APP下载

山东丹河2018年洪水沉积特征、物源分析及水文过程重建

2022-05-16李华勇赵楠杨艺萍于正松孙启发吴帅虎张曼张虎才

地质力学学报 2022年2期
关键词:磁化率粉砂粒度

李华勇赵 楠杨艺萍于正松孙启发吴帅虎张 曼张虎才

1.安阳师范学院资源环境与旅游学院,河南 安阳 455000;

2.中国科学院南海海洋研究所,广东 广州 510301;

3.中国科学院边缘海与大洋地质重点实验室,广东 广州 510301;

4.云南师范大学地理学部,云南 昆明 650500;

5.云南省高原地理过程与环境变化重点实验室,云南 昆明 650500;

6.云南大学生态与环境学院,云南 昆明 650504;

7.云南大学高原湖泊生态与治理研究院,云南 昆明 650504

当今洪水灾害频发的环境背景下,利用地质载体延长古洪水记录的时空尺度,研究其发生规律,探讨古洪水发生的气候背景及自然和人文因素,逐渐成为学术热点,并且极具现实意义(Knox,2000;张业成等,2006;高杨等,2017)。古洪水沉积物是记录古洪水信息的重要地质载体之一,通过对其研究,既可以理解河流水文系统在万年尺度对于气候变化的响应规律,又可以揭示古洪水水位、流量及其发生机制,同时为现代水利和防洪工程设计提供依据 (Brown et al.,2000;De Niel et al.,2017)。但因缺乏现代洪水沉积物研究作为识别依据和参考,学术界对古洪水层的判别主要依据经验法,精准识别较为困难(吴庆龙等,2009;Dong et al.,2018)。因此,遵循“将今论古”的研究思路,充分认识现代洪水沉积特征,是识别古洪水沉积层的重要前提和依据 (Zhan et al., 2010; St George et al., 2020)。然而,目前现代洪水沉积学研究较为薄弱,表现在一是成果产出较少,且研究区集中于河流中、上游地区 (Micallef et al.,2018;Carling et al.,2020);二是对一次完整洪水沉积过程的系统研究不足,尤其缺乏现代洪水层与下伏地层的对比。文章选取山东省北部丹河2018年洪水事件作为研究案例点,钻取新鲜洪水沉积层及下伏土壤层岩芯(钻孔编号DH1),进行粒度、烧失量、磁化率及孢粉分析,探究小流域下游洪水沉积特征,揭示水动力变化过程,分析泥沙侵蚀源区,研究结果既可为古洪水沉积层识别提供有力参考,又可为水利和防洪工程建设提供科学依据。

1 研究区概况与洪水发生过程

丹河位于山东省北部,发源于临朐县山旺镇,北偏东流向汇入弥河,最终注入渤海莱州湾(图1a、1b)。河流上游流经鲁中山地,林地面积相对较大;下游流经山前平原及滨海低地区,流域内以旱作粮食作物和蔬菜种植为主。流域年平均降水量约为600 mm,降水集中在5—8月,旱涝灾害频发(徐立荣,2001;黄振国等,2013)。

2018年8月中旬,台风 “摩羯”和“温比亚”接连影响该区域,带来强降水,河流水位迅速升高,弥河、丹河下游发生多处漫堤和决堤险情,形成洪涝灾害(徐立荣,2001;郭广军和贺芳丁,2018)。

2 样品采集与实验方法

2.1 样品采集

2018年10月,笔者考察丹河洪水淹没区,并选择下游新鲜洪水沉积物保存较为原始的地点(图1b),获取沉积物短钻DH1岩芯(36°51′8″N,118°55′58″E;长21.0 cm),钻孔位于堤坝内侧河漫滩之上(图1c),岩芯0~9.0 cm段为黄色粉砂层,粒度较粗,岩性松散;9.0~11.5 cm段为棕色黏土层,质地紧密;11.5~21.0 cm段发育红棕色现代土壤,颗粒较细(图1d)。

图1 丹河下游流域及钻孔位置Fig.1 Location of the downstream of Dan River and the drilling point(a) The location of the research area; (b) Downstream of the Dan River; (c) Sampling site; (d) The lithology of the core DH1

样品运回实验室后剖开,以0.5 cm间隔分样,获得42个样品,全部进行粒度、磁化率、碳酸盐及有机质含量分析,少数层位样品量不足以完成磁化率实验时,将相邻样品合并进行测试,并选取4个样品(2.0~2.5 cm、6.0~6.5 cm、10.0~10.5 cm、15.0~15.5 cm)进行孢粉分析。

