岩芯XRF扫描在湖泊年纹层研究中的应用
——以青藏高原东南缘新路海为例*
2022-09-05刘丽媛王晶晶刘兴起冯盛楠
秦 蓉,刘丽媛,王晶晶,刘兴起,张 琪,冯盛楠
(首都师范大学资源环境与旅游学院,北京 100048)
湖泊年纹层是指以年为周期的层状沉积物,是一种保存完好的原生沉积结构单元[1],同冰芯、石笋和树轮一样,可以获得年际乃至季节性的高分辨率古气候环境变化信息[2-5]. 近百年来,有关湖泊年纹层的研究主要集中在欧洲、北美[6-7],我国的年纹层湖泊研究开展虽较晚,但随着研究的开展,越来越多的年纹层湖泊被发现,主要有青藏高原的新路海[8]、苏干湖[9]、库赛湖[10-11]、江错[12],东北的二龙湾[13]、四海龙湾[14]和小龙湾[15-16],以及河北坝上高原的安固里淖[17].
前人采用传统的纹层大薄片法,对青藏高原东南缘新路海的纹层年代学、纹层厚度的气候指示意义、160年以来的气候演化及其驱动机制等方面做了深入的研究[8]. 本研究将对新路海岩芯进行XRF扫描分析,利用X射线图像所获得的明暗层、Rad峰值、Fe和Zr元素峰值标记方法,确定纹层厚度,进行纹层计年;从微观尺度上,利用薄片μ-XRF元素扫描解释年纹层的形成机理;阐释纹层厚度的气候指示意义,对新路海近100年的气候演化进行重建,并与前人的结果及其他记录进行对比,探讨其驱动机制. 本研究不仅能够为利用XRF技术进行其他湖泊年纹层的研究提供借鉴,而且能够为进一步利用新路海年纹层进行更长时间尺度的古气候环境研究提供科学依据.
1 研究区概况
新路海(31°50′~31°51′N,99°6′~99°7′E)位于青藏高原东南部甘孜藏族自治州德格县境内,是我国最大的冰川终碛堰塞湖. 湖面海拔4040 m,湖泊面积为3.3 km2,流域集水面积80.1 km2,最大水深为66 m(图1a,1b)[25]. 在地质构造上,新路海流域位于川西义敦岛弧北端的雀儿山地区,基岩由中-新生代花岗岩组成,岩性以黑云母二长花岗岩为主体[26]. 湖面从每年11月冰封至翌年3月下旬解冻,结冰期长达半年之久. 该湖泊主要受降水和高山冰雪融水补给,湖泊南部有源于冰川的季节性河流注入,补给系数为24,湖水出流为朝曲河,下注玉曲,最终汇入金沙江[25]. 根据德格县气象站1957-2019年的气象资料(中国气象数据网http://data.cma.cn),该地区年平均气温为6.8℃,3-10月月均温在0℃以上,年平均降水量为626 mm,6-9月为每年的雨季,占全年降水总量的77%(图 1c). 该湖所在区域主要受西南季风和南支西风的影响[27],夏半年(5-10月)降雨充沛,自5月份西南季风的影响逐渐增强,在10月份退出本区域. 冬半年(11月-次年4月)气候偏冷干,西风环流微弱,降水较少,以降雪为主,仅为全年降水的8%; 西风环流在印度洋西南季风的影响下只能携带少量水汽,因此该区域降水主要受西南季风的控制.
2 样品与方法
2.1 样品采集
2019年7月利用奥地利产UWITEC重力钻,在新路海湖心(31°51′N,99°6′E)水深65.4 m处采得3根岩芯(图 1d),分别为XLHS-Ⅰ(岩芯长36 cm)、XLHS-Ⅱ(岩芯长40 cm)和XLHS-Ⅲ(岩芯长52 cm),岩芯保存在PVC管中,运回实验室并储存于5℃的冰柜中. 用岩芯切割机沿中轴线对称将岩芯XLHS-Ⅰ和XLHS-Ⅱ剖开,进行照相和岩性描述,其中一半用作纹层岩相薄片的制作,另一半用于XRF元素扫描. 将XLHS-Ⅲ岩芯以0.5 cm间隔分样,用于210Pb/137Cs测年.
