胰岛beta细胞再生研究进展
2022-05-24赵欢周斌
赵欢,周斌,2,3
优博专栏
胰岛beta细胞再生研究进展
赵欢1,周斌1,2,3
1. 中国科学院分子细胞科学卓越创新中心/生物化学与细胞生物学研究所,上海 200031 2. 上海科技大学生命科学与技术学院,上海 201210 3. 国科大杭州高等研究院生命与健康科学学院,杭州 310024
胰岛beta细胞分泌胰岛素调控体内血糖水平,胰岛beta细胞数量减少会导致糖尿病的发生。胰岛移植是目前治疗糖尿病的有效方法,但是目前仍然面临供体短缺等巨大障碍,因此研究胰岛beta细胞再生对于糖尿病的临床治疗具有深远意义。beta细胞的再生来源主要包括内源性beta细胞增殖、多能干细胞分化和其他非beta细胞的转分化。成体是否存在内源性胰腺干细胞依然是领域内亟待解决的重要科学问题之一。本文总结了与胰岛beta细胞再生相关的研究发现与进展,并讨论了内源性胰岛beta细胞增殖、诱导多能干细胞分化、非胰岛beta细胞重编程等方法在糖尿病治疗中需要注意的问题和潜在应用前景。
胰腺beta细胞;再生;分化;增殖
全球大约有5.37亿人饱受糖尿病及其并发症的困扰,糖尿病是一种以高血糖为主要病症的代谢性疾病,主要包括1型和2型糖尿病。1型糖尿病有家族性发病的特点,主要由自身免疫系统缺陷引起的胰岛beta细胞选择性破坏和功能受损,胰岛素分泌缺乏,患者发病年龄小,需要终生补充外源性胰岛素[1,2]。2型糖尿病患者占总患者人数90%以上,发病年龄较晚,病症相对较轻,多由于肥胖及饮食过多等不良生活习惯等因素引起,但也有研究发现2型糖尿病患者的胰岛beta细胞数量显著减少[1,2]。糖尿病可以引发一系列包括失明、肾衰竭、脑中风及冠状血管疾病等并发症,给社会造成巨大医疗负担。现有的治疗方法例如胰岛细胞移植虽然有效,但具有供体短缺、免疫排斥反应等缺点。因此,研究如何促进beta细胞再生将有助于寻找治疗糖尿病的新策略,是领域内亟待解决的重要科学问题之一[1,2]。本文主要综述了哺乳动物成体胰岛beta细胞来源和产生新胰岛beta细胞策略及其调控机制最新研究进展,以期为相关人员提供参考。
1 成体胰岛beta细胞来源
作为人体内主要消化器官之一,胰腺具有调控机体能量消耗与代谢的重要作用,位于人体腹上区腹膜后间隙,形状细长,连接十二指肠和脾脏,主要包括外分泌部和内分泌胰岛(又称朗格汉斯岛),一层稀疏结缔组织覆盖在表面将胰腺分隔成许多小叶。胰腺外分泌部主要由腺泡细胞和导管细胞构成,腺泡细胞呈泡状,可以分泌多种消化酶沿胰腺导管进入小肠,参与分解脂肪、蛋白质和碳水化合物等[1]。胰岛体积很小,成紧密球状组织,零散分布于外分泌部中,主要包括alpha细胞、beta细胞、delta细胞和PP细胞。胰岛beta细胞可以分泌胰岛素,与alpha细胞分泌的胰高血糖素通过胰岛内血管网络直接进入血液循环,协同维持机体血糖稳定[1]。目前,对于成体胰岛beta细胞来源主要有两种观点:原有beta细胞的自我复制和非beta细胞的转分化(包括干细胞的分化)。
1.1 主要来源
细胞增殖、分化和转分化等在机体生长发育及病理状况下发挥着重要作用,准确解析体内细胞命运有助于人们深入了解这些生物学过程[3]。成体胰岛beta细胞来源的研究历史悠久,研究对象主要集中于啮齿类动物例如小鼠()。早期研究依赖于H3胸苷嘧啶掺入实验,提出成体胰岛内分泌细胞属于可以通过自我复制来维持的分化细胞[4,5],然而2002年的一项研究工作通过组织形态观察发现胰岛细胞存在干细胞来源[6],此外也有研究发现胰岛干细胞可能存在于骨髓[7]、胰岛内[8]及胰腺导管上皮细胞[9]。除了自我复制和干细胞分化,还有一种观点认为beta细胞是来自于胰腺腺泡细胞[10]和胰岛内其他非beta细胞的内分泌细胞[11]的转分化。然而,以上这些对于胰岛内分泌细胞来源的研究与结论都是基于静态组织学层面的观察分析,而不是对体内细胞谱系的直接分析。
随着遗传谱系示踪技术的出现和发展,该技术最初用于经典的发育生物学领域,后来越来越多地用于干细胞科学研究,该技术可以探究体内细胞迁移、增殖和命运转变等过程[12]。主要原理是基于位点特异性重组酶包括Cre/loxP等,当以组织特异性方式激活Cre重组酶,就可以使特定细胞表达报告基因,这种标记是可遗传且永久性的,即使该细胞的子代细胞发生转分化不再表达Cre,细胞谱系类型发生变化,其子代细胞也会持续表达报告基因,因此是解析体内细胞命运可塑性的金标准工具[12]。当把Cre同源重组酶和雌激素受体结合就可以构成诱导型CreER,只有在他莫昔芬(Tamoxifen)诱导的条件下,Cre同源重组酶才能入核发挥作用,可以实现定时控制其表达以研究特定细胞在体内的起源与命运[12]。
2004年,一项里程碑式的研究工作被报道。Dor等[13]利用谱系示踪技术,发现小鼠成体胰岛beta细胞主要来源于自我复制而非干细胞分化。在这项工作中,研究人员构建了beta细胞特异性驱动小鼠,在小鼠成体后给予他莫昔芬注射,特异性诱导胰岛beta细胞标记人碱性磷酸酶蛋白,因为这种遗传重组是发生在DNA水平,这些已有的beta细胞及它们所有的子代细胞都会被永久标记,在经过一段时间后收取小鼠组织,通过组织化学染色检测此时胰岛beta细胞标记蛋白的表达情况。理论上,如果是新的beta细胞来源于干细胞或者祖细胞,这些新的beta细胞就不会表达标记蛋白,那么beta细胞的标记比例会降低;如果新的beta细胞来源于原有beta细胞的自我复制,胰岛内标记的beta细胞比例就会保持稳定。研究人员收取了诱导标记后2.5、4、6、9和12个月的小鼠胰腺组织,发现beta细胞标记效率在这些时间点维持稳定,说明成体胰岛beta细胞来自于原有beta细胞的自我复制[13]。
2007年,另一项里程碑式研究工作通过借助独立于谱系示踪技术的新型双胸腺嘧啶类似物标记策略,证明小鼠出生后胰岛beta细胞的产生来自于自我更新而不是祖细胞分化[14]。研究人员在不同时间往小鼠饮用水中添加两种不同的胸腺嘧啶类似物,理论上,每种类似物的掺入都代表一次细胞分裂,如果细胞主要来源于特化的干/祖细胞,那么最近分裂的细胞就会经历多次细胞分裂而被标记上两种类似物;相反,如果细胞主要通过自我更新来维持,那么最近分裂的细胞就不会经历多次细胞分裂,只能掺入一种类似物。借助该技术,研究人员发现胃肠上皮细胞和皮肤可以检测到大量有两种类似物掺入的细胞,而胰岛beta细胞只有一种标记,因此认为beta细胞是来源于自我更新[14]。
