不同CO2浓度和施氮水平对麦田CO2净通量的影响
2022-04-08党慧慧刘超夏晔伍翥嵘王圆媛胡正华陈书涛
党慧慧 刘超 夏晔 伍翥嵘 王圆媛 胡正华 陈书涛
0 引言
气候变暖为全球普遍关注,而CO2作为大气中最重要的温室气体之一,对全球温室效应的贡献高达70%[1].大气CO2浓度已从工业革命前的280 μmol·mol-1增加到目前的414 μmol·mol-1,且未来还有持续增加的趋势[2].农田是陆地生态系统与大气圈碳素交换的重要场所,一方面,绿色植物通过光合作用固定大气中的CO2,表现为汇,另一方面,农田通过土壤和植物呼吸向大气释放CO2,表现为源[3].小麦是中国主要农作物之一,其种植面积约为2.338×107hm2[4].麦田CO2通量研究有助于更好地理解农田生态系统的地球化学循环过程及其反馈机制.
农田生态系统对固定大气中的CO2具有较大的潜力,在人为与自然因素共同影响下,表现为动态变化过程.在未来高CO2浓度环境条件下,国际学术界越来越重视农田土壤有机碳库的变化对大气的源汇效应[5-6].张旭博等[7]研究发现大气CO2浓度的改变会影响净初级生产力、碳投入和碳分解速率等因素,进而改变农田生态系统碳循环过程.Norby等[8]和Bloor等[9]研究表明,植物通过光合作用将大气中的CO2固定到植物体内,又通过根系分泌物、凋落物及根系生物量等将一部分光合碳输入到土壤中.因此,CO2浓度升高会改变光合产物的积累,进而在时间和空间上影响农田生态系统碳库的转化与更新过程.此外,氮肥是影响冬小麦生长发育的重要因素,氮素既通过影响叶绿素、核酮糖1,5-二磷酸羧化/加氧酶(Rubisco)及光合器官结构直接影响CO2同化,又通过影响植株生长发育间接影响CO2同化、光合产物积累和对光合作用的反馈调节[10].氮肥的施用还增加了土壤养分含量,进而增强土壤微生物活性,促进有机质矿化,使土壤呼吸作用增强[11].氮肥可能通过影响小麦的干物质积累、土壤有机质含量和土壤微生物量及其活性等进而对麦田CO2通量产生影响[12-13].
麦田生态系统净碳交换及其对环境因子的响应研究是理解陆地生态系统碳循环过程的关键.近年来,国内外学者针对麦田生态系统净碳交换开展了一系列的相关研究,主要集中在小麦生长季土壤呼吸、CO2通量特征及其影响因素等方面[14-15],然而,目前对不同CO2浓度和施氮水平对麦田CO2净交换缺乏研究.本研究通过分析两因素相互作用对麦田生态系统净碳交换的影响,有助于进一步认识麦田碳通量对大气CO2浓度升高及不同施氮水平的响应机制,将会为预测未来气候条件对农业生态系统碳平衡的可能影响提供科学依据[16].
1 材料与方法
1.1 研究区域与材料
试验地点位于南京信息工程大学农业气象与生态试验站(118°86′E,32°16′N),属亚热带季风气候,年降水量为1 110 mm,相对湿度为76%,年平均温度为15.6 ℃.供试土壤为潴育型水稻土(灰马肝土属),耕作层为壤质黏土,黏粒的含量为26.1%、pH(H2O)值为6.3、有机碳和全氮质量分数分别为11.95和1.45 g·kg-1.供试冬小麦品种扬麦22号,为弱筋小麦,全生育期176 d.冬小麦主要生育期如表1所示,水分等其他管理措施与当地常规方式一致.
表1 冬小麦主要生育期Table 1 Main growth stages of winter wheat
1.2 试验设计
利用由12个开顶箱(OTC)组成的CO2自动调控系统实现CO2浓度升高.OTC为高3 m、底面积10 m2、对边直径3.75 m的正八边形棱柱体,铝合金框架,覆盖高透光性普通玻璃(厚度3 mm,透光率>90%).为了减缓气体散失速度,顶部开口向内倾斜45°.每个OTC内配备了CO2传感器(GMM222,Vaisala,Finland),量程0~2 000 μmol·mol-1,精度±20 μmol·mol-1,悬挂于土壤表面1.5 m高处.不同CO2浓度升高水平由自动控制系统实现.自动控制系统包括CO2感应模块、阀控制模块、流量控制模块、加压模块、主控板、数据采集等.利用杜瓦罐液态CO2作为气源(CO2纯度99%).CO2传感器每2 s向自动控制系统反馈OTC内部的实时CO2浓度.当CO2浓度低于目标浓度时,控制系统自动打开电磁阀,向OTC补充CO2气体,反之电磁阀保持关闭.