图1 新路海及取样位置:新路海在青藏高原的位置(a)、新路海流域地形图(b)、 德格县1957-2019年的月均温度及月均降水量(c)、新路海水深及采样位置(d)Fig.1 Location of Lake Xinluhai and sampling sites: The location of Lake Xinluhai on the Qinghai-Tibetan Plateau (a); Topographic map of Lake Xinluhai watershed (b); The monthly average temperature and precipitation of 63-year (1957-2019) meteorological data from the Dege Station (c); Water depth of Lake Xinluhai and sampling sites (d)
2.2 岩相薄片制作和纹层计年
用自制的分样铲从岩芯中分割出60 mm×15 mm×15 mm的样块(每个样块间互相重合20 mm),放入70 mm×20 mm×20 mm铝盒中,用液氮速冻20 min左右后快速放置于冷冻干燥机中干燥48 h,将干燥的样块在通风橱中注胶,注胶完全凝固后的样块经粘片、切割、粗磨、细磨、抛光后,制成厚度在50 μm左右的岩相薄片,用于纹层镜下观察和计年.
2.3 210Pb/137Cs测年
将分好的XLHS-Ⅲ岩芯样品冷冻干燥后,称取4~5 g的样品研磨至100目(0.150 mm)左右,装入5 mL聚乙烯的塑料管中,利用美国ORTEC公司的高纯锗γ谱仪测量样品中210Pb、226Ra和137Cs的比活度.
2.4 XRF岩芯元素扫描
用瑞典产的ITRAX XRF岩芯扫描仪,对剖开的XLHS-Ⅰ和XLHS-Ⅱ岩芯进行高分辨率的光学照相、X射线图像获取和元素扫描. 扫描采用铑(Rh)管为放射源,扫描步长为200 μm, X射线图像获取的电压为60 kV,电流为35 mA,曝光时间为800 ms;元素扫描时设置电压为30 kV,电流为55 mA,时间为3 s,元素的相对含量以cps(counts per second)计.
2.5 纹层薄片μ-XRF扫描
利用布鲁克高性能微区X射线荧光光谱仪(M4 TORNADO)对纹层薄片进行微区元素面扫描,扫描的电压设置为50 kV,扫描步长为20 μm.
3 结果
3.1 纹层特征
从显微镜下观察来看,新路海的纹层整体上由深色、浅色层碎屑纹层交互构成(图2),相比之下,深色层的厚度较薄、沉积物颗粒较细,而浅色层的厚度较厚、沉积物颗粒较粗,但深色层和浅色层的界限并不是很清晰,另外个别层中还存在微层,因此,这些特征必然为利用显微镜进行纹层计年带来一定的不确定性.
通常X射线通过高密度成分时会产生更高的衰减,指示X射线图像明暗程度的Rad值变小,获得的X射线图像较暗;相反,如果Rad值变大,则获得的X射线图像较浅,亮度较大[28]. 新路海岩芯的X射线图像呈现很好的明暗条带(图2),且界线清晰,表明新路海的纹层由高密度层和低密度层交互构成,分别对应于纹层的粗颗粒层和细颗粒层,高密度层的Rad值明显比低密度层的Rad值小. XRF岩芯的元素扫描结果显示,Zr元素含量相对高的层对应于X射线图像暗色层及Rad相对低的层,反之对应于X射线图像的明亮层及Rad相对高的层,而Fe元素则与Zr元素的富集情况相反,即Fe元素含量相对高的层对应于X射线图像明亮层及Rad相对高的层,反之对应于X射线图像的暗色层及Rad相对低的层(图 2). 上述新路海岩芯X射线图像、XRF扫描的元素特征,为根据其季节周期性波动特征进行纹层计年提供了可能(图 2).
