华北海陆过渡相泥岩可溶有机质组成特征
2022-04-29陈凤杰张小东杨燕青李贵中杨庆坤
陈凤杰, 张小东, 杨燕青, 刘 晓, 李贵中, 张 硕, 杨庆坤
(1.河南理工大学能源科学与工程学院,河南焦作 454000; 2.山西能源学院地质与测绘工程系,山西晋中 030600; 3.中原经济区煤层气(页岩气)协同创新中心,河南焦作 454000;4.山西蓝焰煤层气集团有限责任公司,山西晋城 048200; 5.中国石油勘探开发研究院,北京 100083; 6.东华理工大学地球科学学院,江西南昌 330013)
煤系页岩气是煤系非常规天然气的重要组成,近年来受到广泛关注[1-3]。中国富有机质页岩广泛发育,包括海相、海陆过渡相和陆相3种类型[4]。中国陆上页岩气可采资源量达12.85×1012m3,其中海陆过渡相占比18%[4-6]。中国海陆过渡相富有机质页岩沉积于石炭纪—二叠纪,主要发育于华北及南方,干酪根以Ⅱ2-Ⅲ型为主,有机碳含量较高,热演化程度适中,具备一定的生气潜力[4]。烃源岩中有机质可分为不溶有机质和可溶有机质,前者包括腐殖体、镜质体、壳质体和惰质体等,后者主要为饱和烃、芳烃、非烃和沥青质[7]。可溶有机质一般以游离态、吸附态和互溶态方式存在,游离态主要赋存于基质孔隙、层间隙和微裂缝中,吸附态主要吸附于矿物表面及干酪根刚性大分子骨架内外表面,互溶态主要以干酪根网络结构包括的小分子流动相、沥青质或水溶态形式存在,可溶有机质对含气(油)性、资源评价、生烃机理和油气赋存机制研究具有重要意义[8]。前人关于海相、湖相泥页岩中可溶有机质组成、赋存机制做了大量研究。近年来随着煤系气勘探开发实践的实施,众多学者对华北上古生界海陆过渡相泥页岩也开展有机地球化学研究[9-10],但多集中于有机质丰度、类型、成熟度和生气机制方面,对于可溶有机质的组成,以及与华南海相页岩的差异性研究相对较少[11-12]。因此笔者采用不同极性溶剂对华北太原组—山西组典型的海陆过渡相泥岩进行索氏抽提试验,结合抽提率计算及GC/MS测试结果,研究华北海陆过渡相泥岩可溶有机质的组成面貌,及其与华南海相页岩之间的差异,以深化研究区海陆过渡相泥岩有机地球化学特征的理论研究,为海陆过渡相页岩气勘探开发提供借鉴。
1 样品及试验
1.1 地质背景
华北地台北以阴山造山带为界,南临秦岭造山带,东以郯庐断裂带为界,西临六盘山造山带。在加里东运动影响下,华北地台自中奥陶世抬升成为古陆剥蚀区,至晚石炭世本溪期开始沉降,海水自北东方向侵入,晚石炭世—早二叠世华北地台普遍发育一套海陆过渡相的含煤沉积建造,泥岩主要发育于太原组和山西组。
泥岩样品主要采自华北地台中华北霍西临汾地区、南华北豫东胡襄、马桥、雎西地区和豫中中牟地区(表1、图1),均为钻井岩心样品。其中霍西临汾地区位于中华北中南部,构造位置属于华北地台吕梁隆起带南部的临汾凹陷;豫东胡襄、雎西、马桥地区位于南华北东部,构造位置属于华北地台华北坳陷的太康隆起东部及徐蚌隆起西边缘;豫中中牟地区位于南华北中部,构造位置属于华北地台华北坳陷的通许凸起和中牟凹陷结合部[5,13-15]。
表1 泥岩样品基本信息
图1 取样点位置与构造单元划分(据文献[5,14-15],有修改)Fig.1 Location and structural units division of sampling points(After citation [5,14-15], modified)