此后,国内外有多个研究组利用不同的遗传工具支持这一观点[14~20]。这些研究工作一致认为,哺乳动物胚胎期存在胰岛干细胞分化及其他细胞去分化来源的beta细胞新生,而这一现象在出生后就急剧减少,成体胰岛beta细胞的自我复制是其产生的主要途径(图1)。
以上工作主要是研究胰腺生理稳态及损伤模型,包括胰腺部分切除、胰腺导管结扎和化学药物引起beta细胞损伤等(图1)。研究发现,哺乳动物在妊娠期间或肥胖条件下可以观察到胰岛增生,beta细胞数量显著增加[21,22]。在胰腺切除术中,切除90%的胰腺不会影响大鼠()的葡萄糖稳态[23,24],说明啮齿类动物胰腺有很强的储存与再生能力,而人类中切除50%左右的胰腺就会引起胰岛素依赖型糖尿病[25]。胰腺导管结扎可以引起外分泌部腺泡细胞大量死亡,引起类似胰腺炎症状,但普遍认为该模型不会对内分泌胰岛造成严重伤害和引起再生[26]。化学药物例如链脲佐菌素(streptozotocin, STZ)等诱导部分beta细胞损伤和消融,其原理是STZ作为葡萄糖类似物可以通过葡萄糖转运蛋白2 (glucose transporter type 2, GLUT2)发挥作用使DNA烷基化,腺苷三磷酸(adenosine triphosphate, ATP)产生减少,小鼠胰岛素缺乏,表现出1型糖尿病症状[27,28]。
图1 胰岛beta细胞的自我复制
动物研究表明,beta细胞复制是稳态、妊娠、损伤和胰岛素抵抗中再生和修复的主要模式。
1.2 成体胰岛beta细胞干细胞争议
胰腺干细胞指的是可以分化产生多个胰腺细胞谱系,同时具有自我更新能力的细胞。在哺乳动物胚胎发育过程中,胰腺干细胞存在于胰腺导管上皮,可以分化产生胰腺内分泌部和外分泌部[29]。一个尚未完全回答的重要科学问题是成体动物包括人类体内是否存在内源性胰腺干细胞,可以分化产生胰岛beta细胞?因为beta细胞的大量丢失会造成人体内分泌失调及不可逆的糖尿病,寻找和鉴定胰岛beta细胞干细胞可以为糖尿病临床治疗提供理论依据和新的研究方向,具有深远意义。
一些谱系示踪研究工作支持成体胰岛beta细胞干细胞存在。例如,在胰管结扎(pancreatic duct ligation, PDL)损伤后,成年导管基因神经元素3 (neurogenin3, Ngn3)阳性细胞可重新激活,增殖并分化为beta细胞[30]。成年胰管碳酸酐酶II (carbonic anhydrase II)阳性细胞在胰管结扎模型损伤后也可作为祖细胞生成beta细胞[31]。同样,少量成体胰腺特异转录因子1a (pancreas specific transcription factor 1a, Ptf1a)阳性腺泡细胞在PDL后可快速重编程生成导管细胞,并可以分化产生少量胰岛素阳性beta细胞[32]。此外,其他研究也提示存在成体胰腺干细胞或祖细胞,包括CD133 (prominin 1)阳性细胞[33]、醛脱氢酶1A1 (aldehyde dehydrogenase 1a1, Aldh1a1)阳性细胞[34]、胰腺-十二指肠同源盒基因-1 (pancreatic and duodenal homeobox-1, Pdx1)阳性细胞[35]、SRY (性别决定区Y)框9 (SRY (sex determining region Y)-box 9, Sox9)阳性导管细胞[36]、蛋白C受体(protein C receptor, Procr)阳性细胞[37]及Ngn3阳性生长激素抑制素(somatostatin, Sst)阳性导管细胞[38]。然而,一些研究组基于胰腺导管细胞或腺泡细胞特异标记以及广谱性细胞标记介导的遗传谱系示踪研究结果并不支持成体胰岛干细胞的存在[13~20]。
存在争议的可能原因是所谓的干细胞启动子在体内标记或许并不特异,基于Cre/loxP同源重组系统的遗传谱系示踪技术的准确性取决于Cre小鼠的特异性,因此进行遗传谱系示踪研究时需要非常严格的检验[39]。例如,当使用A-Cre(ER)小鼠来标记细胞B,最终观察到“变成”了细胞C,如果要得出细胞B可以产生细胞C的结论,需要先验证在标记最初A-Cre(ER)小鼠对细胞B标记的特异性,排除A启动子在细胞C中的“泄露”表达以及实验条件是否会诱导A启动子在细胞C中的启动,从而导致A-Cre(ER)小鼠对细胞C的预先标记,影响正确结论的得出。所以,提出胰腺干细胞贡献产生beta细胞结论的前提是该干细胞的启动子不会预先标记beta细胞[39~41]。因此,是否存在成体胰岛beta细胞干细胞仍有待进一步探究。
2 胰岛beta细胞再生策略
2.1 内源性胰岛beta细胞增殖
啮齿类动物的胰岛beta细胞具有较高增殖率。研究发现,1月龄大鼠胰岛beta细胞大约每天有4%增殖率,而到了7月龄增殖率就降到了大约每天0.5%[42,43]。妊娠和肥胖可以促进小鼠胰岛beta细胞增殖,可能是由于胰岛素和葡萄糖升高直接刺激beta细胞增殖,涉及多条信号通路[44~47]。但是,通过增殖标记物Ki67和增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)组织染色,在健康、怀孕及肥胖的人类成体胰腺中很少发现有增殖的beta细胞[25,48,49]。有研究发现小鼠胰岛beta细胞具有异质性,表达Flattop的beta细胞具有成熟beta细胞特征,而不表达Flattop的beta细胞具有更强的细胞增殖能力。单细胞测序技术的发展与应用扩展了人们对beta细胞增殖和异质性的理解,很多研究证明beta细胞具有异质性[51]。研究人员发现人体内胰岛beta细胞具有基因表达和功能不同的4种亚型[52]。目前临床上对于beta细胞再生疗法的需求巨大,促进内源性beta细胞增殖依然是目前补充beta细胞的一种直接又简单的解决方案。
目前,该方面的研究主要集中于动物模型,大量研究工作发现,多种生长因子和促有丝分裂剂包括表皮生长因子、肝细胞生长因子、胰高血糖素样肽、胰岛素样生长因子等可以促进beta细胞增殖[53~61],这些因子在人体内是否可以促进beta细胞增殖还有待进一步验证。高通量化合物筛选发现双特异性酪氨酸磷酸化可以刺激调节激酶1A (DYRK1A)抑制剂,不仅可以在小鼠体内有效促进beta细胞增殖,还可以促进体外培养的人beta细胞和体内移植人beta细胞增殖[62~64]。近期发表在杂志的一项重磅研究工作发现在beta细胞中敲除胰岛素抑制受体(insulin inhibitory receptor, inceptor)和利用单克隆抗体阻断该受体发挥作用,可以增加功能性beta细胞的数量[65]。
