0.44 Ma 以来南方风尘加积型红土物源分析:重矿物和碎屑锆石年代学证据
2022-04-02张晓朱丽东李凤全马桢桢熊文婷贾佳王琳怡
张晓,朱丽东,李凤全,马桢桢,熊文婷,贾佳,王琳怡
浙江师范大学地理与环境科学学院,浙江金华 321004
0 引言
中亚热带加积型红土主要分布于长江以南28°~31°N之间的丘陵岗地、河流高阶地及沉积盆地边缘的坡麓地区,其母质均一,富含风尘粒级;REE、Sm-Nd同位素、石英砂粒度分布及石英颗粒表面形态等证据[1-3]均证实其风成特性,且具有边沉积边风化的加积特性[4],是中低纬度地区开展第四纪环境变化研究的良好沉积载体。加积型红土自下而上划分为网纹红土、均质红土、黄棕色土等沉积单元,年代学及典型剖面环境记录研究一致表明,网纹红土形成始于早更新世,中更新世最发育,测年结果主要集中于0.85~0.4 Ma,对应亚洲夏季风异常强盛时期[5-7],化学风化强烈[8],被视为南方中更新世标准地层[9];而0.4 Ma以来气候逐渐趋向干凉,网纹化过程变弱并渐渐停滞,红化程度也明显降低,上覆黄棕色沉积,可对应北亚热带下蜀组[9]。早期一些研究认为,南方加积型红土,特别是剖面上段的黄棕色土在物质组成上与北方黄土相似,它们之间存在物质继承关系[10-11],是北方粉尘南侵的结果[12]。近年来,一些研究表明下蜀黄土由近源粉尘堆积而成[13-14],长江沿岸和鄱阳湖周边砂质—粉尘沉积的物源也有类似的结论,长江、赣江、鄱阳湖区裸露的河湖沉积物提供了大量粉尘[15-16]。还有一些学者持近、远源多源区物质高度混合搬运堆积的观点[3,17-18]。可见,南方风尘堆积的物源方面尚有争议,加积型红土物源问题的研究对理解该地区0.4 Ma以来风尘沉积分布格局及古气候演化具有重要意义。
重矿物具有耐磨蚀,易保存等特点,很大程度上因保留了母岩信号而被用于物源示踪研究。如台湾山溪性河流及福建境内闽江、九龙江等中小型河流沉积物的重矿物组合主要受控于流域基岩性质[19-20];利用重矿物示踪的方法,分辨出长江上游支流比长江中下游支流对长江干流物源输入的贡献更大[21-22];泰国湾西部表层沉积物重矿物组合揭示出陆源和自生源特征[23];张青松等[24]采用重矿物与元素示踪相结合的方法,揭示出腾格里地区白碱湖钻孔1.8 Ma、1.2~0.6 Ma 时段沉积物中来自青藏高原东北缘的碎屑物质明显增加,响应了青藏高原第四纪期间的阶段性隆升。近年来,碎屑锆石U-Pb 定年技术也成为沉积物源区示踪研究的有力工具[25-27]。南方红土化学风化强烈,粒度组成、稳定元素及比值、REE 等物源示踪方法都无法避免风化对物源判别的影响,且风化信号主要富集于细粒组分中。黄颖等[28]尝试利用九江地区JL加积型红土剖面粉砂粒级组分的稳定元素开展物源研究,以削弱细粒级组分中风化信息对物源判别的干扰。其示踪结果认为,黄棕色沉积的物源比网纹红土复杂,除了近源物质外,远程物源也有一定贡献,而且随气候渐趋变干凉的过程远程物源的贡献增加。重矿物主要富集在>20 μm 粒级,碎屑锆石U-Pb 定年所选择的锆石颗粒也通常>20 μm,因此,本文在前期工作的基础上,采用重矿物与锆石U-Pb年代学相结合的方法,进一步探讨JL剖面加积型红土的物源问题,为其物源研究提供新的思路。
1 材料与方法
1.1 研究剖面