2.2 实验方法

粒度测试所用仪器为Mastersizer 2000型激光粒度仪,检测范围0.02~2000 μm,样品预处理后上机测试,系统自动测量2次并取平均值(李华勇等,2020);有机质和碳酸盐含量采用烧失量法测定 (张文河和穆桂金,2007;胡彩莉等,2016);磁化率采用英国Bartington仪器公司生产的MS2型磁化率仪,重复测量3次取平均值(王喜生等,2006),以上实验均在云南师范大学高原湖泊生态与全球变化重点实验室完成。

孢粉提取采用HF法,鉴定和统计在Nikon光学显微镜(10×100倍)下进行,每个样品鉴定和统计不少于300粒花粉,孢粉百分比含量按孢子和花粉总数计算(李春海和何翠玲,2004),实验在中国科学院南海海洋研究所边缘海与大洋地质重点实验室完成。

3 实验结果

3.1 粒度组分特征

DH1钻孔岩芯粒度组分以粉砂为主,平均含量达到82.7%,黏土和砂平均含量分别为8.3%、9.0%;中值粒径介于9.2~31.9 μm之间。岩芯宏观特征和各粒级含量变化规律显示,DH1钻孔岩芯沉积物可分为三段:下段(11.5~21.0 cm)粒度较细且变化不大,平均中值粒径仅为13.8 μm;0~9.0 cm为砂质粉砂层,平均砂含量在整个钻孔最高,达到14.7%;中间为过渡层 (9.0~11.5 cm),砂含量逐渐升高,黏土和粉砂含量波动降低(图2a)。

3.2 烧失量特征

岩芯有机质含量波动范围为3.7%~9.6%,平均含量为5.5%,其中土壤层(11.5~21.0 cm)有机质含量较为稳定,平均值为5.4%,洪水层(0~11.5 cm)有机质含量总体呈减少特征,平均含量为5.6%,峰值出现在11.0 cm处(洪水沉积初期),含量接近10%(图2b)。

碳酸盐含量介于2.0%~4.6%之间,平均值3.0%,变化特征与有机质含量曲线较为一致,于11.5 cm处出现峰值,含量达到4.6%,其他层位含量均较低,尤其是上段洪水粉砂层 (0~9.0 cm),含量低且较为稳定(图2b)。

3.3 磁化率特征

低频质量磁化率χlf变化范围为5.08×10-8~42.22×10-8m3/kg,平均值为表现为显著的两段式变化,洪水层磁化率平均值为5.78×10-8m3/kg,显著低于土壤层(平均值27.73×10-8m3/kg),且在沉积界面处 (11.5~12.0 cm)呈突变式减小(图2c)。

图2 DH1钻孔岩芯粒度组分、烧失量及磁化率变化曲线Fig.2 Variation curves of grain size components, loss on ignition and magnetic susceptibility in the core DH1(a) Variation of grain size data; (b) Variation of loss on ignition; (c) Variation of magnetic susceptibility

3.4 孢粉特征

DH1钻孔岩芯共鉴定出40个科属的孢粉。孢粉组合中以草本花粉为主,共19个属种,占总含量的 71.41%,主要以藜科 (Chenopodiaceae,22.93%)、禾本科(Gramineae,14.37%)、香蒲科(Typhaceae,7.87%)、蒿属(Artemisia,4.13%)、罗布麻属(Apocynum,3.80%)、莎草 科(Cyperaceae,3.22%)、唐松草属 (Thalictrum,3.80%)、眼子菜科(Potamogetonaceae,2.89%)、葎草属(Humulus,2.04%)、十字花 科(Cruciferae,1.62%)、蔷薇科 (Rosaceae,1.25%)、车前草科 (Plantaginaceae,1.08%)等为主;此外还有少许菊科 (Compositae,0.5%)和豆科(Leguminosae,0.1%)等。其次是木本花粉,共16个科属,占总含量的24.45%,主要有胡桃属(Juglans,5.59%)、松属(Pinus,5.56%)、榆属(Ulmus,4.03%)、桦木属(Betula,1.94%)、落叶栎属(DeciduousQuercu,1.68%)等。蕨类孢子含量最少,约为3.06%,其中三缝孢含量是2.40%,而单缝孢只出现在洪水层,含量为1.32%(图3)。

图3 DH1钻孔岩芯主要孢粉谱Fig.3 Sporo-pollen percentage diagram for main taxa in the core DH1

