NLRP3炎症小体与中药提取物调节脑脊髓疾病机制
2022-07-02卢英琦孙忠人胡其回王瑞琪尹洪娜
卢英琦 孙忠人 胡其回 王瑞琪 尹洪娜
〔摘要〕 NLRP3炎症小体是炎症反应过程中极为重要的因子,能参与多种疾病尤其是脑脊髓疾病的发生发展过程,可干预中枢神经系统的调节与恢复。大量研究表明,中药相应提取物对NLRP3具有良好调节作用。本文就NLRP3炎症小体启动与激活过程,在脊髓损伤、动脉粥样硬化、抑郁症、缺血性脑卒中等脑脊髓疾病中的机制效应,以及中药提取物治疗相应疾病的动物实验研究进行综述,为临床调节NLRP3炎症小体提供有效依据。
〔关键词〕 NLRP3炎症小体;炎症;脑脊髓疾病;中药提取物;脊髓损伤;动脉粥样硬化;抑郁症;缺血性脑卒中
〔中图分类号〕R259 〔文献标志码〕A 〔文章编号〕doi:10.3969/j.issn.1674-070X.2022.06.030
Mechanism of NLRP3 inflammasome and traditional Chinese medicine extract on
regulation of cerebrospinal diseases
LU Yingqi1, SUN Zhongren1, HU Qihui1, WANG Ruiqi1, YIN Hongna2*
(1. Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China; 2. The Second
Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, China)
〔Abstract〕 NLRP3 inflammasome is a very important factor in the process of inflammatory response. It can participate in the occurrence and development of a variety of diseases, especially cerebrospinal diseases, and can intervene in the regulation and recovery of the central nervous system. A large number of studies have shown that traditional Chinese medicine and its corresponding extracts have a good regulatory effect on NLRP3. This article mainly reviews the start-up and activation process of NLRP3 inflammasome, and its mechanism effects of cerebrospinal diseases such as spinal cord injury, atherosclerosis, depression and ischemic stroke, as well as the animal experimental studies of traditional Chinese medicine extracts in the treatment of these diseases, so as to provide effective basis for clinical regulation of NLRP3 inflammasome.
〔Keywords〕 NLRP3 inflammasome; inflammation; cerebrospinal diseases; traditional Chinese medicine extracts; spinal cord injury; atherosclerosis; depression; ischemic stroke
炎癥反应是机体在应对各种有害刺激的一种自然保护机制,适当反应是清除受损及死亡细胞、促进组织修复的必要步骤[1],但过度炎性反应反而会对细胞功能产生不利影响,导致局部及全身系统炎症性病变[2]。MARTINON等[3]2002年首次提出炎性小体(inflammasome)概念,揭示细胞组织损伤、免疫过程及促炎因子[如半胱氨酸蛋白酶1(Caspase-1)]之间关系,即炎症小体作为基本蛋白复合体,可引导免疫系统对致病刺激反应,引起Caspase-1裂解和释放。因此,控制炎症小体的形成及信号传递在机体防御疾病方面至关重要。