1.2 样品制备和试验方法
选取霍西山西组、太原组,豫东太原组(马桥)、山西组(胡襄)泥岩,依次编号为N-1~N-4。
试验前,将样品磨碎至200目,真空干燥箱内80 ℃下干燥,作为抽提用样。基于溶剂安全性及沸点等性质,选用正己烷(C6H14)、氯仿(CHCl3)、丙酮(CH6O)和甲醇(CH3OH)作为溶剂,对干燥后的泥岩样品进行索氏抽提试验。利用全二维气相色谱—飞行时间质谱仪(美国Leco公司)对风干后的抽提物进行分析。试验方法与过程参考文献[16]。
2 结果与讨论
2.1 抽提率
图2 不同溶剂的抽提率Fig.2 Extraction rate of different solvents
抽提率计算参考文献[16],计算结果见图2。华北太原组—山西组海陆过渡相泥岩溶剂抽提率较低,为0.02%~0.23%。溶剂间CH3OH抽提率最高,C6H14抽提率最低。不同溶剂抽提率的差异主要是由于溶剂的性质不同,同时与泥岩中可溶有机质的组成也有一定关系。甲醇极性最强,介电常数和表面张力较大,容易渗入岩石的微孔中,破坏可溶有机化合物分子间的部分非共价键作用力,促使其溶出;丙酮极性稍弱于甲醇,也具有较高的介电常数和表面张力;氯仿极性中等,表面张力大,极化率较大,对小分子化合物诱导力较强,结合抽提物组成分析,泥岩可溶有机质中卤化物含量较低,导致氯仿抽提率低于甲醇和丙酮;相较前面3种溶剂,正己烷极性明显较低,溶解能力较小,结合抽提物组成分析,泥岩可溶有机质中烃类含量本就较少,导致正己烷溶剂抽提率低。
2.2 抽提物组成特征
抽提物组成见图3,不同溶剂抽提物中的主要化合物见表2~5。
图3 溶剂抽提物组分质量分数分布Fig.3 Composition distribution of solvent extracts
表2 正己烷抽提物中主要的化合物
2.2.1 脂肪烃
脂肪烃含量自甲醇→丙酮→氯仿→正己烷逐渐减少,不同样品间N-3和N-4含量稍高。脂肪烃主要为烷烃、脂环烃及少量的烯烃。
甲醇抽提物中脂肪烃质量分数为9.98%(N-4)~16.75%(N-2)。脂环烃见丙基环丙烷1种,质量分数为3.42%~14.37%。烷烃中正构烷烃见C15、C17、C193种,相对含量较低;异构烷烃取代基主要为甲基和乙基,检出于N-3中的2,6-二甲基十七烷质量分数较高为8.83%。烯烃1种含量较低。
表3 氯仿抽提物中主要的化合物
表4 丙酮抽提物中主要的化合物
表5 甲醇抽提物中主要的化合物
丙酮抽提物中脂肪烃主要检出于N-3和N-4中,N-4中质量分数较高为20.41%。烷烃中正构烷烃见C15、C16、C193种,质量分数为1.55%~5.43%;异构烷烃取代基主要为乙基,含量较低。脂环烃见丙基环丙烷1种,质量分数为7.36%(N-4)。烯烃1种质量分数为2.47%(N-3)。
氯仿抽提物中脂肪烃质量分数为2.05%(N-2)~10.15%(N-3)。烷烃中正构烷烃见C16、C19、C273种,二十七烷在N-3中检出质量分数较高为4.64%;异构烷烃取代基主要为甲基和乙基,含量低。脂环烃及烯烃各1种,含量低。
正己烷抽提物中脂肪烃质量分数为1.83%(N-3)~6.70%(N-4)。烷烃中正构烷烃见C14、C15、C163种,异构烷烃取代基主要为甲基和乙基;脂环烃见丙基环丙烷1种,质量分数为4.06%(N-4)。
2.2.2 杂原子化合物
