高盐碱环境下大口黑鲈幼鱼生长性能、血液生理指标与质构特征研究*
2022-09-05逯冠政么宗利来琦芳高鹏程朱浩拥刘一萌
逯冠政 么宗利 来琦芳 高鹏程 周 凯 朱浩拥 刘一萌 孙 真
高盐碱环境下大口黑鲈幼鱼生长性能、血液生理指标与质构特征研究*
逯冠政1么宗利2①来琦芳2高鹏程2周 凯2朱浩拥3刘一萌2孙 真2
(1. 江苏海洋大学 江苏省海洋生物技术重点建设实验室 江苏 连云港 222052;2. 中国水产科学研究院东海水产研究所 农业农村部低洼盐碱地水产养殖重点实验室 中国水产科学研究院盐碱水域渔业工程技术研究中心(上海) 上海 200090;3. 江苏中洋集团股份有限公司 江苏 南通 226000)
盐碱水在世界范围内广泛分布,高碳酸盐碱度、高pH等是盐碱水制约养殖生物生存生长的关键因子。作为潜在的经济养殖对象,大口黑鲈()已在部分盐碱水域养殖成功,但其对盐碱的适应范围尚不清楚。本文研究了高盐碱环境下大口黑鲈生长性能,测定了大口黑鲈48 h碳酸盐碱度半致死浓度,设置盐水组[SW,盐度为7.50±0.07,碳酸盐碱度为(1.81± 0.12) mmol/L]、碱水组[AW,盐度为0.35±0.02,碳酸盐碱度为(9.96±0.03) mmol/L]和淡水对照组[FW,盐度为0.13±0.01,碳酸盐碱度为(1.82±0.11) mmol/L],对比研究大口黑鲈长期盐碱胁迫下生长指标、血液生理指标、肌肉质构特性指标。结果显示,大口黑鲈48 h碳酸盐碱度半致死浓度为(29.92± 3.90) mmol/L,能够在盐度10以下的水环境中安全存活;经过105 d养殖实验,FW、SW以及AW组存活率和终末体重无显著性差异;3组特定生长率(SGR)表现为波动式变化规律,15~45 d、60~75 d时,SGR持续降低,45~60 d、75~90 d时,SGR持续增高;肥满度FW组最高,SW组最低,AW组居中,但均小于3;在碱度为10 mmol/L的水环境中,24 h内血氨变化表现为先升高后降低,最后趋于稳定,在盐度为7的水环境中,渗透压维持在(319.53±29.51) mOsm/kg,淡水环境下的渗透压维持在(300.00±16.44) mOsm/kg,均保持较好的存活率;盐碱水养殖大口黑鲈在盐水组表现出较好的肌肉硬度[(34.70±4.86) N],碱水组则表现出较好肌肉弹性[(1.06±0.10)mm]。综上所述,大口黑鲈能够适应高盐碱环境,在盐度为7、碱度为10 mmol/L的盐碱水中养殖,并且表现出较好的质构特征。
碳酸盐碱度;盐度;大口黑鲈;生长指标;血氨;质构特性
我国拥有广袤的盐碱地资源,面积达9.9×107hm2(贾恢先, 2003),绝大多数处于荒芜状态(马晨等, 2010;王慧等, 2003)。盐碱水具有水化学类型多样、水质缓冲能力差、高pH值、高碳酸盐碱度、高离子系数和主要离子比例失衡等特点,使得大多数水生生物难以适应,水产养殖产量不稳定(黎道丰等, 2000; 王慧, 2006)。近年来为开发盐碱地养殖潜力,相关科研院所进行了大量研究探索,发现了十余种适合盐碱水养殖的水产对象,包括凡纳滨对虾()、脊尾白虾()、异育银鲫()、大鳞鲃()、尼罗罗非鱼()和青蛤()等,且进行了大规模的养殖(曾凡勇等, 2018; 李明栋等, 2021; 林听听等, 2012; 沈立等, 2014; 王艳玲等, 2021; 张宇婷等, 2021)。但随着盐碱地水产养殖产业的发展,现有养殖对象不能满足各地区的需求,需要探索更多优良养殖新对象。
大口黑鲈()俗名加州鲈,属鲈形目(Perciformes)、鲈亚目(Porcoidei)、太阳鱼科(Cehtrachidae)、黑鲈属(),是一种优质的淡水鱼类,具有适应性强、生长快、易起捕、养殖周期短等优点,加之肉质鲜美细嫩,无肌间刺,外形美观,受到市场与消费者的欢迎。自20世纪80年代引进后,已成为我国淡水养殖业的一种重要经济鱼类(刘家照等, 1990; 谭肖英等, 2005)。大口黑鲈在甘肃、天津等部分盐碱水域养殖成功(臧莉等, 2021; 来琦芳等, 2021),但其对盐碱的适应范围尚不清楚。
盐碱地水产养殖的3个主要限制性因素包括pH、盐度和碳酸盐碱度,均会对水生生物的生存与生长造成显著影响。盐度主要通过影响水生生物的渗透调节,进而影响能量代谢(李希国等, 2006; 王云峰等, 2002)。水环境盐度产生的渗透压与内环境渗透压相近时,水生生物用于渗透调节的能量消耗较低,能够提高水生生物的存活率,促进水生生物的生长,若环境盐度产生的渗透压远高于或低于内环境渗透压,水生生物无法适应盐度变化带来的内环境离子变化,则存活率和生长率会显著下降(黄屾等, 2021; 刘济源等, 2012)。
碳酸盐碱度与pH对于水生生物适应盐碱环境的毒害作用是协同的,二者主要影响水生生物的酸碱调节与氨氮排泄(Wilkie, 1994、1996)。鱼类通过鳃组织进行气体交换,最终将体内多余的CO2排出体外,将水中溶解的O2吸入体内。当水环境中碳酸盐碱度和pH升高时,使鳃组织内外两侧的pH梯度差增大,H+外流增多,CO2被过多地携带出鳃组织,鱼类血浆pH升高,造成呼吸性碱中毒(Yao, 2016; Wright, 1993)。硬骨鱼类体内的蛋白质终产物大多为氨,包括分子氨和离子氨,通过与鳃组织边缘的H+结合生成易溶于水的离子氨,顺着鳃组织两侧离子氨浓度梯度排出体外。当水环境中碳酸盐碱度与pH过高时,鳃组织两侧离子氨浓度梯度缩小甚至倒置,致使硬骨鱼类氨排泄受阻,血液中的氨浓度升高,对机体产生毒害作用等(衣晓飞等, 2017)。
盐度还会影响水产动物肌体的粗蛋白、粗脂肪、粗灰分和水分等体常规成分(柳旭东等, 2008),鲤鱼(L)在盐度为10的水环境中肌肉脂肪含量显著降低,胶原蛋白含量显著升高,肌纤维耐折能力增强(李小勤等, 2007)。随着盐度的升高,乌鳢()肌肉的咀嚼性、硬度和胶黏性均有上升的趋势,盐水养殖的乌鳢肌肉咀嚼性和硬度显著高于对照组(李小勤等, 2008),说明盐度可以提升鱼类的肌肉质构特征。通过改变水环境盐度,吉富罗非鱼()的肌肉胶黏性和弹性、咀嚼性均有显著提升(郭振等, 2014)。
为探究高盐碱环境下大口黑鲈幼鱼生长性能和适应能力,本研究测定了大口黑鲈幼鱼48 h碳酸盐碱度半致死浓度,设置盐水组[SW,盐度为7.50±0.07,碱度为(1.81±0.12) mmol/L]、碱水组[AW,盐度为0.35±0.02,碱度为(9.96±0.03) mmol/L]和淡水对照组[FW,盐度为0.13±0.01,碱度为(1.82±0.11) mmol/L],对比研究大口黑鲈幼鱼长期在盐碱胁迫下的生长指标、血液氨氮、血浆渗透压、肌肉质构特性指标,以期为盐碱水中大口黑鲈棚塘接力等养殖提供支撑。
1 材料与方法
1.1 实验用鱼与暂养条件
实验所用大口黑鲈来自江苏南通繁育场,规格为(15.10±2.82) g、(9.02±0.13) cm的幼鱼用于生长实验,(1.84±0.70) g、(2.34±0.11) cm的幼鱼用于急性毒性实验,暂养容器为1000 L聚乙烯水缸,密度为500 ind./m3。日换水量为50%,养殖用水为曝气24 h的过滤自来水(开能AC/KDF150-1-300)。暂养水温为(22±1)℃,溶解氧为(7.0±0.5) mg/L,氨氮为(0.16± 0.02) mg/L,亚硝态氮为(0.03±0.01) mg/L。每天投喂1次,投喂量为存鱼量总体重的1%,饵料为商品配合饲料(东裕丰),暂养15 d后开始实验。
1.2 实验设计
1.2.1 盐度及碳酸盐碱度对大口黑鲈的急性毒性 根据预实验结果,盐度梯度设置为10、12、14和16,实验用盐水使用海水晶(Bluesea蓝海,青岛)配制,使用前曝气24 h,淡水组作为对照,每组3个重复,每个重复投放16尾鱼,实验容器为水量10 L的实验缸,每个缸中配备充气头进行不间断充气,实验用水为曝气24 h的过滤自来水,水温为(23.2±1.2)℃,溶解氧为(7.0±0.5) mg/L。实验期间停喂,每隔24 h换水80%,每天测量水体温度、溶解氧和盐度,每24 h统计一次大口黑鲈死亡数量,每8 h观察大口黑鲈存活情况,及时将死鱼捞出。