4 讨论

4.1 洪水层粒度二元结构与水动力特征

粒度特征可直观反映洪水水动力大小(Draut and Rubin,2013;王继龙等,2016;刘智荣等,2021)。DH1钻孔岩芯下段11.5~21.0 cm为河漫滩沉积基础上发育的现代土壤层,粒径较细,以黏土和粉砂为主,砂含量很低(图2a)。0~11.5 cm段为洪水沉积层,岩性宏观特征及粒级含量结果显示,该段又可分为两个亚段:0~9.0 cm是典型洪水粉砂层,粒度较粗;9.0~11.5 cm段为过渡层,粒度由细变粗,指示水动力逐渐增强。自然状态洪水发生后,粗粒物质沉降快,细泥沙沉降慢,单次洪水沉积旋回底部泥沙粗,顶部颗粒较细(Long et al.,2008)。然而,丹河流域人类活动强度大,行洪河道被大量侵占,导致洪水初期水流不畅,以细粒沉积物为主,后期流速加快,粒度变粗,沉积平流粉砂层,使沉积旋回呈现底部泥沙细、顶部泥沙粗的特征(见4.2小节讨论)。

4.2 敏感组分与洪水过程重建

利用粒径-标准偏差法识别出DH1钻孔岩芯粒度具有两个敏感组分:C1(9 μm)和C2(61 μm;图4;孙有斌等,2003)。C1属于细粉砂组分,通常在弱动力环境下才能稳定沉积(李华勇等,2017);C2组分介于粗粉砂和砂之间,其含量多寡可指示水动力强度的变化(陈桥等,2013)。提取其含量并绘制变化曲线,两者基本呈镜像相关关系,表明受同一沉积动力控制(图5)。

图4 DH1钻孔岩芯粒度敏感组分变化特征Fig.4 Two sensitive grain size components of the core DH1

图5 敏感组分、烧失量及磁化率变化特征与洪水阶段划分Fig.5 Diagram showing the variance of sensitive component contents, loss on ignition, magnetic susceptibility and the flooding stage

根据岩性及敏感组分变化特征,可将洪水沉积层划分为2个阶段、3个亚段,对应洪水过程的3个时期(图5)。

(1)阶段Ⅰ:岩芯11.5~8.0 cm段,洪水前期。C1含量由0.8%迅速降低到0.3%以下,C2含量则由0.024%逐步升高到0.136%,揭示该阶段钻孔位置洪水流速由慢速迅速变快。根据敏感组分含量具体变化特征,又可将洪水前期细分为2个亚段。

①Ⅰ-1段:岩芯11.5~10.0 cm段,洪水初始阶段。相比下伏土壤层,11.5 cm处C1和C2含量分别有所升高和降低,并达到全钻孔岩芯峰值,表明洪水最初期,河流水位上升淹没钻孔位置,但流速并未同步提高,水动力极弱,沉积物以黏土和细粉砂为主(图2a)。气候干旱化和人地矛盾突出大背景下,人为活动对河流水文系统的改造和影响日益突出(Grill et al.,2019),一方面表现为大量滚水坝的修建以及行洪河道被侵占,阻碍洪水通畅流动。另一方面,中、上游防洪水利设施拦蓄一部分洪水,导致初期洪水强度不大,水位上涨的压力主要来自区域内大气直接降水以及地表径流汇入,因此出现水位升高但流速未同步加快的现象,DH1钻孔岩芯11.5 cm处粒度特征即是该水文现象的沉积学表现。自11.5 cm至10.0 cm,C1含量骤降,C2含量波动升高,但仍处于相对稳定阶段,表明该时期洪水流速加快,导致C1组分无法稳定沉积,但水动力强度尚不足以显著影响C2含量,即洪水流速未达到影响粗粉砂、砂含量的阈值(周慧等,2020)。

②Ⅰ-2段:岩芯10.0~8.0 cm段,流速加快阶段。C1含量持续降低,C2含量快速升高,分别达到钻孔岩芯最小值和最大值,对应洪水初期水动力快速增强阶段。强水流携带大量粗粒组分沉积在钻孔位置,同时由于沉积环境不稳定,细粒组分沉积量大幅减少。