研究剖面(JL)位于江西省九江市庐山北麓(图1a),距九江市区约5 km,地理坐标29°42′02″N,116°01′42″E,厚度18.46 m,未见底。剖面通体质地均一,以粉砂(4~63 μm)为主,含量达70%左右,砂(>63 μm)含量极低,不足2%,未见流水作用痕迹。根据沉积物颜色、沉积结构、土壤学性质、网纹形态等特性,自下而上划分为8 个地层单元(图1b)。中下部第①~⑤层(18.46~4.46 m)为网纹红土,层内网纹形态、结构、基质色等存在一定差异;上部第⑥~⑧层(4.46~0 m)为黄棕色土沉积,第⑥和第⑧层为黄土状沉积,第⑦层为浅红色古土壤,含铁锰胶膜。
⑥、⑦两层(4.46~1.20 m)发育浅灰色弱网纹,可视为网纹黄棕色土。第⑥层(4.46~3.16 m)整体呈亮黄棕(10YR 6∕6、10YR 6∕8)至浊黄橙(10YR 7∕4),裂隙发育且被黑色胶膜填充。第⑦层(1.20~3.16 m)呈亮黄棕(10YR 6∕8、10YR 7∕6)至橙(7.5YR 6∕6、7.5YR 6∕8),3.08~3.16 m处富集黑褐色球状铁锰结核,粒径多在0.5~1.5 mm;第⑧层(0~1.20 m)为黄棕色土,呈亮黄棕(10YR 6∕6、10YR 6∕8)至浊黄橙(10YR 7∕4),质地均一,不含网纹,土质较疏松,见现代植物根系。朱丽东[4]早年对JL剖面进行了ESR测年工作,测年材料为石英粉晶,E'心寿命试验、U、Th、K2O含量及年剂量率(AD∕Gy)均符合ESR 测年要求,第⑥~⑧层共获得4个有效年龄(图1b),第⑥层底界年龄为0.44 Ma,之后网纹明显减弱乃至停滞。与安徽宣城、九江南湖村、九江长虹大道、南京老虎山等剖面网纹减弱或停滞的时间大致相似(表1)。因此,JL剖面网纹黄棕色土和黄棕色土形成于0.44 Ma B.P.以来。
图1 JL 红土剖面地理位置、地层单元及ESR 测年结果Fig.1 Location, lithostratigraphy and ESR dating results of JL red earth section
表1 中国南方风尘堆积无网纹或弱网纹层底界年代Table 1 Age of bottom boundary of non-reticulated or weakly reticulated eolian deposits in South China
1.2 实验方法
在JL 剖面0~4.46 m 第⑥~⑧层段内以20 cm 间隔选取22 个样品进行重矿物鉴定,并对及碎屑锆石U-Pb定年均由河北廊坊诚信地质服务公司完成。实验方法如下:先将样品烘干称重,用铝制圆形流浪盘进行粗淘,并用三溴甲烷进行轻重矿物分离,分离出来的重矿物部分用乙醇反复冲洗,将冲洗后的重矿物部分放入恒温烘箱烘干备用;之后将分离出来的重矿物部分放在双目镜下采用条带法随机选取10个视域进行矿物鉴定,并取其平均值来减小分析误差。每个重矿物样品鉴定颗粒数不低于600粒,然后计算出每种矿物所占百分含量。
锆石U-Pb同位素定年和微量元素测试采用LAICP-MS 分析完成。激光剥蚀使用New Wave UP-213激光烧蚀进样系统,质谱仪为Agilent 7900 型四极杆等离子体质谱仪。激光光束直径为25 μm,激光能量密度10 J∕cm2,剥蚀频率10 Hz。使用标准锆石91500作为外标进行同位素比值校正,标准锆石Plesovice(337 Ma)为监控盲样。采用Glitter4.0软件进行同位素比值及元素含量的计算,普通铅的校正采用了Andersen[33]给出的方法。实验得出的同位素比值和同位素年龄的误差(标准偏差)均在1σ 水平。年龄计算及谐和图利用Isoplot4.0 处理,并作图。对于≥1 000 Ma 样品,由于含大量放射性成因的Pb,采 用207Pb∕206Pb 年 龄 值;对 于<1 000 Ma 样 品,采用206Pb∕238U的年龄值。