根据预实验数据结果,碱度梯度设置为0、30 (CA30)、35 (CA35)、40 (CA40)和45 mmo/L (CA45) 5组,其中0 mmol/L为淡水对照组(FW)。每组3个重复,每个重复投放20尾鱼。实验用碱水采用Na2CO3、NaHCO3按照质量比为1∶16.1配制,每次换水时收集2 mL实验用水测定氨氮浓度,其他实验条件同盐度急性毒性实验。
1.2.2 盐度及碳酸盐碱度对大口黑鲈生长的影响
根据急性毒性实验结果及常见盐碱水盐碱度 (胡红浪等, 2021),以淡水组(FW)作为对照,设置盐度为7 (SW),碳酸盐碱度为10 mmol/L (AW)的实验水体进行105 d生长实验,每个实验组设置3个重复,每个重复放置30尾鱼。实验容器为水量100 L聚乙烯水缸,每个水缸配备充气头不间断充气,实验用水为曝气24 h的过滤自来水。实验开始前,将大口黑鲈进行盐碱驯化,首先转移到盐度为5、碳酸盐碱度为5 mmol/L的水体中,每24 h盐度提升1,碳酸盐碱度提升2 mmol/L,直至暂养水体盐度与碳酸盐碱度达到实验设置浓度。实验用盐水为海水晶(Bluesea蓝海,青岛)配制,实验用碱水采用Na2CO3、NaHCO3按照质量比1∶16.1配制,使用前曝气24h。水温为(23.2±1.2)℃,溶解氧为(7.0±0.5) mg/L,每24 h换水80%,每日测量水体温度、pH、盐度,换水前与换水后,收集2 mL水样,用于检测水体氨氮。虹吸法除去水体中的残饵粪便,使用管径15 mm的塑料软管进行虹吸,将实验缸底的粪污小心吸出,直到实验缸剩余20 L水,用水泵将曝气24 h实验用水缓慢地加入实验缸底,期间实验鱼保持平静游泳状态,直至加水至100 L刻度线,整个过程避免接触实验鱼。采用此换水方法可明显减少实验鱼剧烈运动,从而避免实验鱼应激。换水后1 h投喂存鱼量总体重的1%配合饲料。每15 d实验鱼用麻醉剂MS-222麻醉后测量每尾鱼的体长与体重,实验用麻醉剂为MS-222溶液(200 mg/L),使用NaHCO3与实验用水将麻醉剂pH与盐度调整到与实验水体相同水平。计算存活率(survival rate, SR)、特定生长率(specific growth rate, SGR)和肥满度(condition factor, CF),并绘制体长体重拟合曲线,计算公式如下:
式中,为养殖时间,为大口黑鲈幼鱼初始平均体重(g),为大口黑鲈终末平均体重,为大口黑鲈终末平均体长(cm)。
1.2.3 盐度及碳酸盐碱度对大口黑鲈血气指标的影响 实验进行到105 d时,每个实验组随机选取 5尾大口黑鲈,使用MS-222鱼用麻醉剂麻醉后,在尾端静脉使用肝素锂润湿的注射器抽取20 μL血液,立即离心(4500 r/min, 4℃),进行渗透压检测;另取30尾大口黑鲈(15.10±2.82) g,进行24 h碱度胁迫,实验条件与1.2.2中碱水组相同,对照组与淡水组相同,胁迫期间停喂,每6 h随机抽取5尾麻醉,抽取血液,立即离心,取上清液进行血氨的测定。血氨检测使用南京建成血氨试剂盒(A086-1-1),血浆渗透压使用露点渗透压仪(Vapor Pressure Osmometer-5520, 美国)测量。
1.2.4 盐度及碳酸盐碱度对大口黑鲈背部肌肉质构特性的影响 实验进行到105 d时,每个实验组随机选取5尾大口黑鲈,使用MS-222鱼用麻醉剂麻醉后,使用外科手术刀与剪刀取背部一侧肌肉(3.01± 0.14)g,剪去肌肉外皮,取样肌肉体积尽量相近(2.04± 0.12) cm3,取样结束后,使用TMS-Pro质构仪(Food Technology Corporation, 美国)进行肌肉质构特性测定,测定模式为TPA模式,测试速度为30 mm/min,形变量为50%,回程距离为30 mm。
1.3 数据分析
统计数据表示为平均值±标准差(Mean±SD)。所有数据符合正态分布,所有数据均经过方差齐性检验,显著性水平>0.05,采用单因素方差分析(one-way ANOVA)分析盐度、碳酸盐碱度对存活率以及特定生长率、肥满度、质构特性的影响,使用LSD法进行多重比较,显著性水平为<0.05,统计分析使用SPSS 25.0软件,大口黑鲈半致死碱度使用Proc probit (SAS University Edition)进行统计和计算。
2 结果
2.1 大口黑鲈碳酸盐碱度及盐度急性毒性
如图1所示,在48 h,0~45 mmol/L碱度范围内,随着碳酸盐碱度的升高,大口黑鲈的死亡率逐渐升高,对照组死亡率为0%。CA45、CA40处理组的死亡率分别达到(90.00±10.00)%和(86.67±10.40)%,显著高于CA30组(46.67±15.27)%。大口黑鲈48 h碳酸盐碱度半致死浓度为(29.92±3.90) mmol/L。实验期间,淡水组和碱水组的水体氨氮维持在(42.69±7.03)~ (14.71±10.01) μmol/L范围内。
图1 碳酸盐碱度胁迫48 h大口黑鲈死亡率
FW、CA30、CA35、CA40和CA45分别表示淡水组和碳酸盐碱度为30、35、40和45 mmol/L的实验组;不同字母表示差异显著(<0.05),下同。
FW, CA30, CA35, CA40, and CA45 represent fresh water group and carbonate alkalinity group of 30, 35, 40, and 45 mmol/L; Different lowercase letters indicate significant differences among each group (<0.05), the same as below.
如图2所示,在96 h内,随着盐度的上升,大口黑鲈的死亡率有明显升高。对照组死亡率为0,盐度升至14时,大口黑鲈的死亡率为(14.58±3.60)%,显著高于对照组(<0.05),盐度上升至16时,死亡率达到100%,其他盐水组死亡率为0。
2.2 盐碱胁迫对大口黑鲈生长性能的影响
2.2.1 存活率 如图3所示,经过105 d的盐碱水养殖实验,大口黑鲈AW组平均存活率为(73.33± 14.52)%,SW组平均存活率为(90.00±5.77)%,FW组平均存活率为(65.00±22.19)%,3组数据不存在显著差异。
图2 盐度胁迫96 h大口黑鲈死亡率
图3 盐碱水养殖大口黑鲈105 d存活率(n=3)
2.2.2 平均体重 如表1所示,在105 d的盐碱水养殖实验中,大口黑鲈的体重呈现出增长的趋势,碱水组、盐水组与对照组的趋势相同,终末体重淡水组>碱水组>盐水组,但组间差异不显著;每个统计周期中,盐水组、碱水组和淡水组的体重也不存在显著差异。
2.2.3 特定生长率 如图4所示,特定生长率表现为波动式变化规律。15~45 d和60~75 d阶段,SGR均表现为持续降低。15 d时,SW组SGR (1.68±0.05)%/d显著高于AW组(1.23±0.25)%/d (<0.05),但与FW组(1.48±0.03)%/d不存在显著差异;45 d时,FW组SGR (0.81±0.10)%/d显著高于AW组(0.53±0.13)%/d,与SW组(0.66±0.11)%/d无显著性差异;45~60 d和75~105 d阶段,SGR呈上升趋势。60 d时,FW组SGR (1.32± 0.13)%/d显著高于AW组(0.87±0.13)%/d和SW (0.91± 0.03)%/d,SW组与AW组之间不存在显著差异。90 d时,FW组SGR (1.37±0.21)%/d显著高于AW (0.91± 0.21)%/d与SW组(0.99±0.14%)/d,SW组与AW组之间不存在显著差异,其余时间各组之间不存在显著差异。
表1 大口黑鲈盐碱水养殖实验平均体重
Tab.1 Average body weight of largemouth bass exposed to saline-alkaline water for 105 d (g)