人类成体胰岛beta细胞具有进入细胞周期所必需的分子元件,比如细胞周期蛋白、细胞周期蛋白依赖性激酶等,直接操纵这些分子机制可以迫使人类beta细胞增殖,但是细胞周期基因突变会导致胰腺内分泌增生,甚至引起胰岛细胞瘤[66~68]。因此,如何安全有效地促进人类胰岛beta细胞增殖并正常发挥功能,同时要确保不会引起肿瘤形成等问题,依然是领域内的一个重要研究方向。
2.2 诱导多能干细胞分化
胰岛移植是近年来有效治疗糖尿病的方法之一,但是面临着供体不足等问题,限制了该方法的普及使用。因此,从人类多能干细胞中诱导分化提取胰岛细胞移植是一种很有应用前景的治疗糖尿病的方法。2006年日本学者首次报道了利用逆转录病毒将4个转录因子(Oct4、Sox2、c-Myc和Klf4)导入成体成纤维细胞诱导形成多能干细胞的研究[69],开创了疾病治疗领域一个新的重要方向。通过转录因子的组合,研究人员实现了诱导人类胚胎干细胞向胰岛细胞的分化[70],展现出干细胞在糖尿病治疗中的应用潜力。但是在这项研究工作中,分化产生的是一组表达混合激素的细胞,而不是真正意义的成熟beta细胞。后续,研究人员诱导生产出了可以对葡萄糖刺激有反应的内分泌胰岛,当把人类胚胎干细胞来源的PDX1+祖细胞移植入小鼠体内时,可以在体内分化形成功能性beta细胞,逆转糖尿病[71]。
长期以来,通过对诱导因子和化合物的不断优化,并且借助于三维培养模式,研究人员设计了更加复杂的分化方案,使产生的细胞簇具有更加显著的胰岛形态和功能相似性[72~81]。然而,到目前为止,由干细胞诱导产生的beta细胞还不具有成熟功能,对胰岛素分泌调节能力较差。Balboa等[82]进一步优化分化方案,与常用分化方案不同之处主要包括:在粘附状态下分化人多能干细胞到胰腺祖细胞期;优化第四阶段(后前肠到胰腺祖细胞阶段)和微孔聚集步骤;改进第七阶段(最终成熟阶段)在悬浮培养条件下进行。通过代谢功能研究和单细胞转录组学,首次证实可以诱导形成在结构和功能上都非常成熟的胰岛,并且对其功能特性进行了非常详细地探究与表述,也证实移植到小鼠体内的诱导beta细胞可以有效调控体内葡萄糖代谢,这一成果使该技术更容易应用于疾病的治疗[82]。但是,干细胞诱导分化产生beta细胞技术到临床应用还依然存在一些重要挑战,例如,如何进一步完善大规模制造和进行质量控制,如何防止移植后的免疫排斥等问题,需要进一步探究。
2.3 非胰岛beta细胞重编程
通过患者本身终末分化的非胰岛beta细胞重编程产生beta细胞,可以有效规避体内免疫排斥反应等问题,具有重要意义,也是糖尿病临床治疗的有效途径之一。Thorel等[83]和Chera等[84]相继发现,当利用白喉毒素清除小鼠体内99%的beta细胞,几个月后可以观察到beta细胞的缓慢恢复,新的beta细胞来源于胰岛alpha或delta细胞的转分化,这种转分化与小鼠年龄有很大的相关性。表观遗传因子Arx和Pax4在这种转分化过程中发挥了关键作用[85,86]。后续研究发现,长期用gamma氨基丁酸(GABA)处理也可以促进小鼠alpha细胞向beta细胞转变[87],并且位于胰岛外围的一个特殊细胞群可能是alpha细胞向beta细胞转变的一个中间态[88,89]。Alpha细胞和beta细胞都位于胰岛内部,有类似的形态结构,而且在胚胎发育过程中来源于相同的前体祖细胞[90],或许是重编程形成beta细胞的理想来源,但是目前还没有确切的研究结果证明人体内是否存在这种胰岛内细胞类型间的转化。
对胰腺发育进程各阶段相关转录因子的研究可以有助于对终末分化细胞重编程产生beta细胞的探索,具有重要意义。发育过程中涉及很多转录因子,例如:胰腺-十二指肠同源盒基因-1 (pancreatic and duodenal homeobox-1, Pdx1)是胰腺发育、beta细胞增殖、成熟和发挥功能所必需的重要转录因子,胚胎时期表达于早期胰腺芽体上皮细胞,具有多能分化潜能[91];肌腱膜纤维肉瘤癌基因家族蛋白A (v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A, MafA)是可以与INS结合,是调节beta细胞代谢的一个转录因子,相对特异地表达于胰岛beta细胞[92~94];Ngn3是胚胎发育过程中胰腺内分泌祖细胞表达的关键转录因子之一,参与调控启动胰腺前体细胞向内分泌细胞分化过程[95~97]。
由于胰腺腺泡细胞数量众多,普遍认为是体内转分化形成beta细胞的理想来源之一。2008年,Zhou等[98]借助腺病毒载体将3种关键的胰岛beta细胞转录因子Ngn3、Pdx1和MafA组合表达,成功将小鼠外分泌部腺泡细胞重编程为beta细胞样细胞,这一结论在体外也得到证实[99],诱导形成的beta细胞样细胞不仅表达成熟beta细胞标志基因,还具有逆转糖尿病的能力,为糖尿病治疗开辟了新的研究方向[98~100]。肝和胰岛在早期胚胎发育过程具有相同来源,研究人员发现Ngn3、Pdx1和MafA三个转录因子共同表达可以诱导Sox9+肝细胞表达胰岛素[101],转录因子Tgif2可以促进肝细胞重编程进入胰腺祖细胞状态[102]。
2018年,Xiao等[103]借助腺相关病毒向胰岛导入Pdx1和MafA,基于遗传谱系示踪技术证明可以成功将胰岛中的alpha细胞重编程形成可以分泌胰岛素的beta细胞[103]。小鼠体细胞重编程产生beta细胞的其他研究还包括胰腺导管细胞[104]、胃肠道上皮细胞[105]、NGN3+肠道内分泌祖细胞[106]、肠腺窝细胞[107]等。此外,还有一些研究报道了在体外对人类体细胞(包括胰腺外分泌细胞、成纤维细胞和脂肪细胞等)重编程产生可以分泌胰岛素的beta细胞[108~114]。
目前,体细胞重编程产生beta细胞应用于临床的主要挑战之一在于如何安全可靠地高效生产具有成熟功能的beta细胞,并且需要检测在移植后是否可以长期保持稳定的功能性和表观遗传状态,因此依然需要不断优化重编程方案,同时解决病毒转染的安全问题。
3 结语与展望