杂原子化合物为抽提物的主要组分,溶剂间自正己烷→氯仿→丙酮→甲醇逐渐减少,样品间N-2含量稍高。其中以含氧化合物最多,其次为卤代烃和其他化合物。
(1)含氧化合物。以酯类为主,还含有一定量的酮类、醇类、醛类等。
正己烷抽提物中酯类质量分数为57.28%(N-3)~90.90%(N-1),其中邻苯二甲酸二异辛酯、邻苯二甲酸二丁酯在各样品中均有检出,平均质量分数高达43.33%和22.23%;醇类检出于N-3和N-4中,检出于N-3的氘代甲醇质量分数较高为38.32%;醛类见糠醛1种,质量分数为10.64%(N-4)。
甲醇抽提物中酯类质量分数为27.04%(N-2)~61.03%(N-4),其中十三烷酸甲酯、邻苯二甲酸二丁酯在各样品中均有检出且质量分数较高,为7.25%~26.41%, 2-乙基己酸乙烯酯在N-3和N-4中质量分数较高,分别为10.22%和16.84%;醇类中四氢-2-呋喃甲醇在各样品中均有检出,质量分数为3.42%~5.43%,检出于N-2中的氘代甲醇和N-3中的1-己醇质量分数较高,分别为26.46%和6.92%;醛类见糠醛1种,质量分数为9.93%~14.15%;酮类1种检出于N-3,质量分数为11.34%。
丙酮抽提物中含氧化合物主要为醇类,其次为羧酸、酰胺和酯类。醇类质量分数为0(N-4)~45.30%(N-2),羧酸为0(N-3、N-4)~36.96%(N-2),酰胺为0(N-2)~21.76%(N-3),酯类为0(N-2)~21.01%(N-4)。醇类以氘代甲醇为主,检出于N-1和N-2中,质量分数达30.96%和45.30%,N-3中的1-己醇质量分数较高,为13.86%;羧酸见草酸1种,检出于N-1和N-2中,质量分数为17.36%和36.96%;酰胺见地美环素(N-3)、戊酰胺(N-4)和金霉素(N-1)3种,质量分数为21.76%、15.97%和7.04%;酮类检出于N-4中,总量为17.33%;醛类见糠醛1种,检出于N-3和N-4中,质量分数为11.49%和17.19%;酯类较少,还见少量的有机过氧化物、酸酐等。
氯仿抽提物中含氧化合物含量总体偏低,N-4中最高,N-3中最低。酯类质量分数为21.48%(N-1)~59.57%(N-2),邻苯二甲酸酯类仍是酯类的主要组分,在N-4中质量分数高达52.37%;邻苯二甲酸二异辛酯和邻苯二甲酸二丁酯在各样品中均有检出,质量分数为3.79%~24.31%;醇类平均质量分数为20.24%, 3-[18-(3-羟基-丙基)-3,3,7,12,17-五甲基2,3,22,24四氢卟吩-2-基]丙-1-醇(N-4)和氘代甲醇(N-1)质量分数较高,为40.96%和22.81%;其他酮类、酰胺、醛类等含量较低。
(2)卤代烃。全部为卤代烷烃,且多为一卤代烷烃,其中1-碘-2-甲基十一烷占有优势地位。不同溶剂间氯仿抽提物中卤代烃质量分数最高,介于1.12%(N-4)~52.72%(N-3),1-碘-2-甲基十一烷在N-1~N-3中均有检出,质量分数为10.57%(N-2)~51.62%(N-3)。其他溶剂抽提物中卤代烃含量较低。
(3)其他化合物。丙酮对N-1和N-3抽提物中检出胍,质量分数较高分别为18.56%和6.63%;N-2中检出较多的钨,二羰基-(4-2-亚甲基环庚酮)[1,2-双(二甲基膦基)乙烷]。
2.2.3 抽提物组成分析