2.2.4 体长体重拟合曲线 如图5所示,体长体重拟合曲线值AW组 2.2.5 肥满度 如图6所示,大口黑鲈盐碱水养殖实验肥满度变化趋势与特定生长率相似,在数值上呈现波动式变化;105 d实验结束时,AW组肥满度为2.28±0.07,SW组为2.17±0.03,FW组为2.41±0.08,FW组显著高于SW组,与AW组没有显著差异,AW组与SW组不存在显著差异;结合数据来看,淡水环境下饲养的大口黑鲈肥满程度较高,盐水环境下大口黑鲈肥满度较低。 图4 大口黑鲈盐碱水养殖实验体重特定生长率 图5 大口黑鲈盐碱水养殖实验体长体重拟合曲线 2.3.1 盐碱胁迫对大口黑鲈血浆渗透压的影响 如图7所示,养殖105 d的大口黑鲈SW组血浆渗透压为(319.53±29.51) mOsm/kg,FW组为(300.00± 16.44) mOsm/kg,AW组为(302.00±26.21) mOsm/kg,SW组血浆渗透压显著高于FW组,与AW组之间不存在显著差异,FW组与AW组之间不存在显著差异。 2.3.2 24 h碱水组大口黑鲈血液氨氮浓度变化 如图8所示,在24 h内,在碳酸盐碱度为10 mmol/L的水环境中,大口黑鲈血氨浓度呈现先升高后降低最后稳定的趋势,在18 h时血氨浓度达到最高(387.79± 140.21) μmol/L。淡水组保持较低水平,最低为6 h时(128.16±45.28) μmol/L,最高为18 h时198.82 μmol/L。碱水组血氨浓度在6、12、18和24 h时均显著高于对照组。 如表2所示,SW组背部肌肉硬度显著高于FW组与AW组(<0.05)。FW组与SW组背部肌肉黏附性显著高于AW组(<0.05)。SW组背部肌肉黏附伸长度显著高于FW组与AW组(<0.05)。SW组背部肌肉弹性显著低于FW组与AW组(<0.05)。SW背部肌肉胶黏性显著高于AW(<0.05)。FW背部肌肉咀嚼性显著高于SW组(<0.05)。 图6 大口黑鲈盐碱水养殖实验肥满度 图7 盐度与碳酸盐碱度对大口黑鲈血浆渗透压的影响 图8 碱度胁迫下大口黑鲈24 h血氨浓度变化 本研究中,大口黑鲈在碳酸盐碱度为10 mmol/L、盐度为7的水环境中养殖成活率达到73%~90%,体重增长方式与淡水组类似呈现波动式差异,最终平均体重与淡水组不存在显著差异,表现出较好的生长性能,但在15~45 d、60~75 d期间出现特定生长率低于淡水组的现象,这与盐度和碳酸盐碱度影响鱼类代谢 耗能相关。养殖水环境中的盐度与碳酸盐碱度能够影响鱼类的渗透调节与氨氮代谢等生理过程,使得鱼类用于渗透调节和氨氮代谢的能量需求升高,与淡水环境相比,鱼类可用于生长的能量减少。大部分淡水鱼类在较高盐度的水体中表现出生长受到抑制的现象,比如欧亚鲈鱼(L.)可以在盐度0~4的水环境中获得最佳的生长率和存活率,当养殖环境盐度超过4以后,会对欧亚鲈鱼的生长率和存活率产生显著影响,水环境盐度为10时,欧亚鲈鱼的存活率、生长率降低至50% (Overton, 2008);盐度在0.3~3之间提升,可提高鲤鱼幼鱼和卵的成活率和生长率,但在盐度14时,鲤鱼幼鱼出现成活率下降,生长率降低的情况(Lam, 1985)。高碱胁迫下鱼类通常表现为养殖成活率低、生长速度慢,比如大鳞鲃幼鱼特定生长率与饵料转化率在碳酸盐碱度高于25.10 mmol/L的水环境中显著下降,碱度升高至39.80 mmol/L时,大鳞鲃幼鱼生长受到抑制(党云飞等, 2013);咸海卡拉白鱼()的增重率在碳酸盐碱度为32.20 mmol/L的水环境受到抑制,60 d后死亡率达到5%,碱度上升至44.98 mmol/L,12 d死亡率达100%(蔺玉华等, 2004);杂交鲟(♀♂)在水环境中的死亡率与碱度呈正相关,水环境碱度越低,杂交鲟死亡率越低,碱度升高至16.67 mmol/L时,死亡率达到87.4%(王念民等, 2022)。本实验盐度接近大口黑鲈血浆渗透压,且盐水环境与淡水环境相比更不易出现病害,大口黑鲈表现出较好的生长性能。本实验发现的盐碱水养殖大口黑鲈波动式生长性能,为养殖策略的制定提供了依据。 表2 盐度和碳酸盐碱度对大口黑鲈背部肌肉质构特征的影响 Tab.2 The texture characteristics of the back muscles of largemouth bass exposed to saline-alkaline water for 105 d 注:同列数据肩标字母不同表示组间差异显著(<0.05)。 Note: Different superscripts letters in each column indicate significant difference among each group (<0.05). 经过105 d的盐度、碱度水环境胁迫,大口黑鲈表现出较强的盐碱耐受性,盐水组血浆渗透压与淡水组相比有显著的上升,为(319.53±29.51) mOsm/kg,但上升幅度较小,仅为淡水组的6.3%;碱水组在24 h内的血氨变化趋势为先升高再降低,最后趋于稳定,且高于淡水组,结合存活率和生长率表现来看,大口黑鲈已经适应了这些环境变化。盐度升高会直接导致鱼类渗透调节与离子调节失衡,淡水鱼类通常通过改变血浆渗透压等途径来适应水环境盐度的升高(Evans, 2010)。在96 h,盐度为10的盐胁迫实验中,尼罗罗非鱼血清渗透压稳定在380 mOsm/kg附近,高于淡水组的312 mOsm/kg (赵丽慧等, 2014);在14 d、盐度为10的盐度胁迫实验中,日本鳗鲡()血清渗透压稳定在340 mOsm/kg附近,与等渗点渗透压329.1 mOsm/kg接近(夏保密等, 2016);史氏鲟()在盐度10的水环境中,渗透压定在290 mOsm/kg左右,高于淡水组的262 mOsm/kg (赵峰等, 2006)。 碳酸盐碱度的升高带来的pH值升高会抑制鱼类的酸碱调节和氨氮排泄(Randall, 1989; Whittamore, 2012);氨氮排泄受到抑制时,表现为血氨持续升高,到达临界值后会对鱼体产生严重的毒害作用(Michael, 1996),某些鱼类能够调节氨排泄减少毒害作用,比如在高碱胁迫下青海湖裸鲤()氨氮排泄率起初受到抑制,但在96 h内经过重建氨分压梯度恢复对氨的排泄(衣晓飞等, 2017)。在本研究中,大口黑鲈血浆氨氮浓度变化说明碳酸盐碱度与pH的变化影响了大口黑鲈的正常氨排泄过程,使得氨排泄效率下降,但其血氨浓度在24 h内恢复,表现一定的氨排泄调控能力。 血浆渗透压与血浆氨氮浓度变化说明,在本实验设定盐碱环境的胁迫下,大口黑鲈可调节离子调控和氨氮排泄,进而适应盐碱环境。这2个血液生理指标为判断鱼类对盐碱环境的适应程度,筛选耐盐碱品种提供理论依据。 在本研究中,盐度与碳酸盐碱度对大口黑鲈肌肉质构的影响表现为盐水组硬度、黏附性、胶黏性高于淡水组,碱水组弹性高于盐水组、与淡水组无差别。质构是指由食品成分和组织结构决定的机械学或流变学性质,包括硬度、胶黏性、内聚性、咀嚼性、弹性,是评价肉类鲜度与感官品质的关键指标(刘婧懿等, 2020)。李小勤等(2008)研究发现,当盐度从0逐步上升值10时,乌鳢肌肉的咀嚼性、硬度出现先下降后上升的趋势,盐度为10时,肌肉的咀嚼性均高于对照组。通过改变水体盐度,发现随着盐度的提升,吉富罗非鱼的咀嚼性有上升的趋势,硬度也会随着盐度的上升而上升,处理时间延长,硬度提升越明显 (郭振等, 2014)。斑节对虾()的肌肉硬度、咀嚼性随养殖水环境的盐度上升呈现出增高趋势,硬度和咀嚼性在各组间均达到极显著差异水平(周伟等, 2018)。本研究结果说明,盐碱水养殖大口黑鲈表现出较好的质构特征,进而提高其经济价值,为评价盐碱水养殖对象品质提供参考。 经过105 d的盐碱水养殖实验,大口黑鲈在盐碱水中表现出较好的生长性能,淡水组、碱水组和盐水组存活率无显著差异,3组终末平均体重无显著差异,特定生长率在105 d中表现为波动式变化,肥满度淡水组最高,盐水组最低,碱水组居中,但均小于3。 