高性能疏松纳滤膜的制备研究进展
2022-06-01王一雯姜钦亮桂双林
樊 华,王一雯,,姜钦亮,范 敏,桂双林,韩 飞
(1.南昌大学资源环境与化工学院,鄱阳湖环境与资源利用教育部重点实验室,江西南昌 330031;2.江西省科学院能源研究所,江西南昌 330096)
膜分离技术,如超滤、纳滤和反渗透,由于能耗小、效率高、操作条件简单、运行成本低、易于产业化且对环境友好,已被广泛应用于污水处理、海水淡化等领域。与超滤相比,纳滤对低分子质量(200~1 000 u)的有机物和多价离子均有更高的截留率;与反渗透相比,纳滤则具有更高的渗透率和更低的操作压力〔1-4〕。然而,传统意义中的纳滤膜并不能对大分子/盐混合物进行分离并回收,且由于普通纳滤膜对无机盐及大分子等的截留率非常高,往往导致运行过程中渗透压增高,进而导致高的运行能耗〔5〕。
为了对溶质和盐进行有效的分离,B.VAN DER BRUGGEN 等〔6〕在2004年提出了一个新的概念,疏松纳滤(LNF)膜。LNF膜是一类具有纳滤(NF)和超滤(UF)边界孔径的膜,它能够以高渗透通量对分子质量500~2 000 u范围的有机物/盐混合物进行充分分离〔7〕。因此,LNF膜可用于去除超滤无法截留的粒径较小的有机大分子,但允许盐离子通过膜。同时水通量明显高于紧密的纳滤膜,可以在较低的压力下更快地过滤。
目前商业LNF 膜,如DK(GE Osmonics),NDX(GE Osmonics),TriSep SBNF(Microdyn Nadir),Sepro NF 2A(Ultura)和Sepro NF 6(Ultura)等已在工业中得到实际应用,膜的基本参数见表1。
表1 商业LNF 膜主要信息Table 1 Main information of commercial LNF membranes
由表1 可知,尽管这些膜可对染料分子进行有效截留,也具有较高的纯水渗透通量〔12〕,但膜的盐截留/通过性能还需提高,且膜的水通量也仍有巨大的提高空间。同时,具有特殊应用环境的LNF 膜也待开发。总体而言,寻找处理效率更高,针对性更强且更经济的LNF 膜仍然是目前的研究重点。
现阶段关于LNF 膜的相关研究很多,但大多数综述类文章是针对染料废水处理的膜工艺改进和应用现状或纳滤膜本身的制作发展,很少直接关注“疏松纳滤膜”本身。笔者将以近3 年的文献为基础,对疏松纳滤膜的制备进行综述,最后,对疏松纳滤膜在应用中存在的问题及发展前景进行展望。
1 机理分析
纳滤膜分离污染物主要依据尺寸筛分效应及荷电效应〔13〕,但是LNF 膜的有机物/盐二元混合物分离原理和膜污染机制可能与纳滤有所不同。在LNF膜的过滤过程中,尺寸筛分效应占主导,大分子在膜表面被截留〔14〕。但是通过对不同的单一染料大分子截留率和过滤通量的测量发现,与理论计算值相比,分子质量较低的染料如中性红(NR)和亚甲基蓝(MB)等阳离子染料截留率更低〔12〕。因为除了尺寸筛分效应,静电斥力也会影响分离过程。阳离子染料会和膜表面负电荷相吸引,促进染料通过膜孔。同时活性染料如活性蓝2(RB 2)、活性橙16(RO 16)以及一些直接染料如刚果红(CR)〔11〕等阴离子染料的截留率高于理论值。这是由于一方面染料分子聚集,尺寸增大;另一方面带负电的染料分子聚集,增强了静电斥力,导致截留增加。此外LNF 膜对一些有机物、腐殖酸的去除,也会产生同样的现象〔15-16〕。