华北太原组—山西组泥岩可溶有机质由大量的杂原子化合物和少量的脂肪烃组成(图4、5)。杂原子化合物主要为酯类、醇类和卤代烃,脂肪烃主要为烷烃和脂环烃。正己烷抽提物以酯类为主,烃类含量很低,其原因在于极低的抽提率(0.03%~0.05%)导致被抽提出的有机质绝对量极少,而高成熟阶段泥岩中前期形成的烃类裂解形成湿气,泥岩中烃类含量本就较低;氯仿抽提物中卤代烃含量明显高于其他溶剂,其原因在于氯仿本身是卤代烃,对卤代烃有较好的溶解作用;丙酮和甲醇对含氧化合物溶出较好,对脂肪烃的溶出能力也强于另两种溶剂,主要是由于其极性较大,丙酮的羰基和甲醇的羟基容易与含氧官能团产生作用,促进含氧化合物的溶出。
图4 不同样品抽提物主要组分质量分数分布(平均)Fig.4 The main composition distribution of different sample extracts(AVG)
图5 不同溶剂抽提物主要组分质量分数分布(平均)Fig.5 The main composition distribution of different solvent extracts(AVG)
2.3 可溶有机组成的沉积学意义
华北不同地区、不同层位泥岩抽提率差异微小,太原组泥岩抽提率略高于山西组,平均差异为0.01%~0.02%。与华南龙马溪组页岩相比[16],华北抽提率明显偏低。主要由于华南龙马溪组海相页岩有机质丰度较高[17-18],物质基础较好;华南龙马溪组页岩脆性矿物含量较高,黏土矿物含量较低,脆性矿物受力易裂[17],使得溶剂的渗透和扩散更为有效,黏土矿物伊利石和蒙脱石混合后对可溶有机质的吸附力更强[8],其上吸附的可溶有机质不易被脱附。
华北海陆过渡相泥岩可溶有机质主要由脂肪烃、卤代烃和含氧化合物组成(图4),不同地区、不同层位泥岩的可溶有机质组成存在微小差异,表现为太原组酯类含量略低于山西组,霍西泥岩中醇类较多,豫东泥岩中脂肪烃稍多。总体上华北地台太原组—山西组形成于海陆过渡相沉积环境,但因距离物源供给、海水进退方向影响,各地区沉积环境有一定差异。本溪组沉积时期,华北地台为北东低南西高的滨海平原,海水自北东向南西入侵,至太原组沉积时期,华北板块与其北部的西伯利亚板块对接碰撞,华北地台北部受挤压隆升,古地势转变为北高南低,海水由北东入侵转变为由南东入侵[15],沉积中心向南迁移,此时霍西地区为潟湖—潮坪—碳酸盐台地沉积环境,豫东地区则以浅海环境为主;山西组沉积时期海水自北西向南东退去,沉积中心继续南移,霍西地区主要为海退背景下的三角洲平原沉积环境,豫东地区则主要为水下三角洲—滨岸带沉积环境[14,19-20]。
图6 豫东马桥太原组泥岩样品(可见斑状黄铁矿)Fig.6 Mudstone samples of Taiyuan Formation in Maqiao, Eastern Henan (porphyry pyrite visible)
不同沉积环境的水体深度、含氧量的不同,也造成同期沉积有机质组成不同。由可溶有机质组成对比,豫东马桥太原组泥岩中脂肪烃和卤代烃质量分数为23.97%,含氧化合物质量分数为72.74%;霍西太原组泥岩中脂肪烃和卤代烃质量分数为10.51%,含氧化合物质量分数为88.97%;霍西和豫东胡襄山西组介于二者之间。豫东马桥太原组泥岩中可见较多斑状黄铁矿(图6);霍西太原组—山西组泥岩中菱铁矿普遍存在(平均为3.1%),赤铁矿含量较低,但太原组泥岩中赤铁矿含量明显高于山西组[21]。