核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3, NLRP3)是Caspase-1激活过程中研究热度最高、涉及最广泛的调节因子,与各种炎症相关的中枢神经系统疾病有关,主要集中在脊髓损伤(spinal cord injury, SCI)、动脉粥样硬化(atherosclerosis, AS)、脑缺血、抑郁症等方面,已成为探索疾病形成和进展的焦点,同时也为中医领域的研究提供新靶点。大量临床经验、实践及系统性回顾分析表明,中医药领域在治疗脑脊髓疾病方面疗效确切,能促进相关症状恢复,对其治疗机制的探索也日渐深入[4-7]。本文旨在探讨NLRP3炎症小体在脑脊髓疾病发挥的作用,以及中药有效成分调节相关神经系统疾病的活化机制,以期为临床治疗相关疾病提供科学可靠的依据。
1 NLRP3炎症小体
NLRP3炎症小体广泛分布于巨噬细胞、小胶质细胞、单核细胞中,其关键机制在于NLRP3启动激活过程及下游相应分子在疾病中发挥的作用。它主要由NLRP3、凋亡相关蛋白ASC、半胱氨酸蛋白酶Caspase-1前体蛋白(pro-Caspase-1)3类效应分子组成,可促进Caspase-1活化。Caspase-1可将pro-IL-1β和pro-IL-18裂解为成熟的生物活性形式,即下游白细胞介素1β(interleukin-1β, IL-1β)及白细胞介素18(interleukin-18, IL-18)等促炎因子释放[8]。IL-1β和IL-18可通过多种信号通路加速炎症反应进程,导致神经元的损伤和死亡[9]。
NLRP3炎症小体的激活通常为双信号模型,即启动(信号1)和激活(信号2)信号。巨噬细胞中,仅有NLRP3激活剂存在并不能诱导炎症小体激活,信号1最初被认为是由微生物和内源性分子如Toll样受体(toll-like receptors, TLR)、核苷酸寡聚化结构域样受体(nucleotide-binding and oligomerization domain-like receptors, NLR)、肿瘤坏死因子等通过激活NF-κB信号通路来诱导NLRP3和pro-IL-1β表达[10]。随着研究不断深入,目前发现髓样分化因子(myeloid differentiation factor 88, MyD88)、白细胞介素-1受体相关激酶(interleukin-1 receptor associated kinase, IRAK)IRAK1和IRAK4[11-12]、凋亡信號因子如Caspase-8和Fas相关死亡结构域蛋白(fas-associating protein with a novel death domain, FADD)[13]等在对NF-κB信号通路的激活过程中都发挥重要作用。
接受信号1后,由于NLRP3激活剂的化学成分及结构的广泛性,研究发现NLRP3炎症小体的激活主要包括以下几个方面:(1)离子通量可在共同信号激活过程中起主导作用[例如K+外流可介导巨噬细胞和单核细胞对三磷酸腺苷(adenosine triphosphate, ATP)及黑色素反应,从而促进IL-1β成熟及裂解[14];Ca2+信号引发NLRP3炎症小体组装[15]];(2)损伤线粒体释放的活性氧(reactive oxygen species, ROS)、线粒体DNA和心磷脂激活NLRP3[16];(3)溶酶体破裂导致细胞组织蛋白酶释放到胞浆中,直接激活NLRP3[17]。
2 脑脊髓疾病NLRP3炎症小体及中药提取物调节机制
2.1 NLRP3与SCI
SCI可分为原发和继发两种,继发性损伤可出现损伤局部血管破裂、水肿、脱髓鞘、神经炎症等病理变化[18],其中神经炎症反应是损伤过程的关键。血脑屏障破坏会引起巨噬细胞、小胶质细胞、中性粒细胞等炎症细胞在损伤部位聚集,释放促炎细胞因子如IL-1β和IL-18,介导机体对细胞损伤和局部感染的免疫反应[19]。大鼠在SCI 3 d后,NLRP3的mRNA和蛋白表达显著提升[20],神经元和小胶质细胞是其主要来源。嘌呤受体P2X7(purinergic receptor, P2X7R)是三磷酸腺苷(ATP)的门控调节蛋白,当损伤发生时,可通过与ATP结合开放阳离子通道,产生神经级联反应,促进NLRP3过表达,释放IL-1β、IL-1等炎性细胞因子,加重损伤程度[21]。
