滑断裂带高效富集,具有断溶体独特的“竖直板状”空间样式,不具有统一的气水界面,主干断裂带天然气充注条件更好(图9)。

通过统计14口探井与断裂距离、水层顶面海拔、气层底面海拔关系(表1)表明,FNE3以南高构造区测井解释水层顶界海拔为-5230m,测井解释上在低于海拔-5230m范围内仅发育厚度小于2m的Ⅱ类、Ⅲ类差气层,而厚度大的Ⅰ类或Ⅱ类含气储层均发育在海拔-5230m之上。FNE3以北低构造区油气充注条件较差,目前测井解释水层顶界海拔高度为-5091m。4口工业气流井距离NNE向走滑断裂垂直距离均小于或等于400m,与NE向断裂距离0.4~1.2km比较而言,气藏受NNE向走滑断裂控制作用更明显。

图9 古城地区天然气成藏模式图Fig.9 Gas accumulation mode in Gucheng area

古城6井、古城9井和古城7井与NNE向走滑断裂距离均较近,但储层发育程度和油气显示相差较大,原因是走滑断裂性质和断面特征有较大的差别。古城6井和古城9井所在的FNNE4走滑断裂活动强度相对较小,但整条断裂分支多,在地震剖面和曲率属性平面图上均表现出断面不“光滑”的特征,原因是FNNE4以拉张为主,存在多个拉张型断裂叠覆区,大大拓宽了断裂对两侧地层的影响范围,使得流体沿裂缝流动范围更广,改造作用更强、储层更发育[39],在构造位置高部位获得了工业突破(图10)。古城7井所在的FNNE5走滑断裂特征较清楚,活动较强,但整条断裂分支少,在地震剖面和曲率属性平面图上均表现出断面“光滑”的特征,原因是FNNE5以挤压为主,但挤压型叠覆区不发育,断裂对两侧地层的影响范围小,导致储层规模小,虽构造位置较高,无油气产出(图11)。古城601井、古城10井、古城11井、古城12井与NNE向走滑断裂距离较远,分别为1.4km、4.2km、3.45km、1.7km,导致储层发育程度较差,未获得工业发现。古城13井和古城15井与NNE向走滑断裂距离分别为0.9km和0.4km,但邻近的走滑断裂活动很弱,反映断层受力强度小、位移量小,走滑断裂叠覆区的变形强度小,裂缝储层不发育。古城14井距离FNNE5断裂0.9km,古城16井距离FNNE2断裂0.1km,储层均发育,但构造部位较低,油气充注条件较差,仅在海拔较高部分储层段获得低产气流。古城18井与NNE向、NE向两组断裂距离均为0.1km,但储层海拔均低于-5091m,油气充注条件差,无天然气产出,累计产水约200m3。

古城中西部白云岩发育区多数钻井均见到不同程度的气测显示,初步证实了是受构造背景控制的准层状岩性气藏,工业油气流井均分布在走滑断裂影响作用范围内,表明沿走滑断裂带天然气高效富集的特征,走滑断裂的活动强度、断面“光滑”程度等因素控制储层优劣及分布范围[40-41]。

表1 古城地区奥陶系钻井与断裂关系统计表Table 1 Relationship between oil and gas display in the Ordovician in wells and fault development in Gucheng area

图11 过古城7井FNNE 5走滑断裂活动特征地震剖面(左)及曲率地震属性平面图(右)Fig.11 Activity characteristic profile (left) and curvature attribute map (right) of FNNE5 strike slip fault cross Well Gucheng 7

5 结论

(1)古城地区主要发育NEE向、NE向、NNE向、NNW向和NW向5个走向的断裂,活动时间分别为加里东早期、加里东中期、加里东中期—海西早期、印支期和燕山期—喜马拉雅期5个时期。古城地区NE向、NNE向两组断裂活动强、数量相对较多,是该区最重要的两组断裂。其中NNE向走滑断裂多期持续活动,最后一期活动时间主要为加里东晚期—海西早期,对储层形成和气藏形成有重要意义。

(2)走滑断裂模拟实验结果表明,走滑断裂可形成拉张型、挤压型和平移型3种断裂叠覆区,不同位移情况下,断控裂缝储层发育程度不同,其中拉张型断裂叠覆区和大位移挤压型断裂叠覆区是断控裂缝储层的有利发育部位。

(3)由于白云岩与石灰岩相比脆性更强,更容易产生裂缝,基质孔隙更发育,受沉积相带及白云石化作用控制,白云岩储层呈准层状分布,优质储层与差储层缓慢过渡,无明显突变界线,白云岩发育区常表现为“非储非盖”的特征。石灰岩易受机械压实作用影响,而且胶结作用强,在准同生期及早成岩期基质孔隙已经损失殆尽,在晚期走滑断裂作用下易沿走滑断裂带发生大规模溶蚀,形成大型缝洞型储层,储集体与围岩具有明显的界线,表现为“非储即盖”的特征。

(4)古城中西部与东部地区表现为两种不同的气藏类型。古城中西部白云岩发育区天然气藏准层状分布,气水界面相对统一,形成了受构造背景控制的准层状岩性气藏。古城东部石灰岩发育区具典型断溶体特征,横向非均质性极强,天然气藏沿走滑断裂带高效富集,具有断溶体独特的“竖直板状”空间样式。

(5)古城地区中西部白云岩区,应加强走滑断裂活动特征、裂缝预测方法及优质储层刻画技术研究,沿走滑断裂带部署长水平段水平井,提高基质孔隙内天然气藏的动用率,实现古城中西部白云岩发育区效益勘探。

猜你喜欢

碳酸盐岩白云岩储层
遵化市魏家井白云石矿冶金用白云岩矿地质特征
大牛地气田奥陶系碳酸盐岩元素录井特征分析
冷冻断裂带储层预测研究
“深层页岩气储层”专辑征稿启事
“深层页岩气储层”专辑征稿启事
川西北建筑石料用白云岩可行性研究及开发利用前景分析
四川江油市马头山地区三叠系碳酸盐岩地热资源特征
陕西洛南县北部冶金级白云岩分布规律及物性特征
中国的白云岩与白云岩储层:分布、成因与控制因素
贵州云炉河坝地区铅锌矿床元素地球化学特征、碳氧同位素组成及其地质意义