2 重矿物特征
2.1 重矿物类型及含量
JL剖面0.44 Ma以来22个样品共鉴定出19种重矿物,包括锆石、白钛石、金红石、锐钛矿、电气石、钛铁矿、赤褐铁矿、绿帘石、榍石、黄铁矿、石榴子石、磁铁矿、辉石、角闪石、独居石、磷灰石、透闪石、磷钇矿、海绿石,其中磷灰石、透闪石、磷钇矿、海绿石只出现个别样品中且含量低,文中将不做分析。
将22 个样品的重矿物含量按黄棕色土(YB)和网纹黄棕色土(YBV)两类样品进行统计,结果如表2所示。两类样品均以白钛石、赤褐铁矿、钛铁矿、黄铁矿和磁铁矿等不透明矿物占主导,含量均值分别为57.35%、60.31%,其次是锆石、金红石、锐钛矿、电气石、绿帘石、辉石等,属常见重矿物类型,平均含量介于1%~20%;两类样品的锆石和绿帘石含量存在比较明显的差异,网纹黄棕色土样品的锆石含量(16.49%)明显高于黄棕色土(9.15%),相反,黄棕色土样品的绿帘石含量(12.68%)明显高于网纹黄棕色土(2.77%)。鉴于前人提供了长江沿岸砂质沉积的风成证据以及与现代长江河谷漫滩沉积物物源一致的证据[35-36],本文以北方黄土[34]和采自湖口附近红光沙场(HGSC)的长江沿岸风成砂样品为潜在的远、近程物源分析对比样,通过对比发现JL 剖面黄棕色土和网纹黄棕色土两类样品的不透明矿物含量明显高于北方黄土(27.76%)和长江沿岸风成砂(35.50%),电气石含量也较北方黄土和长江沿岸风成砂样品偏高;绿帘石含量则明显低于北方黄土(28.70%)和长江沿岸风成砂(22.41%)。其他矿物类型的比较来看,锆石、金红石、锐钛矿、石榴子石和辉石的相对含量与湖口红光沙场风成砂样品较为相似,除石榴子石外含量均明显高于北方黄土;榍石、角闪石、独居石等少见矿物的含量与北方黄土及湖口红光沙场风成砂样品相比也有一定偏差,特别是角闪石含量明显低于北方黄土。
表2 0.44 Ma以来加积型红土重矿物类型及相对含量(%)Table 2 Content of heavy minerals in red earth aggradation since 0.44 Ma (%)
根据重矿物易风化程度或稳定性,重矿物可划分为极稳定、稳定、较不稳定、不稳定四个等级[37]。按重矿物稳定性做三角图得到图2,黄棕色土和网纹黄棕色土两类样品均属稳定型。其中,极稳定矿物含量最高,分别为52.49%和52.88%;稳定矿物含量次之,分别为32.22%和41.49%;较稳定矿物分别为12.92%和3.12%;不稳定矿物最少,含量仅为2.37%和2.51%。与潜在端元样品相比,与长江沿岸风成砂样品更相似。
图2 0.44 Ma 以来加积型红土重矿物稳定性三角图Fig.2 Ternary diagram of stability of heavy minerals in redearth aggradation since 0.44 Ma
2.2 重矿物组合及特征指数