探讨胰岛beta细胞再生的来源和机制对于糖尿病等的治疗具有重要意义。但值得注意的是,应谨慎将在啮齿动物模型得到的结论推广应用于临床治疗,因为人类和啮齿类动物的胰岛在结构和基因表达上存在一些差异。例如,小鼠胰岛beta细胞主要集中在胰岛核心,但是在人类胰岛中beta细胞分布更加均匀;人类胰岛含有更高比例的alpha细胞和更低比例的beta细胞;人类胰岛使用GLUT1而不是GLUT2作为主要的葡萄糖转运体[115,116]等。尽管目前对于促进胰岛beta细胞再生研究方面取得了巨大进展,但依然存在一些关键问题,是以后研究工作的重点。例如:成年动物包括人类胰腺中究竟是否存在可以分化产生beta细胞的干细胞?胰岛beta细胞在体内是否具有功能异质性?重编程产生beta细胞的安全性如何保证?如何获得大规模的高质量成熟beta细胞?除了这些方法的安全有效性以外,这些分化或重编程beta细胞用于临床研究的另一个关键因素是在糖尿病患者特别是1型糖尿病患者自身免疫缺陷环境中是否可以正常发挥细胞功能。因此,对于beta细胞再生的基础研究也应该进一步加强与免疫学领域的合作,如联合使用免疫抑制剂,找到可以产生自然抵抗自身免疫的胰岛的理想方法。
对于胰岛beta细胞稳态维持和如何促进其再生及内在调节信号通路的基础研究将进一步为糖尿病的临床治疗提供理论基础和新的研究方向,对于上述重要科学问题,新的技术手段将在推进这些研究中发挥重要作用。例如构建人源化小鼠模型和人类胰岛类器官作为人类胰腺的替代品,可以帮助在啮齿类动物研究中获得的促进beta细胞再生的研究发现进行验证;三维胰腺类器官培养有助于在体外大量形成成熟完善的胰岛样细胞;CRISPR/Cas9技术可以帮助进行体内基因文库筛选和快速构建模型进行验证;单细胞测序技术可以为胰岛beta细胞异质性和分化/重编程产生的beta细胞的基因表达验证提供非常强大的技术支持等。
综上所述,目前对胰岛beta细胞再生的研究还有很大探索空间,相信随着科学技术的进步和发展,会为糖尿病临床治疗与治愈开辟新的研究道路,为患者带来希望。
[1] Zhou Q, Melton DA. Pancreas regeneration., 2018, 557(7705): 351–358.
[2] McCarthy MI. Genomics, type 2 diabetes, and obesity., 2010, 363(24): 2339–2350.
[3] Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration., 2011, 12(2): 79–89.
[4] Messier B, Leblond CP. Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice., 1960, 106: 247–285.
[5] Tsubouchi S, Kano E, Suzuki H. Demonstration of expanding cell populations in mouse pancreatic acini and islets., 1987, 218(2): 111–115.
[6] Bonner-Weir S, Sharma A. Pancreatic stem cells., 2002, 197(4): 519–526.
[7] Ianus A, Holz GG, Theise ND, Hussain MA.derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion., 2003, 111(6): 843–850.
[8] Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Müller B, Vallejo M, Thomas MK, Habener JF. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiateinto pancreatic endocrine, exocrine, and hepatic phenotypes., 2001, 50(3): 521–533.
[9] Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development., 1993, 42(12): 1715–1720.
[10] Lipsett M, Finegood DT. Beta-cell neogenesis during prolonged hyperglycemia in rats., 2002, 51(6): 1834–1841.
[11] Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes., 2001, 142(11): 4956–4968.
[12] Kretzschmar K, Watt FM. Lineage tracing., 2012, 148(1–2): 33–45.
[13] Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation., 2004, 429(6987): 41–46.
[14] Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors., 2007, 12(5): 817–826.
[15] Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, De Medts N, Xu XB, Grau V, Heimberg H, Bouwens L, Ferrer J. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth., 2009, 17(6): 849–860.
[16] Kopinke D, Brailsford M, Shea JE, Leavitt R, Scaife CL, Murtaugh LC. Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas., 2011, 138(3): 431–441.
[17] Kopinke D, Murtaugh LC. Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas., 2010, 10: 38.
[18] Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, Ma J, Sander M. Sox9+ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas., 2011, 138(4): 653–665.