图2 新路海纹层镜下结构、X射线图像、Rad值、Zr和Fe元素的XRF扫描结果Fig.2 Thin-section image, X-radiography and corresponding Rad values, Zr and Fe contents measured by XRF core scanner for varves in Lake Xinluhai
图3 新路海岩芯纹层的X射线图像、 Rad值峰值、Zr和Fe元素峰值计年及 其与 210Pb/137Cs测年结果的对比Fig.3 The varve chronology of Lake Xinluhai based on X-radiography, peak of Rad value, Zr and Fe contents, and its comparison with 210Pb/137Cs dating
3.2 纹层年代学
根据X射线图像的明暗层、Rad值的峰值、Zr和Fe元素峰值标记法,对XHLS-Ⅱ岩芯进行纹层计年. 结果显示,不同计年方法所获得的年代随深度的变化曲线基本一致(图3). 经过多次计数,X射线图像、Rad值、Zr和Fe元素4种纹层计年方式的计年结果分别为100、99、102和99年,综合计年结果为(100±2)年. X射线图像、Rad峰值计年、Fe元素峰值的计年结果几乎相同,而Zr元素峰值的计年结果比前3种方法多2~3年,这是可能是因为Zr元素形成于夏季层(见4.1节的讨论),新路海夏季形成的部分年纹层存在亚层[8],其与夏季季节性的降水不均有关,因此利用Zr元素峰值识别层时识别了亚层,从而导致了其计年比其他方法的略多. 新路海岩芯的137Cs比活度,自30 cm左右出现并往上开始逐渐增加,并在约24 cm处达到最大值, 这与1963年左右的核试验活跃期相对应;210Pb的CIC模式年龄显示,24 cm处的年代为1960年,与137Cs峰值对应的1963年基本吻合. 各种纹层的计年方法显示,24 cm左右处的纹层计年平均值为1960,且年代随深度的变化与210Pb的CIC模式年龄十分吻合,表明基于X射线图像、Rad峰值、Zr和Fe元素峰值的计年方法是可靠的.
图4 新路海纹层薄片μ-XRF的元素面扫描 (红色条带指示Si元素富集的粗颗粒层, 绿色条带指示Fe元素富集的细颗粒层) Fig.4 μ-XRF element mapping of the thin section in varved Lake Xinluhai (The red band indicates the coarse grain layer enriched in Si and the green band indicates the fine grain layer enriched in Fe)
3.3 μ-XRF扫描
从纹层薄片进行的μ-XRF元素面扫描结果来看,新路海年纹层中的Si和Fe元素分布具有明显的差异,Si和Fe元素分别主要赋存在粗颗粒层和细颗粒层中,从而呈现出以Si元素为主的粗颗粒层和以Fe元素为主的细颗粒层交替出现的层偶(图 4).
4 讨论
4.1 新路海年纹层的形成机理
从新路海的纹层结构及元素的分布来看,新路海的年纹层类型为碎屑年纹层,主要是由粗颗粒层和细颗粒层层偶组成,粗颗粒层相对较厚,细颗粒层相对较薄(图2);Si和Zr在粗颗粒层中含量高,而Fe在细颗粒层含量相对高(图2,4). 前人的研究表明,Si主要赋存于砂和粉砂的硅酸盐矿物和石英(SiO2)中,通常用来指示粗粉砂和砂粒组分[29],Zr元素主要存在于致密的抗侵蚀矿物锆石(ZrSiO4)中[30],在沉积物中以碎屑颗粒的形式赋存于粗粒沉积组分中[31];而Fe在黏土矿物中含量较高[32-33],许多高山冰川湖泊或极地湖泊中的年纹层中都呈现这种元素分异特征[24,32,34]. 年纹层沉积物的物源主要是由径流输入,形成粗细颗粒分异明显的碎屑年纹层,直接导致元素在不同的季节层中差异富集. 结合新路海的气候环境条件,本研究认为,春、夏季气温升高,会导致雀儿山上的季节性积雪和部分冰川融化,冰川融水增多,同时春、夏季降水增多,致使新路海入湖的径流增大,并携带大量碎屑颗粒物质进入湖泊,入湖后随着水动力条件的减弱,粗颗粒物质便在湖泊中沉淀下来,从而使得赋存在粗颗粒物质中的Si和Zr含量增高,由于春、夏季进入新路海的物源较丰富,从而形成的粗颗粒层较厚(图5a);而到了秋、冬季,温度降低、降水减少,致使入湖径流量减少,特别是冬季新路海封冻后,无物源补给,湖水中存在的细颗粒悬浮物会在整个冬季缓慢沉淀,形成赋存Fe的细颗粒层,由于湖面冰封河流断流,湖中无物源补给,因此形成的细颗粒层较薄(图5b). 因此,本研究认为新路海的纹层中,较厚且Zr和Si元素高的粗颗粒层形成于春、夏季,而较薄且Fe含量高的细颗粒层形成于秋、冬季.