对于分子/盐二元溶液的分离,道南效应起主导作用〔17-18〕。随着盐溶液浓度增大,渗透压差增加,较大的渗透压差破坏了渗透驱动力,使得通量减小。同时由于带电分子的聚集和团聚,膜表面形成污垢层,造成浓度极化,导致实际通量的下降值比理论下降值大得多。E.M.V.HOEK 等〔19〕也提出了“滤饼增强的浓差极化”现象,即膜表面形成的未固结滤饼层会促进多孔滤饼层中的浓度极化,并加剧滤饼形成,导致通量下降和膜污染。另外高盐会使膜结构膨胀,孔径变大,导致粒径较小的染料分子透过膜孔,而膜本身电解质的存在可以有效地屏蔽静电双层作用并增加染料的疏水性,减小膜的介电效应,降低大分子的排斥〔12-13,16,19〕。同时操作条件对于LNF 膜的应用至关重要,良好的水利条件和压力能够有力地改善过滤效果,减少膜污染〔16,20〕。
2 LNF 膜的制备
膜制备方法和膜材料是决定膜结构特性和分离性能的关键。一般而言通过增强LNF 膜表面亲水性来提高膜分离性能是LNF 膜改性的最常用方法之一,因为相对于疏松纳滤膜来说,浓差极化(cp)现象对其分离性能影响很小。在相同的膜面积和通量条件下,采用亲水性更强的LNF 膜将显著降低所需的操作压力,降低运行成本,同时由于膜的强亲水性,也能减缓膜表面污染〔21-22〕。目前,LNF 膜常用的制备方法主要有相转化法、界面聚合法、贻贝启发沉积法、有机无机杂化制备技术法以及其他方法。
2.1 相转化法
相转化法是大规模制备商业超滤膜最常用的方法之一,但由于该方法很难使膜获得高二价离子截留率和渗透性,无法被广泛应用于纳滤膜的制备。但对于LNF 膜的制备来说,采用相转化法似乎更合适。膜的本体聚合物对膜的性能起着至关重要的作用,因此在相转化法制膜时使用新聚合物可以改善LNF 膜性能〔23〕。Dongqing LIU 等〔24〕通过使用5-磺基邻氨基苯甲酸(SPAA6)和ε-己内酰胺的共聚物制备了LNF 膜,研究结果表明,SPAA6 在相转化过程中能够将球形晶体转化为膜结构中条状单元的网络,这种单元网格的出现提升了膜的稳定性及对染料的截留性能。而在相转化过程中添加纳米粒子也可以有效地改善膜的结构和表面性能〔25-27〕。Yatao ZHANG 等〔28〕使用硅烷偶联剂(SBMA),采用反原子转移自由基聚合(RATRP)法制备了带电纳米SiO2-SBMA 颗粒,在所制备纳米颗粒直径变小的同时改善了粒子分散性。之后将制得的纳米粒子混入铸膜液中,通过相转化法制备了具有高渗透通量并且能有效分离活性染料和无机盐(尤其是二价盐)的LNF膜。Junyong ZHU 等〔29〕使用同样的方法将聚甲基丙烯酸磺基甜菜碱接枝到氧化石墨烯(GO)表面,赋予其表面更好的亲水性和抗生物污染性,通过相转化法将改性后的氧化石墨烯复合材料与聚醚砜混合,构建了新型氧化石墨烯/聚醚砜LNF 膜。
此外,通过相转化法还可以很容易地制得中空纤维膜〔30-31〕。如Dawei JI 等〔32〕在无溶剂的情况下,使用空气作为芯液,采用相转化法制备了聚砜PSF/氧化石墨烯GO 中空纤维膜,形成了独特的密-松结构。同时由于添加了GO 粒子,膜表面荷负电,在渗透性增强的同时,也提高了NaCl 的透过率,其制备工艺及机理见图1。
图1 中空纤维膜制备工艺示意图及穿透的指状孔隙和密松结构的形成机理Fig.1 Schematic diagram of hollow fiber membrane preparation process and formation mechanism of penetrating fingerlike pores and dense pine structure