大口黑鲈具有较强的盐碱耐受性,在碱水环境中,24 h内血氨变化表现为先升高后降低,最后趋于稳定;在盐水环境中,渗透压表现为小幅度上升,最终维持在(319.53±29.51) mOsm/kg。 盐碱水养殖大口黑鲈具有更好的质构特征,在盐水组表现出较好肌肉硬度(34.70±4.86) N,碱水组表现出较好肌肉弹性(1.06±0.10) mm。 DANG Y F, XU W, GENG L W,. Effects of NaCl and NaHCO3on growth and gill microstructure in juvenileJournal of Fishery Sciences of China, 2013, 20(3): 577–584 [党云飞, 徐伟, 耿龙武, 等. NaCl盐度和NaHCO3碱度对大鳞鲃幼鱼生长及鳃组织特征的影响. 中国水产科学, 2013, 20(3): 577–584] EVANS D H. A brief history of fish osmoregulation: The central role of the Mt. Desert Island Biological Laboratory. Frontiers in Physiology, 2010, 1(13): 1–10 GUO Z, LIANG Y J, YANG G. The effects of salinity changes on the nutritional value and flavor of GIFT's muscle. Freshwater Fisheries, 2014, 44(4): 77–82 [郭振, 梁拥军, 杨广. 改变水体盐度对吉富罗非鱼肌肉营养和呈味的影响. 淡水渔业, 2014, 44(4): 77–82] HU H L, LAI Q F, YAO Z L,. Green technology and model of saline-alkaline aquaculture. Beijing: China Agriculture Press, 2021, 1–111 [胡红浪, 来琦芳, 么宗利, 等. 盐碱水绿色养殖技术模式. 北京:中国农业出版社, 2021, 1–111] HUANG S, LI C Z, LI Z X,. Effects of different salinity on growth and osmotic regulation gene expression of. Fisheries Science, 2021, doi: 10.16378/j.cnki. 1003–1111.21077 [黄屾, 李长忠, 李梓瑄, 等. 盐度对青海湖裸鲤生长及渗透调节基因的影响. 水产科学, 2021, doi: 10.16378/j.cnki.1003–1111.21077] JIA H X. Soil salinization control and sustainable agriculture in north-west endoland region of China. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(6): 1063–1068 [贾恢先. 中国西北内陆盐渍化防治与可持续农业的研究. 西北植物学报, 2003, 23(6): 1063–1068] LAI Q F, YAO Z L, GAO P C,. Saline-alkaline water environment and farming species. Beijing: China Agriculture Press, 2021, 1–40 [来琦芳, 么宗利, 高鹏程, 等. 盐碱水环境与增养殖种类. 北京. 中国农业出版社, 2021, 1–40] LAM T J, SHARMA R. Effects of salinity and thyroxine on larval survival, growth and development in the carp,. Aquaculture, 1985, 44(3): 201–212 LI D F, CAI Q H. Comparison of fish flora in waters with different salinity and the growth of main commercial fishes. Acta Hydrobiologica Sinica, 2000, 24(5): 493–501 [黎道丰, 蔡庆华. 不同盐碱度水体的鱼类区系结构及主要经济鱼类生长的比较. 水生生物学报, 2000, 24(5): 493–501] LI M D, LI J T, SHI K P,. Estimation of heritability and genetic correlation of saline-alkali tolerance inProgress in Fishery Sciences, 2021, 42(1): 117–123 [李明栋, 李吉涛, 史鲲鹏, 等. 脊尾白虾耐盐碱性状遗传力和遗传相关的估计. 渔业科学进展, 2021, 42(1): 117–123] LI X G, LI J E, OU Y J. Effects of salinity on digestive enzyme activity and diurnal variation of digestive enzyme activity of young yellowfin black porgy. Marine Fisheries Research, 2006, 27(1): 40–45 [李希国, 李加儿, 区又君. 盐度对黄鳍鲷幼鱼消化酶活性的影响及消化酶活性的昼夜变化. 海洋水产研究, 2006, 27(1): 40–45] LI X Q, LI X X, LENG X J,. Effect of different salinities on growth and flesh quality of. Journal of Fisheries of China, 2007, 31(3): 343–348 [李小勤, 李星星, 冷向军, 等. 盐度对草鱼生长和肌肉品质的影响. 水产学报, 2007, 31(3): 343–348] LI X Q, LIU X M, LENG X J,. Effect of salinity on growth and flesh quality of snakehead. Oceanologia et Limnologia Sinica, 2008, 39(5): 505–510 [李小勤, 刘贤敏, 冷向军, 等. 盐度对乌鳢()生长和肌肉品质的影响. 海洋与湖沼, 2008, 39(5): 505–510] LIN T T, LAI Q F, LU J X,. Toxic effects of several saline- alkali factors onMarine Fishery, 2012, 34(2): 183–188 [林听听, 来琦芳, 陆建学, 等. 几种盐碱因子对青蛤的致毒效应. 海洋渔业, 2012, 34(2): 183–188] LIN Y H, GENG L W, LU J X,. Studies on tolerance ofto salinity and alkalinity. Journal of Jilin Agricultural University, 2004, 26(5): 561–565 [蔺玉华, 耿龙武, 卢金星, 等. 咸海卡拉白与对盐碱耐受性研究. 吉林农业大学学报, 2004, 26(5): 561–565] LIU J Y, YAO Z L, LAI Q F,. Effects of saline-alkali stress on the oxygen consumption and plasma osmolality and ion concentrations of. Chinese Journal of Ecology, 2012, 31(3): 664–669 [刘济源, 么宗利, 来琦芳, 等. 