[19] Xiao XW, Chen ZA, Shiota C, Prasadan K, Guo P, El-Gohary Y, Paredes J, Welsh C, Wiersch J, Gittes GK. No evidence for β cell neogenesis in murine adult pancreas., 2013, 123(5): 2207–2217.
[20] Zhao H, Huang XZ, Liu ZX, Pu WJ, Lv Z, He LJ, Li Y, Zhou Q, Lui KO, Zhou B. Pre-existing beta cells but not progenitors contribute to new beta cells in the adult pancreas., 2021, 3(3): 352–365.
[21] Mezza T, Kulkarni RN. The regulation of pre- and post-maturational plasticity of mammalian islet cell mass., 2014, 57(7): 1291–1303.
[22] Rieck S, Kaestner KH. Expansion of beta-cell mass in response to pregnancy., 2010, 21(3): 151–158.
[23] Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose- induced insulin release., 1983, 71(6): 1544–1553.
[24] Carol B, Fitzgerald PJ. Pancreatic acinar cell regeneration. VI. Estimation of error of the autoradiographic labeling index (thymidine-H3)—maximum possible error (MPRE) and sensitivity (S)., 1968, 53(6): 971–987.
[25] Menge BA, Tannapfel A, Belyaev O, Drescher R, Müller C, Uhl W, Schmidt WE, Meier JJ. Partial pancreatectomy in adult humans does not provoke beta-cell regeneration., 2008, 57(1): 142–149.
[26] Rankin MM, Wilbur CJ, Rak K, Shields EJ, Granger A, Kushner JA. β-Cells are not generated in pancreatic duct ligation-induced injury in adult mice., 2013, 62(5): 1634–1645.
[27] Rankin MM, Kushner JA. Adaptive beta-cell proliferation is severely restricted with advanced age., 2009, 58(6): 1365–1372.
[28] Tschen SI, Dhawan S, Gurlo T, Bhushan A. Age- dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice., 2009, 58(6): 1312–1320.
[29] Slack JM. Developmental biology of the pancreas., 1995, 121(6): 1569–1580.
[30] Xu XB, D'Hoker J, Stangé G, Bonné S, De Leu N, Xiao XW, Van de Casteele M, Mellitzer G, Ling ZD, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas., 2008, 132(2): 197–207.
[31] Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, Sharma A, Bonner-Weir S. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth., 2008, 105(50): 19915–19919.
[32] Pan FC, Bankaitis ED, Boyer D, Xu XB, Van de Casteele M, Magnuson MA, Heimberg H, Wright CVE. Spatiotemporal patterns of multipotentiality in Ptf1a- expressing cells during pancreas organogenesis and injury-induced facultative restoration., 2013, 140(4): 751–764.
[33] Jin L, Gao D, Feng T, Tremblay JR, Ghazalli N, Luo A, Rawson J, Quijano JC, Chai J, Wedeken L, Hsu J, LeBon J, Walker S, Shih HP, Mahdavi A, Tirrell DA, Riggs AD, Ku HT. Cells with surface expression of CD133highCD71loware enriched for tripotent colony- forming progenitor cells in the adult murine pancreas., 2016, 16(1): 40–53.
[34] Rovira M, Scott SG, Liss AS, Jensen J, Thayer SP, Leach SD. Isolation and characterization of centroacinar/ terminal ductal progenitor cells in adult mouse pancreas., 2010, 107(1): 75–80.
[35] Criscimanna A, Speicher JA, Houshmand G, Shiota C, Prasadan K, Ji BA, Logsdon CD, Gittes GK, Esni F. Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice., 2011, 141(4): 1451–1462, 1462.e1– 1462.e6.
[36] El-Gohary Y, Wiersch J, Tulachan S, Xiao XW, Guo P, Rymer C, Fischbach S, Prasadan K, Shiota C, Gaffar I, Song ZW, Galambos C, Esni F, Gittes GK. Intraislet pancreatic ducts can give rise to insulin-positive cells., 2016, 157(1): 166–175.
[37] Wang DS, Wang JQ, Bai LY, Pan H, Feng H, Clevers H, Zeng YA. Long-term expansion of pancreatic islet organoids from resident Procr+progenitors., 2020, 180(6): 1198–1211.e19.
[38] Gribben C, Lambert C, Messal HA, Hubber EL, Rackham C, Evans I, Heimberg H, Jones P, Sancho R, Behrens A. Ductal Ngn3-expressing progenitors contribute to adult β cell neogenesis in the pancreas., 2021, 28(11): 2000–2008.e4.
[39] He LJ, Li Y, Li Y, Pu WJ, Huang XZ, Tian XY, Wang Y, Zhang H, Liu QZ, Zhang LB, Zhao H, Tang J, Ji HB, Cai DQ, Han ZB, Han ZC, Nie Y, Hu SS, Wang QD, Sun RL, Fei J, Wang FC, Chen T, Yan Y, Huang HF, Pu WT, Zhou B. Enhancing the precision of genetic lineage tracing using dual recombinases., 2017, 23(12): 1488–1498.
[40] Yu K, Fischbach S, Xiao XW. Beta cell regeneration in adult mice: controversy over the involvement of stem cells., 2016, 11(7): 542–546.
[41] Zhao H, Lui KO, Zhou B. Pancreatic beta cell neogenesis: debates and updates., 2021, 33(11): 2105–2107.
[42] Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model., 1995, 44(3): 249–256.
[43] Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA. Very slow turnover of beta-cells in aged adult mice., 2005, 54(9): 2557–2567.
[44] Karnik SK, Chen HN, McLean GW, Heit JJ, Gu XY, Zhang AY, Fontaine M, Yen MH, Kim SK. Menin controls growth of pancreatic beta-cells in pregnant mice and promotes gestational diabetes mellitus., 2007, 318(5851): 806–809.
[45] Zhang HJ, Zhang J, Pope CF, Crawford LA, Vasavada RC, Jagasia SM, Gannon M. Gestational diabetes mellitus resulting from impaired beta-cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen., 2010, 59(1): 143–152.
[46] Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, Fujitani Y, Kawamori R, Miyatsuka T, Kosaka Y, Yang K, Honig G, van der Hart M, Kishimoto N, Wang JH, Yagihashi S, Tecott LH, Watada H, German MS. Serotonin regulates pancreatic beta cell mass during pregnancy., 2010, 16(7): 804–808.
[47] Ernst S, Demirci C, Valle S, Velazquez-Garcia S, Garcia-Ocaña A. Mechanisms in the adaptation of maternal β-cells during pregnancy., 2011, 1(2): 239–248.