2.2 界面聚合法
界面聚合(IP)也是LNF 膜制备非常重要的方法之一。在界面聚合过程中,两种单体之间的缩聚反应在水相和有机相的边界进行,并最终在水/油界面上制成薄的、均匀的、完整的阻挡层〔33〕。
在界面聚合过程中,使用的单体很大程度上影响了膜的结构和分离性能,因此可以通过寻找新的单体来改善界面聚合所制得膜的性能〔34〕。聚醚胺(PEA)分子尺寸大且亲水,能够赋予膜疏松的结构和良好的亲水性,因此可被用于制作LNF 膜,如使用PEA 和三聚氯乙稀制备的聚酰胺纳滤膜,其水通量高,对盐截留率很低,对特定染料分子也有良好的截留性能〔35〕。此外,Jincheng DING 等〔36〕以1,3-聚苯乙烯和磺化聚乙烯为原料,采用一步法合成了一种新型磺化聚乙烯(SPEI),由于SPEI 磺酸基团对界面聚合的抑制作用,制备出的膜表面结构疏松,荷负电且更亲水,能有效分离分子/盐二元溶液。SPEI 和三聚氯化苯交联见图2。
图2 SPEI 和三聚氯化苯交联Fig.2 Cross-linked SPEI with tripolychlorobenzene
新合成材料也被广泛应用于膜的制备。S.LEE等〔37〕用掺杂胺官能化聚醚砜制备了具有丰富胺基的聚醚砜脲醛树脂亚层;通过三甲基氯化铵交联超滤膜上的胺基,形成富含活性酰氯基团的疏松层,用于接枝壳聚糖。通过调节胺官能化聚醚砜的掺杂量获得LNF 膜(截留分子质量为690 u),该膜水通量很高(比NF270高1.3倍),对MgSO4的截留率达到了97.5%。P.H.H.DUONG等〔38〕将含磺基甜菜碱的两性离子共聚物加入水相中,在聚醚酰亚胺(PEI)不对称薄膜上进行界面聚合。所制备的膜变得更亲水,更光滑,更薄,同时水通量和抗污性能也有显著提高,对染料分子如亮蓝R(摩尔质量826 g/mol)有97%的截留率。同时也有研究表明,单胺分子可以通过降低交联度来调整聚酰胺层结构〔39〕。
改善界面聚合过程也是一种提升膜性能的办法。例如将单宁酸(TA)和哌嗪(PIP)共沉积在膜表面,通过改变TA和PIP的比例限制PIP的扩散,调节界面聚合过程,以此获得了具有截留分子质量为1 370 u的LNF膜〔40〕。由于喷涂技术独特的微分散和纳米分散效果,使用喷涂法,通过微相扩散控制界面聚合过程,使水溶液和有机溶液之间的整体界面有效地分成许多微相界面,能更好地控制界面聚合过程中的扩散行为和膜的形成〔41〕。
总的来说,界面聚合是非常重要的一种制膜方法,也是现阶段商用纳滤膜最常用的制造方法之一。由于界面聚合过程受温度湿度的限制,步骤较多,比较复杂,因此对界面聚合过程的改进是非常有必要的。实验室中对LNF 膜的制备,很多改造方法都是基于界面聚合的基础之上而来的,在下面的介绍中就不再对界面聚合进行一一说明。
2.3 贻贝启发沉积法
由于LNF 膜有限的水渗透性和膜污染等问题,为了拓展LNF 膜的使用方向,开发具有更宽孔径、高防污性能并带有抗菌效果的膜是非常必要的〔42〕。目前受生物启发的儿茶酚胺化学的贻贝沉积作为一种可有效解决问题的方法引起了广泛关注〔43-44〕。聚多巴胺(PDA)涉及的一步共沉积法可对各种基材牢固黏附,且其能在温和条件下自发聚集。Guangchao LI 等〔45〕利用硫酸铜/过氧化氢产生的羟基自由基,通过引入两性离子聚合物(SBMA)可实现PDA 快速沉积,且在PDA选择层中的两性离子可有效改善膜的防污和抗菌性能,铜离子可加速多巴胺的沉积和聚合,也赋予了改性膜更强的抗菌性能。同时,膜相对中性的表面可以有效地减少膜表面和污垢之间的相互作用。