盐碱胁迫对青海湖裸鲤耗氧率、血浆渗透浓度和离子浓度的影响. 生态学杂志, 2012, 31(3): 664–669] LIU J Y, ZHAO Q C, CHENG S F,. Research progress on the influencing factors and determination methods of fish muscle texture. Journal of Food Safety and Quality, 2020, 11(9): 3035–3043 [刘婧懿, 赵前程, 程少峰, 等. 鱼肉质构的影响因素及测定方法研究进展. 食品安全质量检测学报, 2020, 11(9): 3035–3043] LIU J Z, XIAN C B, YE X,. Artificial reproduction and embryonic development of largemouth bass. Freshwater Fisheries, 1990(1): 15–16 [刘家照, 冼炽彬, 叶星, 等. 大口黑鲈人工繁殖和胚胎发育. 淡水渔业, 1990(1): 15–16] LIU X D, ZHANG L M, WANG J Y,. The influence of salinity on the body composition and tissue structure of aquatic animals. Animals Breeding and Feed, 2008(9): 60–64 [柳旭东, 张利民, 王际英, 等. 盐度对水产动物体组成与组织结构的影响. 养殖与饲料, 2008(9): 60–64] MA C, MA F Y, LIU T X,. Research progress on improvement and utilization technology of saline-alkali land. World Forestry Research, 2010, 23(2): 28–32 [马晨, 马履一, 刘太祥, 等. 盐碱地改良利用技术研究进展. 世界林业研究, 2010, 23(2): 28–32] MICHAEL P W, CHRIS M W. The adaptations of fish to extremely alkaline environments. Comparative Biochemistry and Physiology, Part B Biochemistry and Molecular Biology, 1996, 113(4): 665–673 OVERTON J L, BAYLEY M, PAULSEN H,Salinity tolerance of cultured Eurasian perch,L.: Effects on growth and on survival as a function of temperature. Aquaculture, 2008, 277(3): 282–286 RANDALL D J, WOOD C M, PERRY S F,. Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature, 1989, 337(6203): 165–166 SHEN L, HAO Z R, ZHOU K,. Tolerability studies ofto salinity and carbonate alkalinity. Marine Fisheries, 2014, 36(5): 445–452 [沈立, 郝卓然, 周凯, 等. 异育银鲫“中科三号”对盐度和碳酸盐碱度的耐受性. 海洋渔业, 2014, 36(5): 445–452] TAN X Y, LIU Y J, TIAN L X,. The effects of dietary carbohydrate levels on the growth, nutrient composition of juvenile largemouth bass. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005, 44(z1): 258–263 [谭肖英, 刘永坚, 田丽霞, 等. 饲料中碳水化合物水平对大口黑鲈生长、鱼体营养成分组成的影响. 中山大学学报(自然科学版), 2005, 44(z1): 258–263] WANG H, LAI Q F, FANG W H. The influence of saline- alkaline water resources on fishery development in Yundong area of Cangzhou. Hebei Fisheries, 2003(5): 16–18 [王慧, 来琦芳, 房文红. 沧州运东地区盐碱水资源对开展渔业的影响. 河北渔业, 2003(5): 16–18] WANG H. One hundred technical questions and answers about aquaculture in saline-alkaline land (Ⅰ). Hebei Fisheries, 2006(2): 27–28 [王慧. 盐碱地水产养殖技术100问(一). 河北渔业, 2006(2): 27–28] WANG N M, YANG H L, FENG C J,. Effects of different carbonate alkalinity on survival, growth and biochemical indexes in serum of three-month-old hybrid sturgeon (♀×♂). Journal of Shanghai Ocean University, 2022, doi: 10.12024/jsou.20210603495 [王念民, 杨合霖, 丰超杰, 等. 碳酸盐碱度对3月龄杂交鲟(♀♂)生长与血清生化指标的影响. 上海海洋大学学报, 2022, doi: 10.12024/ jsou.20210603495] WANG Y F, ZHU X H. A review on impact of salinity on patterns of fish ecophysiology. Studia Marina Sinica, 2002(44): 151–158 [王云峰, 朱鑫华. 盐度对鱼类生态生理学特征的影响. 海洋科学集刊, 2002(44): 151–158] WANG Y L, ZHAO Y, CHEN M,. Study on carbonate alkalinity tolerance of Nile tilapia. South China Fisheries Science, 2021, 17(5): 71–78 [王艳玲, 赵岩, 陈铭, 等. 尼罗罗非鱼对碳酸盐碱度耐受性研究. 