试验的主处理为不同CO2浓度,设置3个浓度水平:背景大气CO2浓度(CK)、比CK高120 μmol·mol-1(C1)、比CK高200 μmol·mol-1(C2).每个浓度水平处理有4个OTC重复.不同CO2浓度处理从小麦返青开始至成熟结束.
试验的副处理为不同施氮量,每个OTC内设置2个氮肥水平:常规施氮量(N1,25 g·m-2)和低氮肥量(N2,15 g·m-2).肥料运筹包括基肥、返青肥和拔节-孕穗肥,基肥用复合肥(N、P和K的质量分数均为15%),返青肥和拔节-孕穗肥用尿素(N质量分数为46.6%).基肥占50%(N1:12.5 g·m-2;N2:7.5 g·m-2.以N计)、返青肥占35%(N1:8.75 g·m-2;N2:5.25 g·m-2.以N计)、拔节-孕穗肥占15%(N1:3.75 g·m-2;N2:2.25 g·m-2.以N计).
主处理和副处理的组合为:CKN1、C1N1、C2N1、CKN2、C1N2、C2N2,共6种处理,每种处理有4个重复.
1.3 测定项目与方法
1.3.1 CO2净通量的测定
采用静态明箱-高精度气体分析仪法测定CO2净通量.静态箱为高透光率有机玻璃圆筒(高1 m,内径20 cm),顶部留有3个圆孔,用于安装温度计和进出气管线.在OTC小麦种植区提前安装好无底采样底座(高5 cm,内径20 cm),底座上沿有1.5 cm宽的凹槽,与静态箱刚好吻合,观测时往凹槽注水以密封静态箱和底座.使用LGR超便携式温室气体分析仪(型号915-0011,Los Gatos Research公司,USA)进行气体分析,将内径为1/4英寸的特氟龙管作为进出气管,连接LGR仪与静态箱.从返青期至成熟期,选择晴朗天气,每周观测1~2次,观测时间为上午08:00—11:00.
观测时长为20 min,去掉开始与结束的观测值,截取CO2浓度值变化趋势相同的曲线段,通过其线性回归斜率来计算CO2净通量,计算公式如下:
(1)
式中,F为CO2通量(mg·m-2·h-1),H为采样箱高度(cm),m为CO2的摩尔质量(44 g·mol-1),P为标准大气压,即101.3 kPa,R为普适气体常数(8.314 J·mol-1·K-1),θ为采样时箱内的气温(℃),dC/dt为观测时间内CO2浓度随时间变化的斜率,C为t时刻CO2的质量浓度(μg·L-1),t为时间(s).
1.3.2 环境因子的测定
运用土壤水分温度电导率速测仪(Hydra Probe Ⅱ,Stevens Water Monitoring Systems,USA)测定5 cm深的土壤温湿度.气象因子(太阳辐射、空气温度)数据通过安装在田间的小型气象站实时监测.
1.4 数据分析及方法
运用Microsoft Excel 2010对原始数据进行预处理.运用SPSS 22.0(SPSS Inc.,Chicago,IL,USA)对数据进行统计分析,采用LSD法进行差异显著性检验,对CO2净通量与各环境因子进行回归分析,显著水平均设为P=0.05.制图使用Origin 2019(OriginLab Corp.,Wellesley Hills,USA)绘图软件.
2 结果与分析
2.1 不同CO2浓度升高对麦田CO2净通量的影响
2.1.1 CO2净通量的生长季变化
在小麦整个生育期内,不同处理的CO2净通量变化趋势一致,均呈先增大后减小的特征(图1).在小麦生长季早期,CO2净通量不断增加,波动幅度较小.在生长中期,CO2净通量达到峰值,N1处理下,CK、C1和C2的CO2净通量峰值分别为-3.1±0.5、-3.3±0.4和-3.4±0.4 g·m-2·h-1;N2处理下,CK、C1和C2的CO2净通量峰值分别为-2.0±0.2、-2.0±0.4和-2.4±0.1 g·m-2·h-1.在生长后期,CO2通量在一定范围内上下浮动,总体呈下降趋势.