ZHU等[22]在对大鼠造模后发现细胞内促炎因子IL-1β、TNF-α和IL-6表达水平显著升高,NF-κB和NLRP3存在过表达情况,汉黄芩苷可通过NF-κB/IκB和NLRP3/Caspase-1信号通路抑制促炎因子表达及NLRP3炎症小体数量,有效减轻脊髓损伤引起的神经炎症。汉黄芩苷为中药黄芩的主要成分之一,具有抗炎、抗病毒等药理活性,不仅能参与调节NF-κB炎症通路中的适配蛋白,还具有抗凋亡作用[23]。蒋伟宇等[24]发现SCI兔脊髓组织中NF-κB、Caspase-1表达明显增多,剪切并激活pro-IL-1β,可促进炎性反应的发生,应用白藜芦醇激活沉默信息调节因子2相关酶1(silent mating-type information regulation 2 homolog 1, Sirt1),降低NF-κB对NLRP3的调节,起到保护脊髓组织的作用。白藜芦醇存在于多种植物(如花生、藜芦、葡萄等)中,研究表明,白藜芦醇可抑制线粒体氧化物ROS表达,降低氧化损伤程度,从而控制NLRP3炎症小体的水平[25]。虎杖苷具有抗炎、抗氧化、清除自由基和改善微循环的作用,LV等[26]通过对SCI模型大鼠给药发现虎杖苷具有神经保护作用,可有效改善大鼠运动功能,减轻小胶质细胞炎症,并抑制NLRP3的表达。
2.2 NLRP3与AS
AS是脑血管疾病发生的病理基础,严重危害人们健康,斑块破裂和血栓形成是其致病关键环节[27]。血管长期动脉粥样硬化性改变的重要原因是脂质堆积、炎性细胞浸润和胆固醇水平的增高[28]。目前,AS的保守治疗主要集中在降低血浆内的胆固醇水平,然而,这种治疗不能降低所有患者未来患脑血管疾病的风险。
NLRP3炎症小体可以裂解IL-1家族细胞因子,将代谢紊乱和炎症联系在一起,在AS发病机制中存在广泛作用。NLRP3启动信号TLR可通过受体激活NF-κB介导转录,研究发现,人或小鼠动脉硬化斑块内都能观察到TLRs表达增加[29]。实验证实,TLR信号关键适配蛋白MyD88的缺失可减少AS发生[30]。细胞表面的TLRs能参与识别与动脉硬化发展有关的各种内源性危险信号,如氧化型低密度脂蛋白(oxidized low-density lipoprotein, oxLDL)、细胞死亡相关分子等[31]。AS炎症反应的一个重要方面是低密度脂蛋白(low-density lipoprotein, LDL)被氧化,形成oxLDL,通过TLRs激活NLRP3炎症小体[32]。oxLDL还可降低胆固醇在内皮细胞中的外流,致使内质网应激水平升高,在加速AS的进程中充当重要角色[33]。
此外,细胞外酸中毒是NLRP3的激活因素之一,动脉粥样硬化斑块pH值低于正常[34]。晚期AS内大量存在磷酸钙晶体,研究表明,它能诱导巨噬细胞释放大量IL-1β和IL-1α[35]。葛凡等[36]发现黄芪甲苷能降低NLRP3、IL-1β、ASC表达,改善血管内皮功能,恢复血管舒张。黄芪为补气圣药,临床常用于升阳固表、益气补虚,黄芪甲苷作为其提取物,具有调节免疫、抗炎、血管保护等效应。实验发现,黄芪甲苷可通过降低低密度脂蛋白浓度来减少下游NLRP3表达[37],还可降低TLR4表达来改善血管内皮功能[38]。HE等[39]证实高车前苷能减少ROS释放,抑制NLRP3和Caspase-1活化,减轻血管炎性损伤。YAMAGATA等[40]发现芹菜素可通过降低人内皮细胞白细胞黏附、NLRP3表达来减轻内皮功能障碍。因此,NLRP3炎症小体在AS治疗和预测方面具有重要意义。
2.3 NLRP3与抑郁症
抑郁症是临床常见精神性疾病之一,症状包括持续性情绪低迷、食欲减退、失眠等,严重会导致患者缺乏生活兴趣,最终发展为自残和自杀[41]。本病造成了巨大的社会负担,因其发病机制复杂,导致一部分患者应用抗抑郁药物后会出现疗效不佳和反复易发等不良反应[42]。研究表明,NLRP3与抑郁症的发生发展具有重要作用,NLRP3主要在情绪调节区域,例如:海马内水平较高,易受压力影响,抑郁模型大鼠血清及海马区发现NLRP3、Caspase-1、ASC和IL-1β水平明显增高[43]。同时,抑郁应激状态下,会导致大脑内线粒体功能紊乱,生成NLRP3炎症小体激活因子之一ROS,诱发免疫细胞出现细胞焦亡,加重患者神经炎症程度[44]。
中药抗抑郁治疗可明显改善抑郁症状,抑制NLRP3表达,减轻海马损伤。张蕾等[45]发现芒果苷能够降低抑郁大鼠血清中NLRP3、Caspase-1和ASC水平。茯苓具有健脾宁心之效,是临床治疗抑郁症常用药物,陈可琢等[46]使用茯苓酸性多糖对抑郁模型大鼠进行治疗,结果显示其可有效抑制NLRP3炎症小体表达,并对大鼠抑郁行为的恢复具有促进作用。红景天苷可通过TLR4调节NLRP3、Caspase-1激活,进而减少脑组织血液中IL-6和TNF-α水平,从而改善抑郁症症状[47]。