(2)阶段Ⅱ:岩芯8.0~0 cm段,高水位平流沉积阶段。C2含量稳定在高值区,C1含量则相对较低,表明该阶段洪水流速快且较为稳定,对应洪水高水位平流沉积阶段。敏感组分C1和C2含量分别具有微弱的波动升高和降低趋势,揭示洪水水动力缓慢减弱。钻孔顶部未出现洪水沉积旋回中常见的细粒沉积(Long et al.,2008),指示洪水退水过程迅速。DH1钻孔岩芯取自河流行洪道内(图1c),洪水可通过河道迅速退去,不易出现长期的弱水动力泛滥状态,因而沉积旋回顶部未出现典型黏土层。另外,丹河下游地区人口密集,工农业产值较大,洪水对人民生命财产安全造成严重威胁,人为对洪水的疏排从另一方面加快了退水过程。

4.3 烧失量对水动力大小的响应

DH1钻孔岩芯有机质、碳酸盐含量在洪水前期沉积层(阶段Ⅰ)为高值,并于10.5~11.5 cm处达到峰值,对应洪水沉积Ⅰ-1段,随后快速降低,后有所回升,与敏感组分C1含量变化特征相似(图6)。图6显示洪水沉积层有机质、碳酸盐含量与敏感组分C1含量呈正相关关系,R2值分别达到0.83、0.89。洪水相对湖泊、海洋而言,沉积过程短暂而迅速,有机质和碳酸盐以外源输入为主,内源产量极低。有机碎屑物比重较小,在静水或弱水动力条件下才能有效沉积,粒度越细,其含量越高(李华等,2008;杨冰洁等,2015);而输入性碳酸盐矿物主要富集在细粒组分中(何良彪,1991)。因此,水动力强度决定了洪水层碳酸盐和有机质含量,流速越快,粒度越大,烧失量越低;水动力越弱,粒度越细,含量越高(王艳君和金秉福,2017)。

图6 DH1钻孔岩芯烧失量与敏感组分C1含量相关关系散点图Fig.6 Scatter diagram showing the correlation between loss on ignition and sensitive component (C1) contents in the core DH1(a) Correlation between TOC contents and sensitive component (C1) contents; (b) Correlation between carbonate contents and sensitive component (C1) contents

4.4 孢粉对于水动力及物源的指示意义

自然状态下由于粗、细泥沙在洪水中自由沉降速度存在差异,往往形成顶部粒度细、底部粗的特征,称之为一次洪水沉积旋回 (Long et al.,2008)。由于孢粉比重远比泥沙小,因而大部分富集于沉积旋回顶部,通过比较沉积剖面粒度和孢粉丰度变化,可判别洪水水动力大小,并进一步区分洪水沉积旋回(张信宝等,2005)。受自然因素和人为活动影响,现代洪水水文特征呈现复杂性(Bormann et al.,2011),在DH1钻孔岩芯剖面粒度表现为下细上粗。与之相对应,洪水前期细粒沉积层(阶段Ⅰ,11.5~8.0 cm)孢粉丰度达到21769.8 粒/克 (图 7),远高于洪水粉砂层(3016.3 粒/克)和土壤层(4317.3 粒/克),一方面因素是该阶段水动力较弱,有助于孢粉沉降并富集;另一方与沉积物粒径小更有利于孢粉存储有关(陈桥等,2013)。因此,高孢粉浓度通常对应洪水沉积旋回末期或水动力较弱的阶段。

洪水粉砂层(8.0~0 cm段)的木本花粉平均百分含量(32.31%)比下部土壤层(15.21%)的要高,而其草本花粉平均百分含量(63.72%)则比下部(80.18%)低,说明洪水可将上游山地木本花粉搬运到下游,使花粉百分含量发生变化(于革,2011)。土壤层草本植物花粉含量高达80.18%,与当地以农业为主的植被类型相符,木本植物花粉含量占15.21%,且科属种类未突破洪水粉砂层花粉类型(图3),反映风力可将区域外或上游山地植被孢粉搬运至下游地区,但贡献相对有限(常婧等,2017)。两者对比不难发现,河流洪水搬运孢粉的能力大于风力,因此下游表土孢粉组合可较好指示研究区植被分布情况,而洪水沉积孢粉组合则更能反映流域内植被的整体状况(李杰等,2019)。