图1 麦田CO2净通量的生长季变化(数据值为平均值±SE)Fig.1 Seasonal changes of net CO2 fluxes in wheat field
2.1.2 CO2累积量
N1处理下,在整个生育期,CK、C1和C2处理的CO2累积吸收量分别为-105.8±12.6、-123.1±11.5和-120.2±4.1 kg·hm-2.每个生育期内各处理的CO2累积吸收量差异没有达到显著水平.N2处理下,在整个生育期,CK、C1和C2处理的CO2累积吸收量分别为-82.3±9.2、-95.4±7.6和-96.7±2.8 kg·hm-2.在拔节期,C2处理的CO2累积吸收量比CK增加了31.8%(P=0.024),其余生育期内各处理的CO2累积吸收量差异没有达到显著水平(图2).
注:数据值为平均值±SE(n=4);不同字母表示不同CO2处理下差异性显著,P<0.05.图2 各生育期麦田CO2累积量Fig.2 CO2 accumulations in wheat field at each growth stage
2.2 不同施氮量对麦田CO2净通量的影响
2.2.1 CO2净通量的生长季变化
在小麦生育期内,N1和N2处理的CO2净通量变化特征一致,均呈先增大后减小的趋势.在小麦生长早期,CO2净通量不断增加;到生长中期,CO2净通量均达到峰值,变化趋势呈先增大后逐渐减小趋势;在生长后期,CO2净通量呈下降趋势.另外,整体上N1处理的CO2净通量高于N2处理(图3).
图3 麦田CO2净通量的生长季变化(数据值为平均值±SE)Fig.3 Seasonal changes of net CO2 fluxes in wheat field
2.2.2 CO2累积量
CK处理下,每个生育期内各处理的CO2累积吸收量差异没有达到显著水平.C1处理下,在拔节期,N1处理的CO2累积吸收量比N2处理的高55.0%(P=0.009),其余生育期内各处理的CO2累积吸收量差异没有达到显著水平.C2处理下,在整个生育期,N1处理的CO2累积吸收量比N2处理的高23.6%(P=0.010),其余生育期内各处理的CO2累积吸收量差异没有达到显著水平.
注:数据值为平均值±SE(n=4);不同字母表示不同氮肥处理下差异性显著,P<0.05.图4 各生育期麦田CO2累积量Fig.4 CO2 accumulations in wheat field at each growth stage
2.3 CO2浓度升高和施氮量对麦田CO2净平均通量的复合影响
表2展示了不同处理的CO2净通量值.在拔节期,CKN1处理的CO2净通量分别比CKN2和C1N2增加了44.1%(P=0.023)和38.9%(P=0.036);C1N1处理的CO2净通量分别比CKN2和C1N2增加了59.1%(P=0.004)和53.3%(P=0.006);C2N1处理的CO2净通量分别比CKN2和C1N2增加了58.7%(P=0.004)和52.9%(P=0.006).在抽穗期和成熟期,C1N1处理的CO2净通量分别比CKN2增加了44.1%(P=0.011)和59.2%(P=0.010);C2N1处理的CO2净通量分别比CKN2增加了38.6%(P=0.023)和57.7%(P=0.012).在整个生育期内,C1N1处理的CO2净通量分别比CKN2和C1N2增加了49.0%(P=0.006)和30.7%(P=0.040);C2N1处理的CO2净通量比CKN2增加了42.4%(P=0.015).由表2的方差分析结果可见,施氮量对CO2净通量的影响程度远大于CO2浓度升高,CO2浓度升高与施氮量的交互作用不明显.