然而PDA 昂贵不易得,在产业化应用中极难实现。为了解决多巴胺的高成本问题,相似分子如植物多酚类没食子酸(约为多巴胺成本的5%)和单宁酸(TA)被用作PDA 单体的替代品广泛应用于膜改性中〔46〕。植物多酚激发的涂层保留了PDA 涂层的许多优点,同时多酚成本低、易得、环保,涂层颜色较浅〔47〕,更合适做膜的改性材料。Songbai LIU 等〔48〕通过维生素C 与H2O2反应生成羟基自由基,将儿茶素接枝到壳聚糖上。同时,儿茶素与氨基的共价连接,将含氨基聚合物壳聚糖共沉积在HPAN 超滤膜表面,制备了脱盐纳滤膜。也有研究人员将没食子酸(GA)加入PEI 涂覆在HPAN 基膜表面,得到对抗生素和染料分子截留很强的膜〔44〕。为了使二价盐能更好的通过膜,利用没食子儿茶素酸酯(EGCg)和聚乙烯亚胺共沉积可得到表面为电中性的膜,由于静电效应减小,该膜对二价盐Na2SO4和MgCl2截留率分别为4.1%、5.5%,并且在强碱性环境下具有良好的耐有机溶剂性和结构稳定性〔49〕。同时试验显示,通过在膜上涂覆单宁酸,增强膜的亲水性,可促进膜上形成致密的选择层,有利于膜上盐的通过〔50〕。
尽管使用这种涂覆的方法可以制得具有高选择性的LNF 膜,但在长期操作过程中形成的污垢以及频繁的化学清洗会改变膜的孔径和表面电荷性质〔51〕,因此,开发具有高防污和耐化学(极端酸碱度、活性氯化物)性能的LNF 膜是非常重要的。例如通过将植物提取多酚和多肽,如ε-聚赖氨酸和天然物质焦性没食子酸(PG)共沉积在带负电荷的水解聚丙烯腈(HPAN)基底上,并在HPAN 底物表面接枝四臂聚乙二醇甲氧基,可在改善膜亲水性和抗污性能的同时,使膜对大肠杆菌和金黄色葡萄球菌具有良好的抗菌性,甚至灭活细菌〔52〕,其膜制备过程见图3。
2.4 有机无机杂化法
纳滤膜通常是有机-无机杂化膜,即可以通过在有机膜中掺杂无机纳米材料来提升膜的性能。常见的纳米材料有纳米二氧化钛〔53〕、二氧化硅〔54〕、金属-有机骨架(MOF)〔55〕等。在相同的成膜条件下,纳米粒子可在膜的孔内表面形成大量聚集的球体,且存在于膜的基质骨架中,改善膜孔的连通性,增强膜的水通量,形成更疏松的膜〔28〕。同时纳米材料的加入也可以提高LNF 膜的亲水性、粗糙度和相对表面积,在提高膜水通量的同时提高盐离子的通过率〔56〕。
为了解决纳米粒子的聚集问题,Qi ZHANG等〔53〕以钛酸四丁酯为前驱体,无水乙醇为溶剂,在膜表面原位生成二氧化钛网。与之前使用界面聚合将填料分散在水/有机相中的制膜方法相比,这种方法制得的膜表面二氧化钛纳米粒子分散均匀,没有可见的聚集,对各种染料的截留率很高,对二价盐Na2SO4的截留率仅为17%,显著提高了膜分离性能。S.KAMARI 等〔54〕使用从小麦秸秆中提取的SiO2涂覆Fe3O4纳米粒子,并用壳聚糖对纳米粒子进行功能化改性,通过相转化法制作了低成本生物聚醚砜膜。该膜对重金属有非常好的截留作用,可用于处理含金属离子和有机染料的各种工业废水,为LNF 膜的应用拓宽了方向。MOF 作为传统纳米粒子的替代品,也被用于膜的改性〔55〕。结果表明,MOF 通过降低交联度,同时增加膜的厚度、表面负电荷和粗糙度,以此来改变膜特性,是非常有潜力的膜改性方法。另外还可以使用分层组装的方法在膜上组装纳米粒子,如在水解聚丙烯腈(HPAN)膜表面组装聚乙烯亚胺-没食子酸(PEI-GA)层,并在膜表面通过原位矿化的方法组装CaCO3纳米粒子,从而制备亲水防污的LNF 膜〔57〕,Ca2+在聚合物层中原位生长过程见图4。