[48] Butler AE, Cao-Minh L, Galasso R, Rizza RA, Corradin A, Cobelli C, Butler PC. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy., 2010, 53(10): 2167–2176.
[49] Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC. β-cell mass and turnover in humans: effects of obesity and aging., 2013, 36(1): 111–117.
[50] Bader E, Migliorini A, Gegg M, Moruzzi N, Gerdes J, Roscioni SS, Bakhti M, Brandl E, Irmler M, Beckers J, Aichler M, Feuchtinger A, Leitzinger C, Zischka H, Wang-Sattler R, Jastroch M, Tschöp M, Machicao F, Staiger H, Häring HU, Chmelova H, Chouinard JA, Oskolkov N, Korsgren O, Speier S, Lickert H. Identification of proliferative and mature β-cells in the islets of Langerhans., 2016, 535(7612): 430–434.
[51] Yu XX, Xu CR. Understanding generation and regeneration of pancreatic β cells from a single-cell perspective., 2020, 147(7): dev179051.
[52] Dorrell C, Schug J, Canaday PS, Russ HA, Tarlow BD, Grompe MT, Horton T, Hebrok M, Streeter PR, Kaestner KH, Grompe M. Human islets contain four distinct subtypes of β cells., 2016, 7: 11756.
[53] Chen HN, Gu XY, Liu YH, Wang J, Wirt SE, Bottino R, Schorle H, Sage J, Kim SK. PDGF signalling controls age-dependent proliferation in pancreatic β-cells., 2011, 478(7369): 349–355.
[54] Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM, German MS, Stainier DYR. Adenosine signaling promotes regeneration of pancreatic β cells., 2012, 15(6): 885–894.
[55] Annes JP, Ryu JH, Lam K, Carolan PJ, Utz K, Hollister-Lock J, Arvanites AC, Rubin LL, Weir G, Melton DA. Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication., 2012, 109(10): 3915–3920.
[56] Xiao XW, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, Song ZW, El-Gohary Y, Prasadan K, Shiota C, Gittes GK. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7., 2014, 111(13): E1211–E1220.
[57] El Ouaamari A, Dirice E, Gedeon N, Hu J, Zhou JY, Shirakawa J, Hou LF, Goodman J, Karampelias C, Qiang GF, Boucher J, Martinez R, Gritsenko MA, De Jesus DF, Kahraman S, Bhatt S, Smith RD, Beer HD, Jungtrakoon P, Gong YP, Goldfine AB, Liew CW, Doria A, Andersson O, Qian WJ, Remold-O'Donnell E, Kulkarni RN. SerpinB1 promotes pancreatic β cell proliferation., 2016, 23(1): 194–205.
[58] Schulz N, Liu KC, Charbord J, Mattsson CL, Tao LJ, Tworus D, Andersson O. Critical role for adenosine receptor A2a in β-cell proliferation., 2016, 5(11): 1138–1146.
[59] Wang P, Karakose E, Liu HT, Swartz E, Ackeifi C, Zlatanic V, Wilson J, González BJ, Bender A, Takane KK, Ye L, Harb G, Pagliuca F, Homann D, Egli D, Argmann C, Scott DK, Garcia-Ocaña A, Stewart AF. Combined inhibition of DYRK1A, SMAD, and Trithorax pathways synergizes to induce robust replication in adult human beta cells., 2019, 29(3): 638–652.e5.
[60] Sehrawat A, Shiota C, Mohamed N, DiNicola J, Saleh M, Kalsi R, Zhang T, Wang Y, Prasadan K, Gittes GK. SMAD7 enhances adult β-cell proliferation without significantly affecting β-cell function in mice., 2020, 295(15): 4858–4869.
[61] Charbord J, Ren LP, Sharma RB, Johansson A, Ågren R, Chu LH, Tworus D, Schulz N, Charbord P, Stewart AF, Wang P, Alonso LC, Andersson O.screen identifies a SIK inhibitor that induces β cell proliferation through a transient UPR., 2021, 3(5): 682–700.
[62] Shen WJ, Taylor B, Jin QH, Nguyen-Tran V, Meeusen S, Zhang YQ, Kamireddy A, Swafford A, Powers AF, Walker J, Lamb J, Bursalaya B, DiDonato M, Harb G, Qiu MH, Filippi CM, Deaton L, Turk CN, Suarez- Pinzon WL, Liu YH, Hao XS, Mo TT, Yan SS, Li J, Herman AE, Hering BJ, Wu T, Martin Seidel H, McNamara P, Glynne R, Laffitte B. Inhibition of DYRK1A and GSK3B induces human β-cell proliferation., 2015, 6: 8372.
[63] Wang P, Alvarez-Perez JC, Felsenfeld DP, Liu HT, Sivendran S, Bender A, Kumar A, Sanchez R, Scott DK, Garcia-Ocaña A, Stewart AF. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication., 2015, 21(4): 383–388.
[64] Dirice E, Walpita D, Vetere A, Meier BC, Kahraman S, Hu J, Dančík V, Burns SM, Gilbert TJ, Olson DE, Clemons PA, Kulkarni RN, Wagner BK. Inhibition of DYRK1A stimulates human β-cell proliferation., 2016, 65(6): 1660–1671.
[65] Ansarullah, Jain C, Far FF, Homberg S, Wissmiller K, von Hahn FG, Raducanu A, Schirge S, Sterr M, Bilekova S, Siehler J, Wiener J, Oppenländer L, Morshedi A, Bastidas-Ponce A, Collden G, Irmler M, Beckers J, Feuchtinger A, Grzybek M, Ahlbrecht C, Feederle R, Plettenburg O, Muller TD, Meier M, Tschöp MH, Coskun Ü, Lickert H. Inceptor counteracts insulin signalling in β-cells to control glycaemia., 2021, 590(7845): 326–331.
[66] Kulkarni RN, Mizrachi EB, Ocana AG, Stewart AF. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map., 2012, 61(9): 2205–2213.
[67] Bernal-Mizrachi E, Kulkarni RN, Scott DK, Mauvais- Jarvis F, Stewart AF, Garcia-Ocaña A. Human β-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map., 2014, 63(3): 819–831.
[68] Stewart AF, Hussain MA, García-Ocaña A, Vasavada RC, Bhushan A, Bernal-Mizrachi E, Kulkarni RN. Human β-cell proliferation and intracellular signaling: part 3., 2015, 64(6): 1872–1885.
[69] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors., 2007, 131(5): 861–872.