重矿物组合能有效反映物源区或者母岩类型[38]。将JL剖面第⑥~⑧层(0.44 Ma以来)黄棕色沉积的22个样品的重矿物相对含量进行排序,以排序前四位的重矿物类型作为该样品的重矿物组合,其结果表明,黄棕色土样品的重矿物组合呈现“钛铁矿—赤褐铁矿—绿帘石+α”组合,网纹黄棕色土样品的重矿物组合呈现“钛铁矿—赤褐铁矿—锆石+β”组合,α 代表锆石、金红石、锐钛矿、磁铁矿、电气石;β代表白钛石、锐钛矿、金红石、电气石、磁铁矿。就平均状况而言,黄棕色土重矿物组合体现为“钛铁矿—赤褐铁矿—绿帘石—锆石”组合(平均含量依次26.56%、22.02%、12.68%、9.15%),网纹黄棕色土重矿物组合表现为“钛铁矿—锆石—赤褐铁矿—金红石”组合(平均含量依次37.21%、16.49%、14.18%、6.11%)。从第⑥层至第⑧层,钛铁矿、锆石含量趋于减少,赤褐铁矿、绿帘石则趋于增加。可见,两类样品重矿物组合的主导重矿物类型存在相似性,但细节上仍有一定差异。
北方黄土和湖口红光沙场风成砂样品的重矿物组合分别为“角闪石—绿帘石—磁铁矿—赤褐铁矿”组合(含量依次33.97%、28.70%、14.72%、11.41%)和“绿帘石—锆石—钛铁矿—锐钛矿∕白钛石”组合(含量依次22.41%、22.03%、19.68%、12.24%)。比较而言,北方黄土含有较多的角闪石、绿帘石、赤褐铁矿和磁铁矿[39],来自长江沉积物的风成砂样品含有较多的绿帘石、锆石、钛铁矿、锐钛矿和白钛石,JL剖面黄棕色土和网纹黄棕色土重矿物组合与长江沿岸风成砂样品更为相似。
ZTR 和GZi 等稳定重矿物比值通常能更好地反映沉积物物源特征[20,40]。ZTR 指数是指透明矿物中锆石、金红石、电气石含量(ZTR 指数=锆石%+电气石%+金红石%),值越大表明极稳定矿物锆石、金红石和电气石的含量越高,从而指示矿物成熟度。GZi指数=石榴子石%∕(石榴子石%+锆石%),对含有石榴子石的母岩(变质岩)岩性具有指示作用。从JL剖面黄棕色土和网纹黄棕色土样品的ZTR、GZi指数计算结果来看(表3),虽然两类样品间仍有一定差异,ZTR 指数前者偏低,而GZi 指数前者偏高,但两者均与北方黄土差异显著,而与长江沿岸风成砂样品更为相似。
表3 黄棕色土、网纹黄棕色土、长江风成砂、北方黄土重矿物特征指数对比Table 3 Comparison of heavy mineral characteristic indices for yellowish brown soil, reticular yellowish brown soil, eolian sand of Yangtze River and loessof North China
2.3 重矿物物源判别
物源指数(PI)和相似度指数(cosθ)是物源判别的重要方法[41-43]。物源指数(PI)通常用于判别沉积样品与两个已知端元样品之间的相似程度。计算方法为:式中:Cix是待判别样品中重矿物i的百分含量;Ci1和Ci2分别为端元沉积物1 和2 中重矿物i的百分含量;range(i)为待判别样品中重矿物i的极差。PI 值范围介于0~1,<0.5 表示待判别沉积物物源与标准端元1更接近,相反其物源则与标准端元2更相似。而相似度指数主要用于表达任意两种沉积样品之间或者是沉积样品与原岩之间是否具有相似性。常采用夹角余弦法计算,公式为:式中:cosθ为样品i和样品j的相似度值;Xik为样品i的指标k的重矿物相对含量;Xjk为样品j的指标k的重矿物相对含量。cosθ值越接近1,则说明两个沉积物越相似。本文基于JL剖面黄棕色土及网纹黄棕色土两类样品的重矿物数据,选取北方黄土和长江沿岸风成砂样品为端元1和端元2,计算得到两类样品的PI 指数,并且利用相似度指数法分别计算两类样品与端元1和端元2之间的cosθ值得到表4。
表4 0.44 Ma以来加积型红土物源指数计算结果Table 4 Results of provenance index of red earth aggradation since 0.44 Ma