图4 Ca2+在聚合物层中原位生长过程Fig.4 Ca2+grows in situ in the polymer layer
除了一些常见的无机离子,纳米材料还包括氧化镓、COF、二硫化钼等二维材料,其原子厚度和独特的物理/化学性质使之成为了LNF 膜改性的一大选择〔58-60〕。GO 由于独特的2D 纳米片结构、大比表面积、良好的机械性和强亲水性成为提高膜性能的极佳选择〔60〕。Zhongyong QIU 等〔61〕使用热致相分离法(TIPS)制作了一种坚固的三维/二维聚丙烯腈/GO均相纳米多孔膜。通过溶剂交换的方法保证GO 在高浓度PEG-400 中分散良好。所得的膜具有优异的机械强度、防污性能和良好的亲水性,可以长期运行,并且均匀的结构解决了传统方法遇到的活性层剥离的问题。但是GO 薄膜水通量低且遇水膨胀〔30〕,因此找到更合适的GO 替代品是近年来关注的重点。过渡金属二元化合物(TMDs)纳米片由于具有更光滑的表面,没有任何含氧亲水官能团伸出平面成为近期的热门研究对象〔58〕。二硫化钼与GO结构相似,原子厚度的二硫化钼片膜透水性比氧化石墨烯膜高3~5 倍,同时表现出良好的非膨胀性〔62〕,成为代替GO 的一大选择。W. HU 等〔63〕在膜中加入少量TA 改性二硫化钼,制得了更亲水、负电性更强的膜。由于二硫化钼的存在,膜显示了超高的水通量并且对多种不同的染料分子截留率达到了(99.87±0.1)%,在水中展现出了优越的非膨胀性。层状双氢氧化物LDHs 也是一种比较好的二维材料,Shuang ZHAO 等〔64〕通 过 螯 合 辅 助 原 位 生 长(CAIG)的方法,利用PEI 对金属离子的良好螯合能力,同时加入Ni/Co,制备了松散杂化纳滤膜,解决了LDHs 纳米颗粒在有机膜表面生长困难且需要高温才能进行反应的问题,同时螯合剂的引入增强了纳米粒子与膜表面的相互作用,使膜上的纳米粒子短期无聚集,长期稳定性好。
总之,加入纳米粒子可以使膜获得优异的松散纳米纤维性能,但是其仍然存在一些缺点,例如特定单体的复杂预合成过程、纳米颗粒的团聚以及填料和基体之间缺乏相互作用。除此之外,目前附加纳米材料的LNF 膜只应用于实验室规模的试验,大规模生产商用LNF 膜还需要进一步讨论和研究,同时这种膜除了染料去除领域外,在其他领域的应用也需要探索。
2.5 其他方法
除了常见的一些平板膜之外,还有一些特殊的LNF 膜制造方法。由于操作压力高,在纳滤膜或反渗透膜组件中很难应用中空纤维结构〔65〕,但LNF 膜可以在相对较低的压力下操作,且中空纤维膜耐久性更好,可用盐酸冲洗而不变形,因此制作疏松的中空 纤 维 膜 也 是 非 常 好 的 选 择〔30,66-67〕。Zhiyong CHU等〔66〕通过干湿法纺丝工艺制作了新型的增强聚醚砜中空纤维膜,通过提高膜的抗侧压力,保证了膜的渗透稳定性。也有一些研究是关于工艺的改良,如在处理二元废水时加入电渗析,如图5 所示,利用离子交换膜和LNF 膜的优点,可实现叠层结构“松散纳滤膜基离子交换膜”,解决商业纳滤膜严重的膜污染问题〔68〕。还有Shiwei GUO 等〔69〕研究了后处理对LNF 膜的影响,结果表明,经过后处理获得的膜具有更高的MWCO、更大的孔径和更宽的孔径分布,但经过后处理的膜可能会产生更严重的膜污染。