表2 CO2浓度和施氮量对麦田CO2净通量的复合影响Table 2 Interaction of CO2 concentration and nitrogen application on net CO2 fluxes in wheat field mg·m-2·h-1
2.4 CO2净通量与环境因子的关系
如图5a、b所示,CO2净通量跟土壤温度的关系均未达到显著;如图5c、d所示,CKN1、C1N1、C2N1、CKN2、C1N2、C2N2处理的CO2净通量跟土壤湿度的关系均达到显著,P值分别为0.01、0.01、0.04、0.01、0.02、0.01;如图5e、f所示,N1处理下,C1和C2处理的CO2净通量跟光合有效辐射的关系达到显著,P值分别为0.02和0.04,N2处理下,CK和C1处理的CO2净通量跟光合有效辐射的关系达到显著,P值分别为0.02和0.00;如图5g、h所示,N1处理下,C1处理的CO2净通量跟空气温度的关系达到显著,P值为0.03,其余处理未达到显著.
3 讨论
3.1 CO2浓度升高和施氮量对麦田CO2净通量的影响
3.1.1 CO2浓度升高对麦田CO2净通量的影响
麦田CO2净通量是小麦光合作用固定的CO2与系统呼吸释放的CO2之差,CO2是作物进行光合作用的必要原料,也是植物初级代谢过程、光合同化物分配和生长的调节者,参与植物体内许多生理生化反应,对植物生长有直接的影响[17].本研究表明,在小麦整个生育期内,CK、C1、C2处理下麦田CO2净通量的变化特征一致,均呈先增大后减小的趋势.CO2净通量在小麦的拔节期和抽穗期达到峰值,其原因可能是作物在这两个阶段生命活动力较强,光合作用最为旺盛,冠层导度变大,作物对大气CO2的吸收能力也增强[18].于显枫等[19]研究发现高大气CO2浓度下,小麦叶片的净光合速率增大;谢英添[20]在稻麦轮作开放式CO2浓度增高试验中发现,CO2浓度升高显著增加了饱和光强下小麦的净光合速率,与本文研究结果一致.一方面,当CO2浓度升高时,叶片中的Rubisco的羧化效率增强,从而提高了作物的净光合效率;另一方面,高CO2浓度环境下,CO2对Rubisco活性中心的竞争力增强,抑制了叶片光呼吸作用[21],进而减少小麦呼吸作用释放CO2,增加CO2吸收通量,进而增加了CO2净通量.大气CO2浓度的升高对农田碳库有一定的提升作用,而农田土壤碳储量是评估减缓气候变化和固碳减排潜力的重要依据.有研究显示,至2060年时,如果外源碳投入加倍,中国农田生态系统碳含量将有不同程度的上升[22-23].
3.1.2 施氮量对麦田CO2净通量的影响
氮素是植物体内叶绿素和蛋白质的重要组分,Fang等[24]研究发现施氮处理增加了叶片叶绿素含量,加快了光反应,增加了叶片蛋白质含量,而蛋白质是酶的主要组成部分,故有利于作物光合作用中的暗反应.王艳群等[11]研究发现适量施氮还可在一定程度上延缓气孔导度的降低,提高胞间CO2的利用能力,从而提高旗叶的光合性能[25-26],增加麦田CO2净通量.钟杨权威[27]在黄土区麦田研究发现,适宜施氮可以提高麦田的固碳能力,还通过改变土壤异养呼吸与总呼吸比例来调控土壤碳排放量,适度增施氮肥能显著提高小麦生态系统的净生产力,从碳素固定与排放的角度衡量麦田生态系统的碳平衡状况,小麦生态系统的净生产力为正值,表明黄土区农田生态系统是大气CO2的“汇”.Yan等[28]和夏龙龙等[29]研究表明,我国农田碳库的增加主要归因于农作物产量提高引起的外源碳增加,这得益于氮肥用量的增加,氮输入直接增加了农田的碳投入量.本文研究结果表明,在小麦整个生育期内,与低施氮量相比,常规施氮量增加了麦田CO2累积量,麦田生态系统表现为大气CO2的“汇”.
3.1.3 CO2浓度升高和施氮量对麦田CO2净通量的复合影响
本研究表明,在成熟期和整个生育期,不同CO2升高水平对麦田CO2净通量的影响达到显著,在拔节期和整个生育期,施氮量对麦田CO2净通量的影响达到极显著,在抽穗期和成熟期,施氮量对麦田CO2净通量的影响达到显著.因此,在拔节期和抽穗期,相比于CO2浓度升高,施氮量对麦田CO2净通量的影响更为显著,在成熟期和整个生育期,施氮量和CO2浓度升高共同作用于麦田CO2净通量的增加(表2).夏晔等[30]研究发现CO2浓度升高和施氮处理共同促进冬小麦干物质的积累,但其中施氮处理对冬小麦生长前期物质积累的促进作用相对更大,高施氮处理对冬小麦籽粒数的促进作用更大.本研究也表明,施氮量对麦田CO2净通量的影响程度大于CO2浓度升高,这可能是因为氮肥水平是作物光合产物积累的重要限制因素,氮肥供应不足将阻碍叶片氮素吸收,直接影响小麦的生长状况,进而影响小麦的光合作用和生物量的积累,最终影响麦田CO2净通量.