虽然JL剖面黄棕色土和网纹黄棕色土两类样品的重矿物类型、含量、组合特征存在一些差异,但物源指数PI 值和相似度指数cosθ值的计算结果表明,两类样品的PI 值均大于0.5,分别为0.73 和0.70,与端元2更相似;两类样品与端元1的cosθ值仅为0.41和0.21,但与端元2 的cosθ值可达0.76 和0.74,均显示两者有相似的物源,并且更倾向于长江河谷漫滩等近源沉积物。然而有研究揭示,暗色矿物经历风化后产生的磁铁矿、赤褐铁、钛铁矿和白钛石等次生矿物会与原生矿物混合在一起,对物源分析造成较大的干扰[20]。JL 剖面⑥~⑧三层的化学风化指数(CIA)分别为82.67%、83.16%、78.49%[4],属中等风化强度,故不排除不透明矿物中存在次生成因的磁铁矿、赤褐铁矿、钛铁矿和白钛石。鉴于这些不透明矿物为黄棕色土和网纹黄棕色土的主导矿物,物源分析中也不宜剔除,因此有必要进行其他思路的验证。
3 锆石年龄
3.1 锆石形态及成因
JL剖面黄棕色土jl-877号样品中的锆石呈无色、粉色、玫瑰色,粒径长轴以20~60 μm 为主,个别达80 μm,延长系数(长∶宽)介于1.2~2.0。多数粉色、玫瑰色锆石为不规则滚圆粒状,说明他们可能经历了长距离的搬运,而无色锆石晶体呈次棱角到棱角自形晶,其可能来源于较近的源区。阴极发光图像CL(图3)显示,大部分锆石发育岩浆震荡环带,表明其岩浆成因[44]。前人研究表明,锆石因成因不同而具有不同的U、Th 含量,其Th∕U 比值亦不同。岩浆锆石U、Th 含量高,其Th∕U 比值一般>0.4;变质锆石Th、U含量低,Th∕U比值一般<0.1;Th∕U比值介于0.1~0.4的锆石颗粒,可能反映后期地质作用的改造或者变质重结晶作用不彻底[44-45]。jl-877号样品中大部分锆石颗粒具有较高的Th∕U 比值(图3),比值介于0.4~2.65,表明其岩浆成因,这与CL 图结果一致;仅有2 颗锆石Th∕U 比值<0.1,极少数的锆石属于变质成因。
图3 JL 剖面jl-877 号样品中代表性锆石阴极发光(CL)图像以及锆石Th∕U-年龄关系图Fig.3 CL images and Th∕U-age plots from jl-877 sample in JL profile
3.2 碎屑锆石年代结果
jl-877号样品位于JL剖面第⑧层,为黄棕色土样品。对jl-877样品的100颗锆石进行年龄分析,有92颗锆石U-Pb 年龄数据落在谐和线上或者谐和线附近,锆石U-Pb 年龄谐和度>90%,仅有8 颗锆石U-Pb年龄数据偏离谐和线(图4a),表明jl-877样品数据谐和度较好,具有可靠性。图4b 是jl-877 样品的碎屑锆石U-Pb年龄谱,网纹黄棕色土样品的碎屑锆石UPb 年龄谱(图4c)引自文献[46]九江剖面(JJ 剖面,29°42′40.27″N,116°00′13.7″E),该剖面距离本文研究剖面(JL)非常近,地层结构相似,JJ-02号样品取自JJ 剖面有弱网纹化特征的黄棕色土层内,与本文网纹黄棕色土相对应。