图5 电渗析与LNF 膜Fig.5 Electrodialysis and LNF membrane
3 LNF 膜的应用
目前,几乎所有的纳滤膜都是由聚酰胺(分离层)制成的,这种膜易受强酸和游离氯的影响,对高温和酸碱度也很敏感〔69〕。而LNF 膜有更多的材料选择,这使得它们在极端条件下具有更好的耐用性和稳定性。因此,LNF 膜扩展了纳滤膜技术的应用领域,特别是在资源回收方面。例如回收农副产物中的多酚〔70〕,在生物制品加工中回收天然色素〔71〕等。为了提高糖回收率和牛乳低聚糖的纯度,J. M.L. N. DE MOURA BELL 等〔72〕开发了一种新技术,即在酵母完全水解乳糖和发酵单糖后,通过LNF 膜过滤分离初乳中的发酵乳清,使95%的高纯度低聚糖得以回收。在制糖工艺中,利用LNF 膜去除和回收蔗糖中的天然色素也是非常重要的实践方向之一。Jianquan LUO 等〔73〕采用管状松散超滤(UF)、螺旋缠绕LNF 和螺旋缠绕纳滤(NF)组成的一体化膜工艺对甘蔗原汁进行中试提纯,在高通量运行情况下,脱色率保持在95%以上,并且蔗糖回收率高达98%。
在废水处理领域,LNF 膜也具有优异的表现。纺织废水中除了含有大量染料分子,通常还伴有高浓度的盐(如NaCl 或Na2SO4)〔7,47-49,51〕。然而,商业纳滤膜的高盐截留率导致大量的水和能量消耗,且无法对有价资源进行有效回收〔74〕。相比之下,LNF 膜以高盐透过率,充分保留了染料分子,并高效分离了盐,也因此降低了浓差极化和操作压力,有利于减少膜污染,提高通量。除此之外,F. OULAD 等〔75〕通过测试LNF 膜对于藻类染料的高去除率,试验了LNF膜对于处理真正的藻类废水的效果也很好,在保证了膜对藻类高效截留的同时,通量也比较稳定。LNF 膜还可以用来去除农业用水中的农药残留〔21〕,回收垃圾渗滤液中的腐殖质用于植物生长的有效肥料〔15〕以及去除天然水中的天然有机物(NOM)〔40〕等。例如M. PEYDAYESH 等〔76〕开发了一种顶层自组装乙二胺接枝的多壁碳纳米管(ED-g-mwcnt)的不对称聚醚砜LNF 膜,膜表面带正电荷,可用于净化重金属废水。与纯聚醚砜膜相比,其对Zn(96.7%)、Cd(92.4%)、Cu(91.9%)、Ni(90.7%)、Pb(90.5%)等的重金属截留率较好。
4 总结和展望
与纳滤膜相比,LNF 膜拥有更高的渗透性,对盐更低的截留率和更高的分离选择性,在从废水中回收资源方面显示出了巨大的优势。其中,高分离选择性是LNF 膜应用的关键特性,尤其是从复杂的工业废水中回收有价资源〔65,77-78〕。目前可以采用多种不同的方法如相转化,界面聚合,贻贝启发沉积,有机无机杂化等多种方法来制备及增强LNF 膜的选择性。未来,随着资源的缺乏以及可持续发展战略的推进,LNF 膜以其优越的分离性质和低能耗,势必会在更多的领域得到广泛的应用。然而,在不同严苛环境条件(如强酸、强碱、细菌污染等)下存在的膜污染和膜清洁方面的问题还有待解决。未来,研究并开发化学性质稳定、耐酸碱且有一定抗菌效果的LNF 膜是非常必要的。此外,LNF 膜的应用还在实验室试验阶段,大规模的产业化应用也有待实践。