阶段Ⅰ(11.5~8.0 cm段)洪水前期黏土沉积层木本和草本花粉平均百分含量分别为21.99%和78.01%,与土壤层接近(15.21%、80.18%),而与洪水粉砂层差异稍大(图7),揭示洪水前期细粒沉积物可能主要来自研究区内,而非上游山区。结合洪水发生过程和粒度特征推测,该阶段水位上涨的主因是大气直接降水以及本地地表径流汇入,因此研究区内农田为泥沙主要来源,后期上游客水涌入,带来更多山地地区泥沙和植被孢粉信息。该钻孔孢粉沉积记录显示孢粉组合特征对于传播过程和水动力大小具有良好响应,同时具备识别泥沙侵蚀源区的潜力(张信宝等,2005;常婧等,2017)。

图7 DH1钻孔岩芯孢粉种类与浓度、深度分布图(☆表示孢粉分析取样位置)Fig.7 Diagram showing the concentration and depth of different sporo-pollen species in the core DH1 (☆ represents the sampling locations)

4.5 磁化率揭示的沉积相变化

DH1钻孔岩芯洪水层低频质量磁化率远低于下伏土壤层,且不论洪水沉积粒度粗细特征如何,磁化率值始终稳定在低值区(图5)。表明磁化率大小主要揭示沉积相变化,即成壤作用的强度,而与粒度相关性较弱(徐新文等,2010;綦琳等,2020)。第四纪黄土和古洪水层研究中,磁化率低值通常指示成壤强度较小的粉尘堆积或洪水沉积层,而其接触古土壤层或文化层,因成壤过程中产生的细粒磁铁矿就地赋存,磁化率值一般较高(安芷生等,1990;王晓勇等,2003)。

文章研究的DH1钻孔岩芯各指标参数中,烧失量、孢粉丰度及组合特征皆与粒度存在显著关联,即粒度越细,对应孢粉丰度和烧失量值越高,因此均不能单独作为洪水层识别的绝对指标。而磁化率值有别于其他指标三段式变化模式,在洪水前期黏土层和典型洪水粉砂层数值非常稳定,且显著低于下伏土壤层(图5),指示成壤强度和沉积相变化,因此可作为识别河流沉积与土壤层的有效指标,但其地理空间适用性有待进一步探讨。

5 结论

文章基于山东北部丹河流域现代洪水沉积物钻孔岩芯的粒度、烧失量、孢粉及磁化率特征,重建洪水水动力过程,识别泥沙侵蚀源区,建立小流域下游洪水沉积特征,为古洪水层识别提供一定参考。

(1)粒度敏感组分含量特征揭示,洪水前期水动力较弱,在自然条件和人为活动两方面因素共同作用下,水位上涨但流速并未同步加快,沉积黏土层;后期流速显著加快,出现典型洪水粉砂沉积。

(2)有机颗粒物比重较轻,在弱水动力环境下才能有效沉积,外源输入性碳酸盐矿物主要集中于细颗粒组分中,因此两者均在洪水黏土层出现高值,与粒度具显著负相关关系。

(3)孢粉丰度在洪水前期黏土沉积层远高于其他层位,可与烧失量共同指示洪水水动力强弱;下游表层土孢粉组合可较好指示研究区植被分布情况,洪水粉砂层孢粉组合则更能反映流域内植被的整体状况,揭示河流洪水搬运孢粉的能力大于风力;洪水黏土沉积层孢粉组合与研究区内植被的分布状况吻合度较好,明显有别于洪水粉砂层孢粉组合特征,推测洪水前期水位上涨的主因是降水和本地地表径流汇入,因此泥沙和孢粉来自研究区内,后期上游客水涌入,带来更多山地植被孢粉信息。DH1钻孔岩芯孢粉沉积记录显示孢粉组合特征对于传播过程和水动力大小具有良好响应,同时具备识别泥沙侵蚀源区的潜力。

(4)与其他指标参数受控于洪水水动力特征不同,磁化率值主要反映成壤强度的大小,在洪水层普遍表现为稳定的低值,且显著低于接触土壤层磁化率值,因此可作为判识洪水沉积的有效指标,但其在不同区域的适用性是否一致,有待进一步研究。

猜你喜欢

磁化率粉砂粒度
电场背景下手征相变的临界线
定量磁化率成像在孤独症儿童脑铁含量的应用研究
粉末粒度对纯Re坯显微组织与力学性能的影响
典型粉砂地层盾构选型及施工参数研究
动态更新属性值变化时的最优粒度
珲春组含煤、粉砂地层供水井施工技术
地震孕育过程中地下磁化率结构的变化分析
原状取土压灌桩在地铁车站的应用技术研究
双粒度混合烧结矿颗粒填充床压降实验
基于超拉普拉斯分布的磁化率重建算法