[70] D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells., 2006, 24(11): 1392–1401.
[71] Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D'Amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells., 2008, 26(4): 443–452.
[72] Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA. Generation of functional human pancreatic β cells., 2014, 159(2): 428–439.
[73] Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O'Dwyer S, Quiskamp N, Mojibian M, Albrecht T, Yang YHC, Johnson JD, Kieffer TJ. Reversal of diabetes with insulin-producing cells derivedfrom human pluripotent stem cells., 2014, 32(11): 1121–1133.
[74] Balboa D, Saarimäki-Vire J, Otonkoski T. Concise review: human pluripotent stem cells for the modeling of pancreatic β-cell pathology., 2019, 37(1): 33–41.
[75] Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, Juang C, Li ML, Nguyen VQ, Giacometti S, Puri S, Xing Y, Wang Y, Szot GL, Oberholzer J, Bhushan A, Hebrok M. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells., 2019, 21(2): 263–274.
[76] Velazco-Cruz L, Song J, Maxwell KG, Goedegebuure MM, Augsornworawat P, Hogrebe NJ, Millman JR. Acquisition of dynamic function in human stem cell-derived β cells., 2019, 12(2): 351–365.
[77] Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JHR, Harb G, Poh YC, Sintov E, Gürtler M, Pagliuca FW, Peterson QP, Melton DA. Charting cellular identity during humanβ-cell differentiation., 2019, 569(7756): 368–373.
[78] Alvarez-Dominguez JR, Donaghey J, Rasouli N, Kenty JHR, Helman A, Charlton J, Straubhaar JR, Meissner A, Melton DA. Circadian entrainment triggers maturation of humanislets., 2020, 26(1): 108–122.e10.
[79] Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Single-cell transcriptome profiling reveals β cell maturation in stem cell-derived islets after transplantation., 2020, 32(8): 108067.
[80] Yoshihara E, O'Connor C, Gasser E, Wei Z, Oh TG, Tseng TW, Wang D, Cayabyab F, Dai Y, Yu RT, Liddle C, Atkins AR, Downes M, Evans RM. Immune-evasive human islet-like organoids ameliorate diabetes., 2020, 586(7830): 606–611.
[81] Hogrebe NJ, Maxwell KG, Augsornworawat P, Millman JR. Generation of insulin-producing pancreatic β cells from multiple human stem cell lines., 2021, 16(9): 4109–4143.
[82] Balboa D, Barsby T, Lithovius V, Saarimäki-Vire J, Omar-Hmeadi M, Dyachok O, Montaser H, Lund PE, Yang MY, Ibrahim H, Näätänen A, Chandra V, Vihinen H, Jokitalo E, Kvist J, Ustinov J, Nieminen AI, Kuuluvainen E, Hietakangas V, Katajisto P, Lau J, Carlsson PO, Barg S, Tengholm A, Otonkoski T. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells., 2022, doi: 10.1038/s41587-022-01219-z.
[83] Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss., 2010, 464(7292): 1149–1154.
[84] Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu GQ, Furuyama K, Thorel F, Gribble FM, Reimann F, Herrera PL. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers., 2014, 514(7523): 503–507.
[85] Collombat P, Xu XB, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H, Mansouri A. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells., 2009, 138(3): 449–462.
[86] Courtney M, Gjernes E, Druelle N, Ravaud C, Vieira A, Ben-Othman N, Pfeifer A, Avolio F, Leuckx G, Lacas- Gervais S, Burel-Vandenbos F, Ambrosetti D, Hecksher- Sorensen J, Ravassard P, Heimberg H, Mansouri A, Collombat P. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells., 2013, 9(10): e1003934.
[87] Ben-Othman N, Vieira A, Courtney M, Record F, Gjernes E, Avolio F, Hadzic B, Druelle N, Napolitano T, Navarro-Sanz S, Silvano S, Al-Hasani K, Pfeifer A, Lacas-Gervais S, Leuckx G, Marroquí L, Thévenet J, Madsen OD, Eizirik DL, Heimberg H, Kerr-Conte J, Pattou F, Mansouri A, Collombat P. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis., 2017, 168(1–2): 73–85.e11.
[88] Lee S, Zhang J, Saravanakumar S, Flisher MF, Grimm DR, van der Meulen T, Huising MO. Virgin β-cells at the neogenic niche proliferate normally and mature slowly., 2021, 70(5): 1070–1083.
[89] van der Meulen T, Mawla AM, DiGruccio MR, Adams MW, Nies V, Dólleman S, Liu SM, Ackermann AM, Cáceres E, Hunter AE, Kaestner KH, Donaldson CJ, Huising MO. Virgin beta cells persist throughout life at a neogenic niche within pancreatic islets., 2017, 25(4): 911–926.e6.
[90] Qiu WL, Zhang YW, Feng Y, Li LC, Yang L, Xu CR. Deciphering pancreatic islet β cell and α cell maturation pathways and characteristic features at the single-cell level., 2017, 25(5): 1194–1205.e4.
[91] Gannon M, Gamer LW, Wright CV. Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1., 2001, 238(1): 185–201.
[92] Aramata S, Han SI, Kataoka K. Roles and regulation of transcription factor MafA in islet beta-cells., 2007, 54(5): 659–666.
[93] Hang Y, Stein R. MafA and MafB activity in pancreatic β cells., 2011, 22(9): 364– 373.
[94] He KH, Juhl K, Karadimos M, El Khattabi I, Fitzpatrick C, Bonner-Weir S, Sharma A. Differentiation of pancreatic endocrine progenitors reversibly blocked by premature induction of MafA., 2014, 385(1): 2–12.
[95] Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas., 2000, 97(4): 1607–1611.
[96] Gu GQ, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors., 2002, 129(10): 2447–2457.
[97] Wang S, Jensen JN, Seymour PA, Hsu W, Dor Y, Sander M, Magnuson MA, Serup P, Gu GQ. Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function., 2009, 106(24): 9715–9720.
[98] Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA.reprogramming of adult pancreatic exocrine cells to beta-cells., 2008, 455(7213): 627–632.
[99] Akinci E, Banga A, Greder LV, Dutton JR, Slack JMW. Reprogramming of pancreatic exocrine cells towards a beta (β) cell character using Pdx1, Ngn3 and MafA., 2012, 442(3): 539–550.
[100] Li WD, Cavelti-Weder C, Zhang YY, Clement K, Donovan S, Gonzalez G, Zhu J, Stemann M, Xu K, Hashimoto T, Yamada T, Nakanishi M, Zhang YM, Zeng S, Gifford D, Meissner A, Weir G, Zhou Q. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells., 2014, 32(12): 1223–1230.
