非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能
2022-07-27安琳吴淏韩鑫李耀刚王宏志张青红
安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红
补充材料
非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能
安琳1, 吴淏1, 韩鑫2, 李耀刚1, 王宏志1, 张青红1
(1. 东华大学 材料科学与工程学院 纤维材料改性国家重点实验室, 上海 201620; 2. 华东理工大学 化工学院 化学工程联合国家重点实验室, 上海 200237)
图S1为原料GO和实验制得NGCo的XRD图谱。由图可见, 经过氨气处理后, 2=10.04°处GO的峰完全消失, 同时在226.2°出现了一个新的宽化衍射峰, 对应rGO的(002)晶面, 这一现象说明GO全部转变成rGO[S1–S3]。NGCo的XRD谱图在2=43.7°和50.8°处出现新的衍射峰, 与立方相Co5.47N的标准卡片(JCPDF 41-0943)吻合, 归属为(111)和(200)晶面, 说明制得的样品为rGO和Co5.47N的混合物。
根据物理吸附等温线分类, 图S2的线形可以归属于Ⅲ类型, 为无孔或者大孔结构[S4]。由BET方程可以得出P25、NGCo和P25/NGCo-25样品的比表面积分别为52.7、145.9和66.7 m2∙g–1, 引入高比表面积NGCo提高了复合样品的比表面积, 但是低于两者的加和计算值(76.0 m2∙g–1), 说明两者复合界面牢固, 一定程度上减少了比表面积。
图S3(a~d)分别为NGCo、P25/NGCo-5、P25/ NGCo-15和P25/NGCo-25样品的SEM照片。从图3(a)可以看出NGCo为片状结构, 图3(c~d)显示P25纳米颗粒负载在NGCo表面。随着NGCo含量增加, 片状结构越来越多, P25颗粒更均匀地附着在NGCo表面, NGCo的片状结构对P25颗粒起到了很好的负载作用, 两者接触充分, 减少了颗粒的团聚。rGO纳米片可以更好地促进光生载流子的传输和分离, 有利于提升光催化性能[S5]。
图S1 GO和NGCo的XRD图谱
Fig. S1 XRD patterns of GO and NGCo
图S2 P25、NGCo和P25/NGCo-25的N2吸脱附等温线
Fig. S2 N2adsorption-desorption isotherms of P25, NGCo and P25/NGCo-25
图S3 NGCo(a)、P25/NGCo-5(b)、P25/NGCo-15(c)和P25/ NGCo-25(d)的SEM 照片
Fig. S3 SEM images of NGCo (a), P25/NGCo-5 (b), P25/ NGCo-15 (c) and P25/NGCo-25 (d)
表S1 TiO2基光催化剂制氢性能比较
Table S1 H2evolution performances of TiO2based photocatalysts
PhotocatalystVolume percent of sacrificial agentIrradiation sourceHydrogen evolution /(mmol·h–1·g–1)Ref. TiO2-Au20% methanol300 W Xe lamp3.57[4] P25-Cu/Ni37.5% methanol300 W Xe lamp (λ<420 nm)13.5[8] P25-C6010% TEOA300 W Xe lamp0.59[10] TiO2-MoS220% methanol300 W Xe lamp1.44[11] P25-CoPx20% methanolAM1.5G sunlight simulator0.82[S6] P25-Co5.47N/N-rGO20% methanol300 W Xe lamp11.71This work
[S1] YUAN B, WEI J, HU T,. Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B., 2015, 36(7): 1009–1016.
[S2] PAN C, GU H, DONG L. Synthesis and electrochemical performance of polyaniline @MnO2/graphene ternary composites for electrochemical supercapacitors., 2016, 303: 175–181.
[S3] WU T, LI X, ZHU X,. P-Doped graphene toward enhanced electrocatalytic N2reduction., 2020, 56(12): 1831–1834.
[S4] THOMMES M, KANEKO K, NEIMARK A V,. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)., 2015, 87(9/10): 1051–1069.
[S5] LIU C, LI X, LI J,. Fabricated 2D/2D CdIn2S4/N-rGO muti- heterostructure photocatalyst for enhanced photocatalytic activity., 2019, 152: 565–574.
[S6] LIANG R, WANG Y, QIN C,. P-Type cobalt phosphide composites (CoP-Co2P) decorated on titanium oxide for enhanced noble-metal-free photocatalytic H2evolution activity., 2021, 37(11): 3321–3330.
Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2
AN Lin1, WU Hao1, HAN Xin2, LI Yaogang1, WANG Hongzhi1, ZHANG Qinghong1
(1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; 2. State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China)