目前,与抑郁症研究相关较多的脑-肠轴理论也与NLRP3炎症小体具有紧密关联。肠道菌群与大脑功能关系密切,可以通过调控菌群正常与否干预中枢神经系统和自主神经系统[48]。一项涉及237例抑郁焦虑患者肠道菌群构成的实验发现,与健康人相比,抑郁患者菌群改变明显,可通过多种途径干预抑郁症状[49]。肠道菌群代谢产物能通过血液调控中枢系统炎症因子和免疫反应,肠内NLRP3炎症小体过度激活也会造成肠道菌群成分变化[50],将NLRP3-/-肠道菌群移植到正常小鼠内,对大脑功能有积极作用,也可有效抑制抑郁行为[51]。徐敏等[52]应用益生菌调节小鼠肠道菌群,能抑制炎症因子激活,降低NF-κB蛋白表达。
2.4 NLRP3与缺血性脑卒中
缺血性脑卒中多发于60岁以上老年人群,且由于不良生活习惯、工作压力大等,近年来呈低龄化趋势,具有高致死率、高致残率的特点,对患者家庭和社会都造成沉重的心理和经济负担。研究发现,血管栓塞引起一系列不良反应,包括血氧供应不足,脑血流量减少等,形成缺血-闭塞的恶性循环[53],并引发兴奋性毒性、氧化应激、炎症和细胞凋亡等不良反应,危害神经元和血管内皮细胞,最终导致不可逆性损害。NLRP3炎症小体在缺血性脑卒中过程中扮演重要角色,抑制其激活可减少脑梗死体积,降低血管和神经的损伤程度,改善脑缺血预后[54]。线粒体功能障碍是激活NLRP3炎症小体的重要因素之一,卒中发生后,脑组织内硫氧还蛋白相互作用蛋白含量显著提升,ROS能致其解离后与NLRP3结合,加快活化进程[55]。NLRP3炎症小体还可促进胶质细胞中IL-1β和IL-18含量增高,参与卒中后并发症如抑郁、认知功能障碍的发生[56]。
ASHAFAQ等[57]应用白藜芦醇治疗脑缺血模型大鼠,可有效改善脑部氧化应激反应,降低抗氧化酶和Na+-K+-ATP酶活性,进而发挥脑保护作用。川芎嗪是从中药川芎提取的有效成分之一,具有抗氧化、清除自由基、抗再灌注损伤的作用,目前,盐酸川芎嗪注射液被广泛应用于治疗脑卒中、冠心病等闭塞性脑血管疾病中[58]。李洁等[59]发现脑缺血再灌注后,大鼠脑组织内NLRP3和小胶质细胞标记物Iba-1(ionized calcium binding adapter molecule 1, Iba-1)水平显著提高,注射川芎嗪溶液可有效改善神经功能缺损、降低梗死灶面积,并抑制ASC、Caspase-1和pro-Caspase-1等蛋白水平表达,发挥抗炎、抑制细胞焦亡的效应。姜黄素为姜黄的主要成分,具有改善线粒体功能障碍、抗氧化应激、抗凋亡的脑保护作用[60]。RAN等[61]研究证实,姜黄素可通过抑制NF-κB/NLRP3信号通路发挥效应,降低IL-1β和IL-18表达,进而减轻脑卒中继发的白质损害。
3 结语
炎性小体是人体组织受损后构成局部炎性微环境的重要成分。脑脊髓疾病病程长,治疗难度大,机体长时间处于病态环境会改变相应结构,就更需要多维度、多方式的治疗手段。从中医角度来说,炎性小体及炎性微环境与中医病机、治疗方面具有极大相关性。炎性小体致病性质与热邪类似,火热之邪,其性炎上,易耗伤津液,有扰动心神、动风、动血的特点,可化痰、致瘀、致虚等,而这些病理变化可加重热邪进展,影响疾病进程。所以,在用药方面以清热化痰、活血化瘀、固本扶正为治疗原则。
中药提取物是现代医学对中药有效性的进一步完善,是中、西医相结合的产物,也是临床治疗过程中对中医药应用的有力补充,受到各界的广泛关注。在治疗脑脊髓疾病时针对炎症小体病理特点,应用相應中药提取物如汉黄芩苷、白藜芦醇、茯苓酸性多糖等,由不同通路发挥效应,有效降低相应动物模型血清中NLRP3炎症小体含量,对其下游炎性因子也有很好的调控作用,适合临床探求和应用。
當然,本文也存在一些不足之处,例如选取的脑脊髓疾病较少,仅探讨与动物实验相关的中药提取成分对NLRP3炎症小体的调控作用等,今后在研究过程中可适当扩大研究范围,结合分子生物学、细胞生物学等技术从多角度对炎性小体及其调控机制进行研究。
参考文献
[1] SZRETTER K J, SAMUEL M A, GILFILLAN S, et al. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis[J]. Journal of Virology, 2009, 83(18): 9329-9338.