[101] Banga A, Akinci E, Greder LV, Dutton JR, Slack JMW.reprogramming of Sox9+cells in the liver to insulin-secreting ducts., 2012, 109(38): 15336–15341.
[102] Cerdá-Esteban N, Naumann H, Ruzittu S, Mah N, Pongrac IM, Cozzitorto C, Hommel A, Andrade-Navarro MA, Bonifacio E, Spagnoli FM. Stepwise reprogramming of liver cells to a pancreas progenitor state by the transcriptional regulator Tgif2., 2017, 8: 14127.
[103] Xiao XW, Guo P, Shiota C, Zhang T, Coudriet GM, Fischbach S, Prasadan K, Fusco J, Ramachandran S, Witkowski P, Piganelli JD, Gittes GK. Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes., 2018, 22(1): 78–90.e4.
[104] Sancho R, Gruber R, Gu GQ, Behrens A. Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells., 2014, 15(2): 139–153.
[105] Ariyachet C, Tovaglieri A, Xiang GJ, Lu JQ, Shah MS, Richmond CA, Verbeke C, Melton DA, Stanger BZ, Mooney D, Shivdasani RA, Mahony S, Xia Q, Breault DT, Zhou Q. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation., 2016, 18(3): 410–421.
[106] Talchai C, Xuan SH, Kitamura T, DePinho RA, Accili D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation., 2012, 44(4): 406– 412.
[107] Chen YJ, Finkbeiner SR, Weinblatt D, Emmett MJ, Tameire F, Yousefi M, Yang CH, Maehr R, Zhou Q, Shemer R, Dor Y, Li CH, Spence JR, Stanger BZ.formation of insulin-producing "neo-β cell islets" from intestinal crypts., 2014, 6(6): 1046–1058.
[108] Katz LS, Geras-Raaka E, Gershengorn MC. Reprogramming adult human dermal fibroblasts to islet-like cells by epigenetic modification coupled to transcription factor modulation., 2013, 22(18): 2551–2560.
[109] Lee J, Sugiyama T, Liu YH, Wang J, Gu XY, Lei J, Markmann JF, Miyazaki S, Miyazaki JI, Szot GL, Bottino R, Kim SK. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells., 2013, 2: e00940.
[110] Lima MJ, Muir KR, Docherty HM, Drummond R, McGowan NWA, Forbes S, Heremans Y, Houbracken I, Ross JA, Forbes SJ, Ravassard P, Heimberg H, Casey J, Docherty K. Suppression of epithelial-to-mesenchymal transitioning enhancesreprogramming of human exocrine pancreatic tissue toward functional insulin- producing β-like cells., 2013, 62(8): 2821– 2833.
[111] Bouchi R, Foo KS, Hua HQ, Tsuchiya K, Ohmura Y, Sandoval PR, Ratner LE, Egli D, Leibel RL, Accili D. FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures., 2014, 5: 4242.
[112] Dave SD, Vanikar AV, Trivedi HL.generation of human adipose tissue derived insulin secreting cells: up-regulation of Pax-6, Ipf-1 and Isl-1., 2014, 66(2): 299–307.
[113] Lemper M, Leuckx G, Heremans Y, German MS, Heimberg H, Bouwens L, Baeyens L. Reprogramming of human pancreatic exocrine cells to β-like cells., 2015, 22(7): 1117–1130.
[114] Galivo F, Benedetti E, Wang YH, Pelz C, Schug J, Kaestner KH, Grompe M. Reprogramming human gallbladder cells into insulin-producing β-like cells., 2017, 12(8): e0181812.
[115] De Vos A, Heimberg H, Quartier E, Huypens P, Bouwens L, Pipeleers D, Schuit F. Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression., 1995, 96(5): 2489–2495.
[116] Ferrer J, Benito C, Gomis R. Pancreatic islet GLUT2 glucose transporter mRNA and protein expression in humans with and without NIDDM., 1995, 44(12): 1369–1374.
Pancreatic beta cells regeneration
Huan Zhao1, Bin Zhou1,2,3
Insulin-secreting pancreatic beta cells are important for the regulation of glucose metabolism. Loss of beta cells could lead to diabetes. So far, islet transplantation is an effective way for diabetes therapy, but the shortage of donors limits its extensive application. Therefore, study on beta cell regeneration has great significance for the clinical treatment of diabetes. The major cellular sources of beta cells mainly include endogenous beta cell proliferation, pluripotent stem cell differentiation, and trans-differentiation from other non-beta cells. The existence of endogenous pancreatic stem cells or progenitors in adults remains controversial in the field. In this review, we briefly summarize the research advances of beta cell regeneration and discuss the potential problems of these approaches, to improve our understanding on the mechanisms of beta cell regeneration and provide theoretical information for clinical application.
pancreatic beta cell; regeneration; differentiation; proliferation
2022-03-16;
2022-04-05;
2022-04-21
国家自然科学基金项目(编号:31730112,91849202,9216800001)和赛诺菲优秀青年人才奖励基金资助[Supported by the National Natural Science Foundation of China (Nos. 31730112, 91849202, 9216800001) and the Sanofi Scholarship Program]
赵欢,博士,研究方向:遗传谱系示踪技术。E-mail: zhaohuan@sibs.ac.cn
周斌,研究员,博士生导师,研究方向:谱系示踪与细胞命运可塑性。E-mail: zhoubin@sibs.ac.cn
10.16288/j.yczz.22-072
赵欢,2015—2020年就读于中国科学院分子细胞科学卓越创新中心,在周斌课题组攻读博士学位,目前在中国科学院分子细胞科学卓越创新中心进行博士后训练。博士期间,主要研究遗传谱系示踪技术的开发与应用,主要工作有:利用谱系示踪技术靶向肿瘤新生血管,进一步揭示肿瘤恶性增殖与血管新生的关系;使用CRISPR/Cas9系统构建家族性高胆固醇血症小鼠模型并靶向致病基因,发现能够改善动脉粥样硬化等相关疾病表型;开发了能够同时示踪胰岛beta细胞和非beta细胞的谱系示踪新技术,为糖尿病临床治疗研究提供了重要的理论基础和研究新思路。博士论文《遗传谱系示踪肿瘤血管新生和胰腺β细胞》获得2021年中国科学院优秀博士生论文。
(责任编委: 陈帅)