黄棕色土和网纹黄棕色土样品的碎屑锆石UPb 年龄值分布较宽,分别为61~2 537 Ma 和83~3 013 Ma,且呈现多峰的特征,反映沉积物物源的广泛性和复杂性。黄棕色土(jl-877)锆石U-Pb 年龄测试结果大致呈现5 组年龄区间,<130 Ma、150~330 Ma、390~1 000 Ma、1 060~2 100 Ma、2 300~2 600 Ma。前三个区间年龄峰值较强,由强到弱依次为150~330 Ma、<65Ma、70~130 Ma、680~870 Ma、390~570 Ma;后两个区间年龄峰值较弱,主要出现在1 700~2 100 Ma、2 300~2 600 Ma。网纹黄棕色土(JJ-02)锆石U-Pb 年龄数据[46]主要呈现6 组年龄区间,分别为<110 Ma、120~350 Ma、400~530 Ma、680~1 280 Ma、1 400~2 100 Ma、2 400~3 013 Ma。主要年龄峰值为80~110 Ma、150~300 Ma、400~520 Ma、680~870 Ma,其中150~300 Ma 和80~110 Ma 峰值较强。对比jl-877 和JJ-02 样品的锆石U-Pb 年龄谱特征,两者相似度较高。首先是年龄峰值段相似,两者均在70~130 Ma、150~350 Ma、680~870 Ma 处出现年龄峰高值,年龄峰值由强到弱的排序依次是150~350 Ma、70~130 Ma、680~870 Ma;其次是870~3 013 Ma 区间两类样品年龄峰值均很弱。但两个样品间也存在一些差异,主要表现在:1)jl-877 样品中存在<65 Ma 年龄峰值,且峰值较强,JJ-02 样品中则不存在该峰值;2)jl-877 样 品390~570 Ma 年龄峰明显强于JJ-02;3)如表5 所示,150~350 Ma 和390~570 Ma 两个年龄峰值段的锆石颗粒数百分比相差较大,前一个峰值段(150~350 Ma)锆石颗粒百分含量网纹黄棕色土(47.37%)明显高于黄棕色土(20.65%)、而后一峰值段(390~570 Ma)锆石颗粒百分含量黄棕色土(14.13%)明显高于网纹黄棕色土(5.26%)。
表5 黄棕色土和网纹黄棕色土不同年龄区间锆石颗粒百分含量(%)Table 5 Content of zircon grains in different age ranges for yellowish brown soiland reticular yellowish brown soil (%)
3.3 与潜在物源区碎屑锆石年龄谱对比
搬运沉积过程一般不会引起锆石年龄特征的变化,因此碎屑锆石年龄分布可以有效指示沉积碎屑物质来源[47]。为了更好地判定0.44 Ma以来加积型红土的潜在物源区,选择长江湖口段和武汉段沉积物、赣江沉积物、北方黄土等样品已发表的数据[22,25,46,48]进行对比研究,对黄棕色土及网纹黄棕色土的碎屑年龄谱及可能的物源信息进行解读。
如图5a、图5b所示,jl-877和JJ-02样品古太古代—中元古代锆石数量少、年龄峰弱。比较而言,jl-877样品在1 700~2 100 Ma、2 300~2 600 Ma处存在两个锆石年龄弱峰,与长江武汉段(图5c)、湖口段(图5d)样品十分相似;JJ-02 样品则缺乏1 700~2 100 Ma、2 300~2 600 Ma 弱峰,与赣江段样品(图5e)及北方黄土(图5g)更为相似。鉴于北方黄土在1 000 ~3 500 Ma 弱峰段上锆石年龄区间更窄,峰值也更低的特征,jl-877 和JJ-02 样品在锆石年龄弱峰段上的信号更趋向于长江沉积物。有研究认为,长江沉积物太古宙锆石含量很少,主要来自扬子克拉通和华夏地块内部多处太古宙陆壳;古元古代锆石(1 700~2 100 Ma)Hf 同位素组成与扬子克拉通和华夏地块相近[48]。