图5 新路海年纹层形成过程示意图Fig.5 The sedimentary process diagram of the varves in Lake Xinluhai
4.2 纹层厚度的气候指示意义
采用X射线图像明暗层、Rad峰值法、Zr和Fe元素峰值法获得的新路海纹层的厚度随年代变化的结果基本相同(图 6),且与前人根据纹层大薄片所获得的结果也基本一致,但存在一些细微的差别,这些差别可能是由不同方法对纹层厚度测量判断的方法不同、纹层的清晰程度以及测量误差等造成的.
湖泊年纹层的形成往往受多种因素的影响,如温度、降水、冰川活动、风成活动、火山、地震等[10,35-39],并记录了过去的气候环境变化信息. 温度可能会通过影响季节性积雪和冰川的融化,而对新路海纹层产生影响,德格县气象站记录的气温大于0℃以上的月份主要集中在3-10月,因此,为了明确纹层厚度的气候指示意义,将新路海纹层厚度与德格县气象站记录的1957-2019年的气象数据进行了对比,通过相关分析可以看出,新路海纹层厚度与年降水量之间的 Pearson 相关系数为 0.547(P<0.01)(图 7a),与3-10月的月均温的相关性较弱(Pearson相关性,r=0.306,P<0.05,图7b),表明新路海纹层厚度可能更多反映了降水的信息. 年纹层厚度取决于沉积物的沉积速率,输入通量越高,年纹层越厚,而输入通量主要受物源及水动力条件(地表径流量)的控制,降水量的增多能够引起入湖径流量及碎屑物质的增多,从而形成较厚的纹层,反之则形成较薄的纹层.
4.3 纹层厚度对近百年气候变化的响应
前文分析认为,新路海纹层厚度可以指示区域内的年均降水量,将新路海近100年来的纹层厚度变化(图8a),与昆明气象站历史文献重建的湿度记录(干旱/洪水指数)(CAMS)[40-42](图8b)、喜马拉雅山区Dasuopu冰川年平均积雪量(图8c)[43]和树轮δ18O重建的尼泊尔喜马拉雅地区的季风降水[44](图8d)对比发现,其变化基本一致. 近百年来,西南地区的季风降水呈现逐渐减少的特点. 频谱分析表明(图9),在>95%的置信水平上,新路海的纹层厚度存在2年和7~8年的周期,而在>90%的置信水平上,存在4~5年的周期,这与前人的研究结果一致[8]. 其中7~8年的周期与ENSO的周期吻合. 众多研究表明,热带海温变化对亚洲季风降水的时空变化有重要影响[45],特别是ENSO对印度季风环流的影响已被广泛研究[46-50]. Chen和Yoon[51]的研究表明,ENSO在年际尺度上可以显著影响印度半岛的水分条件. 近100年新路海纹层厚度的变化与Nio 3指数呈现反相关的关系(图8a,e),和SOI指数变化趋势基本一致(图8f),显示了近100年热带太平洋海表温度(SST)和ENSO对印度季风降水的影响. ENSO对印度季风降水的影响被认为与Walker环流上升和下降分支的东西位移有关,类El Nio条件下西太平洋海温异常变暖可能导致Walker环流上升支向东移动,下沉气流广泛分布在印度东北部和中国西南部,抑制了这些地区的季风降雨[52]. 另外,Krishnan等[53]研究发现,太平洋年代际涛动(PDO)也在调节年际季风变化中发挥重要作用. 具体来说,当El Nio(La Nia)事件发生在PDO的正(负)相位时(图 8g),印度夏季季风降雨强度往往低于(高于)正常水平[53]. 当PDO和ENSO处于正相位时候,新路海的纹层厚度减小,指示了印度夏季风降雨强度的减弱,区域内会出现干旱. 反之,区域内降水增多. 这是由于ENSO和PDO的锁相所导致的SST异常的增强可以改变对流和动力场,从而影响热带太平洋和印度季风地区. 另外,印度洋和太平洋的变暖可能导致海陆梯度减弱,从而减少南亚季风在区域内的降水量.