南方水产科学, 2021, 17(5): 71–78] WHITTAMORE J M. Osmoregulation and epithelial water transport: Lessons from the intestine of marine teleost fish. Journal of Comparative Physiology B Biochemical Systems and Environmental Physiology, 2012, 182(1): 1–39 WILKIE M P, WOOD C M. The adaptations of fish to extremely alkaline environments. Comparative Biochemistry and Physiology, Part B Comparative Biochemistry, 1996, 113(4): 665–673 WILKIE M P, WRIGHT P A, IWAMA G K,. The physiological adaptations of the Lahontan cutthroat trout () following transfer from well water to the highly alkaline waters of Pyramid Lake, Nevada (pH 9.4). Physiological Zoology, 1994, 67(2): 355– 380 WRIGHT P A, IWAMA G K, WOOD C M. Ammonia and urea excretion in Lahontan cutthroat trout () adapted to the highly alkaline Pyramid Lake (pH 9.4). Journal of Experimental Biology, 1993, 175: 153–172 XIA B M, HOU J L, ZHAO F,. Effect of salinity on osmoregulation of. Chinese Journal of Ecology, 2016, 35(8): 2182–2188 [夏保密, 侯俊利, 赵峰, 等. 盐度对日本鳗鲡()渗透压调节的影响. 生态学杂志, 2016, 35(8): 2182–2188] YAO Z L, GUO W F, LAI Q F,.decreases cytosolic carbonic anhydrase expression to compensate for respiratory alkalosis and osmoregulation in the saline-alkaline Lake Qinghai. Journal of Comparative Physiology B Biochemical Systems and Environmental Physiology, 2016, 186(1): 83–59 YI X F, LAI Q F, SHI J Q,. Nitrogenous waste excretion and gene expression of nitrogen transporter inin high alkaline environment. Journal of Fishery Sciences of China, 2017, 24(4): 681–689 [衣晓飞, 来琦芳, 史建全, 等. 高碱环境下青海湖裸鲤氮废物排泄及相关基因的表达规律. 中国水产科学, 2017, 24(4): 681–689] ZANG L, ZHENG Y K, ZHONG W H,Key points of aquaculture technology in saline-alkaline water ponds in Tianjin. China Fisheries, 2021(3): 91–92 [臧莉, 郑艳坤, 钟文慧, 等. 天津地区盐碱水池塘水产养殖技术要点. 中国水产, 2021(3): 91–92] ZENG F Y, LUO K, LUAN S,. Analysis of growth and survival among different families ofin the chloride typed alkaline water. Journal of Fishery Sciences of China, 2018, 25(2): 308–315 [曾凡勇, 罗坤, 栾生, 等. 凡纳滨对虾在氯化物型盐碱水养殖环境下不同家系间生长、存活性能分析. 中国水产科学, 2018, 25(2): 308–315] ZENG F Y, LUO K, LUAN S,. The influence of salinity acclimation on activity of Na+/K+-ATPase in branchial epithelium concentration of ions and osmolarity in serum of. Journal of Fisheries of China, 2006, 30(4): 444–449 [赵峰, 庄平, 章龙珍, 等. 盐度驯化对史氏鲟鳃Na+/K+–ATP酶活力、血清渗透压及离子浓度的影响. 水产学报, 2006, 30(4): 444–449] ZHANG Y T, YANG J, GENG L W,. Effect of NaHCO3alkalinity on oxidative stress of. Periodical of Ocean University of China (Natural Science), 2021, 51(11): 32–39 [张宇婷, 杨建, 耿龙武, 等. NaHCO3碱度胁迫对大鳞鲃氧化应激水平的影响. 中国海洋大学学报(自然科学版), 2021, 51(11): 32–39] ZHAO L H, ZHAO J L, THAMMARATSUNTORN J,. Effects of salinity-alkalinity on serum osmolality, ion concentration and mRNA expression of ion transport enzymes of. Journal of Fisheries of China, 2014, 38(10): 1696–1704 [赵丽慧, 赵金良, Thammaratsuntorn Jeerawat, 等. 盐碱胁迫对尼罗罗非鱼血清渗透压、离子浓度及离子转运酶基因表达的影响. 水产学报, 2014, 38(10): 1696–1704] ZHOU W, WANG Y, SUN X L,. Effect of stocking salinity on muscle quality of. Food Research and Development, 2018, 39(22): 7–14 [周伟, 王洋, 孙学亮, 等. 养殖盐度对斑节对虾肌肉品质的影响. 食品研究与开发, 2018, 39(22): 7–14] Growth Performance, Blood Parameters, and Texture Characteristics of Juvenile Largemouth Bass () Exposed to Highly Saline-Alkaline Water LU Guanzheng1, YAO Zongli2①, LAI Qifang2, GAO Pengcheng2, ZHOU Kai2, ZHU Haoyong3, LIU Yimeng2, SUN Zhen2 (1. Jiangsu Ocean University, Jiangsu Provincial Key Laboratory of Marine Biotechnology, Lianyungang, Jiangsu 222052, China;2. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Saline-Alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Saline-Alkaline Water Fisheries Engineering Technology Research Center (Shanghai), Shanghai 200090, China; 3. Jiangsu Zhongyang Group Co., Ltd, Nantong, Jiangsu 226000, China) The total saline-alkaline land area in China is approximately 99.1 million hectares, distributed throughout northern China, coastal areas, and areas along the bank of the Yellow River. About 45.9 million hectares of saline-alkaline water areas are distributed around these lands, most of which are athalassic saline water characterized by high pH and high carbonate alkalinity concentrations with various types of ion imbalances. The co-effect of high pH and high carbonate alkalinity would directly lead to the respiratory alkalosis of aquatic organisms. High pH affects the excretion of ammonia, resulting in increased blood ammonia and acid-base imbalance. High ionic coefficient affects the osmotic regulation and breaks the ion balance in aquatic organisms. Thus, saline-alkaline water has not been fully used because of its stressful environmental characteristic. Currently, the lack of suitable objects for the saline-alkaline aquaculture restricts the development of the aquaculture industry on saline-alkaline land.Largemouth bass () is a potential economic target that has been successfully farmed in some saline-alkaline waters. However, largemouth bass's tolerance range and response mechanism to saline-alkaline water are still unclear. This study evaluated the growth performance of juvenilelargemouth bass in a saline-alkaline environment to propose excellent farming species for saline-alkaline aquaculture. First, the juvenilelargemouth bass response to 48 h carbonate alkalinity and 96 h semi-lethal salinity was determined. Hereafter, the saltwater group [SW, salinity of 7.50±0.07, and carbonate alkalinity of (1.81±0.12) mmol/L], alkaline water group [AW, salinity of 0.35±0.02, and carbonate alkalinity of (9.96±0.03) mmol/L], and freshwater control group [FW, salinity of 0.13±0.01, and carbonate alkalinity of (1.82±0.11) mmol/L] were set to comparatively study the growth parameters, physiology parameters, and muscle texture characteristic indexes of largemouth bass under long-term saline-alkaline stress. For the growth experiment, largemouth basses were acclimated to and reared in FW, SW, and AW conditions for 105 days. Triplicate of 30 individuals each were set for each condition using an experimental plastic tank with 100 L of water. Each fish's body length and weight were measured every 15 days after being anesthetized with MS-222. For the physiology parameters study, five largemouth basses were randomly selected from each group at the end of the growth experiment. The fish were anesthetized with MS-222 to draw 20 μL of blood from the tail vein using a syringe moistened with lithium heparin, which was immediately centrifugated to measure osmolality. Another 30 largemouth basses were taken and subjected to 24 h carbonate alkalinity stress. The experimental conditions were the same as AW group, and the control group was the same as FW group. During the stress period, feeding was stopped, and blood was drawn from five randomly selected fish every 6 h and centrifuged immediately to determine blood ammonia (blood ammonia kit A086-1-1 by Nanjing Jiancheng). Plasma osmolality was measured using an osmometer (Wescor Vapro 5520 Vapor Pressure Osmometer, USA). For the muscle texture characteristic index study, five largemouth basses were randomly selected from each group at the end of the growth experiment. After being anesthetized