[2] ISLAM M T, BARDAWEEL S K, MUBARAK M S, et al. Immunomodulatory effects of diterpenes and their derivatives through NLRP3 inflammasome pathway: A review[J]. Frontiers in Immunology, 2020, 11: 572136.
[3] MARTINON F, BURNS K, TSCHOPP J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Molecular Cell, 2002, 10(2): 417-426.
[4] 王晓宝,苏迎洁,王炎强.中药对缺血性脑卒中侧支循环建立研究进展[J].山西中医,2021,37(9):60-62.
[5] 冯 睿,赫明超,李 钺,等.基于“肾脑相济”理论探讨补肾中药调控脑作用的研究进展[J].中华中医药杂志,2021,36(4):2179-2183.
[6] 付 蔷,吴红金.基于数据挖掘技术探讨中药治疗冠心病伴焦虑抑郁的用药规律[J].中西医结合心脑血管病杂志,2021,19(15):2510-2515.
[7] 陈豪选,林少琴,倪小佳,等.中药治疗卒中后吞咽障碍的Meta分析[J].广州中医药大学学报,2021,38(8):1759-1768.
[8] WALSH J G, REINKE S N, MAMIK M K, et al. Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS[J]. Retrovirology, 2014, 11: 35.
[9] WILMS H, SIEVERS J, RICKERT U, et al. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation[J]. Journal of Neuroinflammation, 2010, 7: 30.
[10] BAUERNFEIND F G, HORVATH G, STUTZ A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression[J]. Journal of Immunology, 2009, 183(2): 787-791.
[11] FERNANDES-ALNEMRI T, KANG S, ANDERSON C, et al. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome[J]. Journal of Immunology, 2013, 191(8): 3995-3999.
[12] LIN K M, HU W, TROUTMAN T D, et al. IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2): 775-780.
[13] ANTONOPOULOS C, RUSSO H M, EL SANADI C, et al. Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling[J]. The Journal of Biological Chemistry, 2015, 290(33): 20167-20184.
[14] PLACENTI M A, KAUFMAN S B, GONZLEZ FLECHA F L, et al. Unexpected effects of K+ and adenosine triphosphate on the thermal stability of Na+, K+-ATPase[J]. The Journal of Physical Chemistry B, 2017, 121(19): 4949-4957.
[15] FESKE S, SKOLNIK E Y, PRAKRIYA M. Ion channels and transporters in lymphocyte function and immunity[J]. Nature Reviews Immunology, 2012, 12(7): 532-547.
[16] IYER S S, HE Q, JANCZY J R, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation[J]. Immunity, 2013, 39(2): 311-323.
[17] ORLOWSKI G M, COLBERT J D, SHARMA S, et al. Multiple cathepsins promote pro-IL-1β synthesis and NLRP3-mediated IL-1β activation[J]. Journal of Immunology, 2015, 195(4): 1685-1697.
[18] ECKERT M J, MARTIN M J. Trauma: spinal cord injury[J]. Surgical Oncology Clinics of North America, 2017, 97(5): 1031-1045.
[19] AHUJA C S, NORI S, TETREAULT L, et al. Traumatic spinal cord injury-repair and regeneration[J]. Neurosurgery, 2017, 80(3S): S9-S22.
[20] JIANG W, HUANG Y, HE F, et al. Dopamine D1 receptor agonist A-68930 inhibits NLRP3 inflammasome activation, controls inflammation, and alleviates histopathology in a rat model of spinal cord injury[J]. Spine, 2016, 41(6): E330-E334.