图7 新路海年纹层厚度(5点滑动平均)与德格气象站记录的年降水量(a)(5点滑动平均)、 3-10月气温(b)(5点滑动平均)的对比Fig.7 Varve thickness variations (5-point running average) of the core in Lake Xinluhai and their comparison with annual precipitation (a) (5-point running average) and air average temperature (5-point running average) between March and October from Dege meteorological station
图8 100年以来新路海纹层厚度三点滑动平均结果及趋势线(绿虚线)(a)和昆明历史文献 干湿指数记录三点滑动平均结果(红实线)(b),达索普冰川年平均积雪量三点滑动平均结果及 趋势线(红虚线)(c),喜马拉雅山区树轮δ18O记录及趋势线(蓝虚线)(d), Nio 3指数三点滑动平均结果(e),SOI指数三点滑动平均结果(f), PDO指数三点滑动平均结果(数据来源于https://psl.noaa.gov/gcos_wgsp/)(g)的对比Fig.8 Comparison of the varve thickness after 3-point running average of Lake Xinluhai and a linear trend line (green dotted line) during the last 100 years (a), with Drought/Flood Index in the Kunming area reconstructed from Chinese historical documents and a 3-point running average result (red solid line) (b), snow accumulation data from Dasuopu Glacier after 3-point running average result and a linear trend line (red dotted line) (c),δ18O of tree ring from Himalayan region of Nepal and a linear trend line (blue dotted line) (d), indices after 3-point running average of the Nio 3 (e), the SOI Insonsia (f), and the PDO from https://psl.noaa.gov/gcos_wgsp/ (g)
Ummenhofer等[54]指出,1877-2005年期间亚洲季风以及温带的干旱模式与ENSO和印度洋偶极子(IOD)相关的印度-太平洋气候变化有关. 新路海纹层厚度存在的4~5年周期(图 9),可能与印度洋偶极子变率的影响相关[55-57]. Ashok等[58]研究发现IOD和ENSO在过去的40年不同程度地影响了南亚夏季风, IOD对西南季风降水具有重要的调节作用,印度地区受到因ENSO和IOD引起的大气环流异常的影响,主要取决于印度-太平洋区域两种主要热带现象的相位和振幅. 当印度洋偶极子处于正相位(pIOD)时,东印度洋海面温度下降,减弱气流的活动,导致周边陆地发生干旱.
图9 近100年以来新路海纹层厚度的周期分析Fig.9 Spectral analysis of varve thickness in Lake Xinluhai over the last 100 years
新路海纹层厚度存在的2年左右的周期,可能对应ENSO周期的两年分量[59]或准两年周期振荡(QBO). Reed等最先发现赤道地区平流层风场的准2年周期变化现象[60],之后各种海面温度、海平面压力和气温数据被证明具有25~30个月之间的周期震荡现象[61];印度-太平洋海平面压力和地面风速也存在24~30个月的振荡现象[59]. 有研究表明,QBO信号是调节ENSO变率的基本要素,更强的厄尔尼诺事件和QBO的周期之间存在着紧密联系[62]. 综上,新路海纹层厚度反映的近100年的西南季风降水,可能受到ENSO、PDO、IOD和QBO的影响和调节.