with MS-222, the muscles on the fish's backside (3.01±0.14) g were taken by using a surgical scalpel and scissors, the muscles' outer skin was cut off, and the sampled muscle sizes were standardized to (2.04±0.12) cm3. After sampling, the TMS-Pro texture analyzer (Food Technology Corporation, USA) was used to measure the muscle texture characteristics, employing the TPA mode, test speed of 30 mm/min, deformation amount of 50%, and return distance of 30 mm.The results showed that in the 48 h carbonate alkalinity group, the semi-lethal concentration was (29.92±3.90) mmol/L, while the fish could survive safely in water with salinity below 10 mmol/L. After 105 days of farming, there are no significant differences in the survival rate and final weight among different groups, in which the specific growth rate (SGR) showed a regular variation. During 15~45 days and 60~75 days, SGR decreased continuously, while it increased during 45~60 days and 75~90 days. The condition factors of the largemouth bass were less than 3 in all groups, with an increase from FW to AW and from AW to SW groups. In the AW group, the blood ammonia within 24 h showed an increase, then a decreased, and finally stabilized. In the SW group, the osmolality was (319.53±29.51) mOsm/kg, lower than the (300.00±16.44) mOsm/kg observed for the FW group. Largemouth bass raised in saline-alkaline water had better texture characteristics. Largemouth bass raised in SW group had a higher muscle hardness of (34.70±4.86) N, while a higher springiness of (1.06±0.10)mm was observed in the AW group.In summary, the largemouth bass could adapt to the relatively high saline-alkaline environment and be cultured in typical saline-alkaline water with pH from 8.84 to 8.89, carbonate alkalinity from 9.89 to 10.31 mmol/L, salinity from 6.68to 7.21, showing good muscle quality characteristics with high muscle hardness and springiness.The success of largemouth bass in saline-alkaline water aquaculture has provided an opportunity to promote the aquaculture of this fish in a saline-alkaline stressful environment, providing the theoretical basis for the mechanisms involved in this adaptation process. Our study will broaden the scope of aquaculture in saline-alkaline water, improving the economic benefits and providing the basic parameters for the quality evaluation of fish in saline-alkaline fisheries. Carbonate alkalinity; Salinity; Largemouth bass; Growth index; Blood ammonia; Texture characteristics YAO Zongli, E-mail: yaozl@ecsf.ac.cn 10.19663/j.issn2095-9869.20220112002 *国家重点研发计划(2019YFD0900404)和中央级公益性科研院所基本科研业务费专项(2020TD52; 2021XT04)共同资助 [This work was supported by National Key Research Program (2019YFD0900404), and Special Scientific Research Funds for Central Non-Profit Institute (2020TD52; 2021XT04)]. 逯冠政,E-mail: gzstable16@163.com 么宗利,研究员,Email: yaozl@ecsf.ac.cn 2022-01-12, 2022-03-22 S965.99 A 2095-9869(2022)04-0001-11 http://www.yykxjz.cn/ 逯冠政, 么宗利, 来琦芳, 高鹏程, 周凯, 朱浩拥, 刘一萌, 孙真. 高盐碱环境下大口黑鲈幼鱼生长性能、血液生理指标与质构特征研究. 渔业科学进展, 2022, 43(4): 01–11 LU G Z, YAO Z L, LAI Q F, GAO P C, ZHOU K, ZHU H Y, LIU Y M, SUN Z. Growth performance, blood parameters and texture characteristics of juvenile largemouth bass () exposed to highly saline-alkaline water. Progress in Fishery Sciences, 2022, 43(4): 01–11 (编辑 陈 辉)2.3 盐碱胁迫对大口黑鲈血浆渗透压和血氨的影响
2.4 盐度及碳酸盐碱度对大口黑鲈背部肌肉质构特性的影响
3 讨论
3.1 盐碱胁迫对大口黑鲈生长性能的影响
3.2 盐碱胁迫对大口黑鲈生理指标的影响
3.3 盐碱胁迫对大口黑鲈质构特征的影响
4 结论