[21] TEWARI M, SETH P. Emerging role of P2X7 receptors in CNS health and disease[J]. Ageing Research Reviews, 2015, 24(Pt B): 328-342.
[22] ZHU Y L, ZHU H Z, WANG Z J, et al. Wogonoside alleviates inflammation induced by traumatic spinal cord injury by suppressing NF-κB and NLRP3 inflammasome activation[J]. Experimental and Therapeutic Medicine, 2017, 14(4): 3304-3308.
[23] 李文媛,宋丽华.汉黄芩苷体外抗结肠癌作用及机制研究[J].中国药物与临床,2017,17(8):1119-1122,1257.
[24] 蒋伟宇,胡旭栋,陈云琳,等.白藜芦醇抑制脊髓损伤兔的NLRP3炎症小体活化[J].中国临床药理学与治疗学,2020,25(8):850-856.
[25] 孙玉洁,张楠楠,赵 萌.白藜芦醇对大鼠脑组织缺血再灌注过程中细胞焦亡的调控作用及对小胶质细胞NLRP3炎症小体、Caspase-1及ZO-1的影响[J].海南醫学院学报,2019,25(17): 1291-1294.
[26] LV R X, DU L L, LIU X Y, et al. Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway[J]. International Immunopharmacology, 2019, 70: 28-36.
[27] 王 淼,刘 静,赵 冬.中国心血管病预防指南(2017)动脉粥样硬化性心血管病发病危险评估方法概述[J].中国循环杂志,2018,
33(S2):10-13.
[28] HANSSON G K, HERMANSSON A. The immune system in atherosclerosis[J]. Nature Immunology, 2011, 12(3): 204-212.
[29] MULLICK A E, SOLDAU K, KIOSSES W B, et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events[J]. The Journal of Experimental Medicine, 2008, 205(2): 373-383.
[30] JULIANA C, FERNANDES-ALNEMRI T, KANG S, et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation[J]. Journal of Biological Chemistry, 2012, 287(43): 36617-36622.
[31] HUANG H S, HUANG X Y, YU H Z, et al. Circular RNA circ-RELL1 regulates inflammatory response by miR-6873-3p/MyD88/NF-κB axis in endothelial cells[J]. Biochemical and Biophysical Research Communications, 2020, 525(2): 512-519.
[32] WEST X Z, MALININ N L, MERKULOVA A A, et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands[J]. Nature, 2010, 467(7318): 972-976.
[33] HANG L W, PENG Y, XIANG R, et al. Ox-LDL causes endothelial cell injury through ASK1/NLRP3-mediated inflammasome activation via endoplasmic Reticulum stress[J]. Drug Design, Development and Therapy, 2020, 14: 731-744.
[34] RAJAMÄKI K, NORDSTRÖM T, NURMI K, et al. Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome[J]. The Journal of Biological Chemistry, 2013, 288(19): 13410-13419.
[35] PAZÁR B, EA H K, NARAYAN S, et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro[J]. Journal of Immunology, 2011, 186(4): 2495-2502.
[36] 葛 凡,王文愷,朱景天,等.黄芪甲苷通过NLRP3炎性小体调节糖尿病动脉粥样硬化早期大鼠血脂及炎症因子的研究[J].南京中医药大学学报,2021,37(3):383-387.
[37] QIAN W B, CAI X R, QIAN Q H, et al. Astragaloside IV protects endothelial progenitor cells from the damage of ox-LDL via the LOX-1/NLRP3 inflammasome pathway[J]. Drug Design, Development and Therapy, 2019, 13: 2579-2589.
[38] LENG B, TANG F T, LU M L, et al. Astragaloside IV improves vascular endothelial dysfunction by inhibiting the TLR4/NF-κB signaling pathway[J]. Life Sciences, 2018, 209: 111-121.
[39] HE B Q, ZHANG B B, WU F H, et al. Homo plantaginin inhibits palmitic acid-induced endothelial cells inflammation by suppressing TLR4 and NLRP3 inflammasome[J]. Journal of Cardiovascular Pharmacology, 2016, 67(1): 93-101.
[40] YAMAGATA K, HASHIGUCHI K, YAMAMOTO H, et al. Dietary apigenin reduces induction of LOX-1 and NLRP3 expression, leukocyte adhesion, and acetylated low-density lipoprotein uptake in human endothelial cells exposed to trimethylamine-N-oxide[J]. Journal of Cardiovascular Pharmacology, 2019, 74(6): 558-565.