注:(a)(b)为CO2通量与土壤温度的关系,(c)(d)为CO2通量与土壤湿度的关系,(e)(f)为CO2通量与光合有效辐射的关系,(g)(h)为CO2通量与空气温度的关系.其中,(a)(c)(e)(g)为N1处理,(b)(d)(f)(h)为N2处理.图5 麦田CO2净通量与环境因子的关系Fig.5 Relationships between net CO2 fluxes and environmental factors in wheat field
3.2 麦田CO2净通量与环境因子之间的关系
研究显示温度、光照和水分对农田碳通量有重要影响.其中空气温度和土壤温度是影响生态系统CO2交换的重要因子,一定范围内,随着温度升高,植物的光合作用增强,当其值到达一定临界值后,温度对作物光合作用具有抑制作用而呼吸作用增强[31],麦田CO2净通量逐渐减小.本文研究结果也表明,CO2净通量随土壤温度和空气温度的增加呈先增加后减小的趋势.土壤湿度对冬小麦光合作用的影响是气孔因素和非气孔因素共同作用的结果.土壤湿度较低时,作物叶片光合色素含量较低[32],一定范围内,随着土壤湿度的增大,有利于小麦气孔的开放,光合作用增强,麦田CO2净通量增大[33],当土壤湿度增大到一定值时,光合作用受到非气孔因素(光化学活性和无机磷)的限制[34],使得麦田CO2净通量减小.Li等[35]认为土壤湿度和空气温度是影响碳通量的重要因素,其中土壤湿度是最主要的制约因子,本文研究结果表明,CO2净通量随土壤湿度的增加呈先增加后减小的趋势,不同处理下,CO2净通量跟土壤湿度的相关关系均达到显著.李俊等[36]研究发现当光合有效辐射较低时,CO2净吸收量随着光合有效辐射的增强而增加,但是光合有效辐射较高时,CO2通量对光合有效辐射变化的敏感性降低.Falge等[37]研究表明,生态系统的初级生产力(总初级生产力和净初级生产力)与光照条件密切相关.吴东星等[38]研究表明,冬小麦农田生态系统4个生育期净碳交换与光合有效辐射的相关性均达到极显著水平.本文研究结果表明,N1处理下,CK处理的CO2净通量跟光合有效辐射的关系未达到显著,N2处理下,C2处理的CO2净通量跟光合有效辐射的关系未达到显著,其余处理均达到显著水平.王雯[39]研究发现麦田生态系统CO2通量受到气象因子和土壤因子等环境因子的综合影响,表现出复杂的响应机制.对于不同阶段、不同环境因子以及某一环境因子的不同取值范围而言,CO2通量的环境响应机制存在差异.由于温度、水分等环境因子之间的相互联系、相互作用关系,同一个环境因子的相互关系可能部分掩盖CO2通量同另一环境因子之间的真实关系.
4 结论
1)在小麦整个生育期内,不同CO2浓度和施氮水平下麦田CO2净通量的变化趋势一致,均呈先增大后减小的特征.与环境大气CO2浓度相比,CO2浓度升高增加了麦田CO2净通量.常规施氮量麦田CO2净通量高于低施氮量.
2)N2处理下,拔节期C2处理的CO2累积量显著高于CK处理.C1处理下,拔节期N1处理的CO2累积量显著高于N2处理;C2处理下,N1处理的整个生育期CO2累积量显著高于N2处理.
3)在拔节期和抽穗期,相比于CO2浓度升高,施氮量对麦田CO2净通量的影响更为显著,在成熟期和整个生育期,施氮量和CO2浓度升高共同作用于麦田CO2净通量的增加.施氮量对麦田CO2净通量的影响程度大于CO2浓度升高,CO2浓度升高与施氮量的交互作用不明显.