黄铁矿、菱铁矿、赤铁矿分别指示强还原相、弱还原相、氧化相[22],由此初步推断豫东马桥太原组沉积环境还原性相对较强,霍西山西组泥岩沉积环境还原性稍弱,霍西太原组泥岩沉积环境还原性弱于霍西山西组;豫东胡襄山西组泥岩TOC平均为4.81%,明显高于其邻近的豫东雎西山西组泥岩(平均为1.74%)和豫东马桥山西组泥岩(平均为1.26%)。有机质丰度主要受古生产力、沉积环境氧化还原程度和沉积速率影响,沉积速率可依据地层厚度和沉积时间进行求取[23],胡襄与其相邻区块距离近,沉积时间基本一致,地层厚度也较接近[15,19],推断同时期沉积速率相差微小,因此相邻区块间明显的TOC值差异可能是由古生产力和沉积环境氧化还原程度差异引起的,推断豫东胡襄山西组泥岩沉积过程中,古生产力和沉积环境的还原性相对较强。由以上分析,对于华北海陆过渡相泥岩,较高的脂肪烃和卤代烃含量、较低的含氧化合物含量可能反映还原性较强的沉积环境,反之则反映沉积环境还原性较弱。
华北太原组—山西组泥岩和华南龙马溪组页岩的可溶有机组成相似[16],华北太原组—山西组泥岩中醇类含量较高,华南龙马溪组页岩中脂肪烃和卤代烃含量稍高。华南龙马溪组为浅海相,沉积环境还原性较强[24],华北太原组—山西组主要为海陆过渡相,沉积环境还原性较弱[10,12],豫东更偏向海,霍西更偏向陆。沉积环境偏向陆地,则受海洋影响较弱,陆源物质输入相对较多,其水体中溶解氧的含量则相对较高[25]。依照浅海相、过渡相(向海)、过渡相(向陆),对泥页岩可溶有机质组成进行分析(图7),自浅海相→过渡相(向海)→过渡相(向陆),泥页岩中脂肪烃和卤代烃总含量逐渐降低,醇类含量则明显呈逐渐增加的趋势。黄美鑫[11]对海相、海陆过渡相泥页岩进行逐级抽提,相比之下海相页岩脂肪烃含量明显偏高,醇类含量明显偏低。由以上分析,海相和海陆过渡相泥页岩可溶有机质中脂肪烃和卤代烃含量、醇类含量与沉积环境受海洋影响的强烈程度之间有一定的相关关系,较高的醇类含量、较低的脂肪烃和卤代烃含量可能指示偏向陆地、还原性较弱的沉积环境,相反较低的醇类含量、较高的脂肪烃和卤代烃含量则可能暗示受海洋影响较强、还原性较强的沉积环境。沉积物中有机质的聚集主要受沉积环境影响[25],还原环境陆源物质供给少,水循环条件差,有利于有机质的保存和转化,氧化环境则相反。因此泥页岩可溶有机质中脂肪烃和卤代烃含量、醇类含量或可作为页岩气藏储层评价的辅助依据。
图7 不同沉积相泥页岩可溶有机组成对比Fig.7 Contrastive diagram of soluble organic composition of shale with different sedimentary facies
3 结 论
(1)不同极性溶剂对华北海陆过渡相泥岩的抽提率为0.02%~0.23%;甲醇抽提率最高,正己烷抽提率最低;相同溶剂对不同泥页岩抽提率的差异微小,太原组泥岩抽提率略高于山西组泥岩抽提率。
(2)正己烷抽提物主要组分为酯类和醇类;氯仿抽提物主要组分为酯类、卤代烃和醇类;丙酮抽提物主要组分为醇类;甲醇抽提物主要组分为酯类、脂肪烃、醇类和醛类。
(3)华北海陆过渡相泥岩溶剂抽提物主要由酯类、醇类、卤代烃和脂肪烃组成。
(4)自海相至海陆过渡相,泥页岩可溶有机质中的脂肪烃和卤代烃含量、醇类含量具有一定的指相意义,可作为页岩气藏储层沉积相划分的参考或依据。较低的醇类含量、较高的脂肪烃和卤代烃含量可能暗示沉积环境受海洋影响较强、还原性较强,相反则受陆地影响较强,还原性较弱。