[41] LIM G Y, TAM W W, LU Y X, et al. Prevalence of depression in the community from 30 countries between 1994 and 2014[J]. Scientific Reports, 2018, 8: 2861.
[42] PAPAKOSTAS G I, FAVA M, THASE M E. Treatment of SSRI-resistant depression: A meta-analysis comparing within-versus across-class switches[J]. Biological Psychiatry, 2008, 63(7): 699-704.
[43] 程虹毓,袁富强.基于NLRP3/IL-1β通路研究中医五行音乐抗抑郁的调节机制[J].中医药导报,2020,26(16):6-9.
[44] HE W T, WAN H Q, HU L C, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Research, 2015, 25(12): 1285-1298.
[45] 张 蕾,赵国发,李 楠,等.芒果苷通过作用于NLRP3炎症小体发挥抗抑郁和神经保护作用[J].河北大学学报(自然科学版), 2021,41(3):265-272.
[46] 陈可琢,陈 实,任洁贻,等.茯苓酸性多糖抗抑郁作用及其调节神经递质和NLRP3通路机制研究[J].中国中药杂志,2021,46(19): 5088-5095.
[47] 莫菁莲,陈思丹,符乃光,等.红景天苷介導TLR4调控小胶质细胞激活对小鼠抑郁样行为的改善作用[J].药物评价研究,2021,44(9): 1869-1875.
[48] SANADA K, NAKAJIMA S, KUROKAWA S, et al. Gut microbiota and major depressive disorder: A systematic review and meta-analysis[J]. Journal of Affective Disorders, 2020, 266: 1-13.
[49] 莫瀚钧,郎 林,柳理娜,等.抑郁、焦虑状态人群的肠道菌群构成[J].中国临床医学,2021,28(3):433-443.
[50] PELLEGRINI C, ANTONIOLI L, CALDERONE V, et al. Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications?[J]. Progress in Neurobiology, 2020, 191: 101806.
[51] ZHANG Y, HUANG R R, CHENG M J, et al. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2[J]. Microbiome, 2019, 7(1): 116.
[52] 徐 敏,赵 莉,杜金城,等.益生菌混合物通过抑制NF-κB信号通路发挥抗溃疡性结肠炎功效的研究[J].食品工业科技,2016, 37(17):348-351,365.
[53] 杨越旺,胡霞敏.炎性小体在缺血性脑卒中的研究进展[J].中风与神经疾病杂志,2021,38(10):1140-1143.
[54] YANG F, WANG Z Y, WEI X B, et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke[J]. Journal of Cerebral Blood Flow and Metabolism, 2014, 34(4): 660-667.
[55] ISHRAT T, MOHAMED I N, PILLAI B, et al. Thioredoxin-interacting protein: A novel target for neuroprotection in experimental thromboembolic stroke in mice[J]. Molecular Neurobiology, 2015, 51(2): 766-778.
[56] WU D, ZHANG G C, ZHAO C Y, et al. Interleukin-18 from neurons and microglia mediates depressive behaviors in mice with post-stroke depression[J]. Brain, Behavior, and Immunity, 2020, 88: 411-420.
[57] ASHAFAQ M, INTAKHAB ALAM M, KHAN A, et al. Nanoparticles of resveratrol attenuates oxidative stress and inflammation after ischemic stroke in rats[J]. International Immunopharmacology, 2021, 94: 107494.
[58] ZHAO Y K, LIU Y, CHEN K J. Mechanisms and clinical application of tetramethylpyrazine (an interesting natural compound isolated from Ligusticum wallichii): Current status and perspective[J]. Oxidative Medicine and Cellular Longevity, 2016, 2016: 2124638.
[59] 李 洁,马贤德.川芎嗪抑制CIRI大鼠小胶质细胞活化发挥抗炎作用机制的实验研究[J].免疫学杂志,2021,37(9):759-765.
[60] 孙博宇,张世阳,赵靖楠,等.姜黄素对脑卒中保护机制和作用靶点研究进展[J].脑与神经疾病杂志,2022,30(2):129-133.
[61] RAN Y Y, SU W, GAO F H, et al. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 1552127.