jl-877、JJ-02样品<1 000 Ma年龄段锆石数量多、年龄峰强、呈多峰现象。其中最强峰值均位于150~350 Ma,对应晚泥盆世—侏罗纪。jl-877和JJ-02样品该年龄段的锆石数量分别占总锆石数的20.65%和47.37%。解读150~350 Ma年龄段发现,JJ-02以200~300 Ma的二叠纪—三叠纪锆石为主,而jl-877则主要为150~200 Ma侏罗纪锆石。长江武汉段、湖口段、赣江段沉积物(图5c~e)及北方黄土(图5g)在该年龄段的锆石分布及年龄峰特征呈现与JJ-02相似的特征。然而有研究表明,长江沉积物和北方黄土200~300 Ma 锆石的源区完全不同。长江流域沉积物中200~300 Ma二叠纪—三叠纪锆石主要与川滇贵地区峨眉山火成岩省(ELIP)、金沙江缝合带酸性侵入岩、以及湘江赣江流域二叠纪花岗岩岩体的物质贡献有关[48-49];而北方黄土200~350 Ma 锆石的贡献主要来自中亚造山带[50]。鉴于JJ-02 锆石粒径偏粗(40~100 μm),推测长江沉积物等近源物质贡献的可能性更大。jl-877 样品150~200 Ma 的侏罗纪锆石可能与秦岭造山带有关[51],而与长江沉积物及北方黄土的物源关系不大。
除最强的150~350 Ma 锆石年龄峰外,jl-877 与JJ-02 还一致呈现680~870 Ma、70~130 Ma 年龄峰。其中,680~870 Ma 年龄峰在长江沉积物中有明显表现,北方黄土中却较弱(图5)。长江沉积物中该年龄段的锆石来源则与扬子克拉通内部及其边缘地区的花岗岩体有关,是新元古代期间华夏板块和扬子克拉通发生碰撞,750~830 Ma 岩浆频繁活动的结果[52-53]。70~130 Ma 年龄峰也仅见于长江沉积物中,北方黄土则缺失,而长江流域白垩纪锆石主要来自扬子地块东缘和东南缘及大别山造山带[51]。再次表明加积型红土与长江沉积物之间存在物源联系。
jl-877 与JJ-02 相比,390~570 Ma 及<65 Ma 锆石年龄峰存在显著差别。前者390~570 Ma 年龄峰较强,且存在新生代<65 Ma 年龄峰;后者390~570 Ma峰较弱,且不存在新生代<65 Ma 年龄峰。从对比样品来看,长江武汉段、赣江段沉积物及北方黄土的390~570 Ma 峰值较强,而长江湖口段沉积物与及北方黄土的新生代<65 Ma 年龄峰却非常明显。jl-877和JJ-02在这两个年龄段上锆石的物源倾向不明显。但网纹黄棕色土至黄棕色土,样品中新生代锆石的贡献增加。Yanget al.[54]认为长江沉积物中<65 Ma的锆石主要来源于青藏高原,可以指示长江贯通的时间。但也有研究表明,长江沉积物中新生代锆石主要出现在长江金沙江段和长江下游段,它们之间的江段则缺失。湖口段出现新生代锆石可能与及下扬子板块出露的新生代玄武岩有关[48]。而北方黄土新生代锆石的源区相距JL剖面太远。JL剖面位于秦岭—大别山造山带东南下风方向,网纹黄棕色土至黄棕色土又指示冬季风增强趋势[55-56],来自秦岭—大别山造山带以及下扬子板块的北方粉尘有可能为JL剖面0.44 Ma以来的加积型红土提供物源,且黄棕色土较网纹黄棕色土北方物源的贡献增加。
为了更好的分析南方加积型红土是长江源还是北方源,同时考虑到长江支流赣江及长江干流湖口段、武汉段沉积物碎屑锆石U-Pb 年龄谱存在一定差异,本文综合长江湖口段、武汉段沉、赣江南昌段沉积物的锆石U-Pb年龄数据,得到图5f,并与北方黄土锆石U-Pb年龄谱(图5g)进行对比,发现0.44 Ma以来的风尘堆积与综合后的长江沉积物碎屑锆石U-Pb年龄谱更加相似,均表现出比较明显的<65 Ma、70~160 Ma、200~300 Ma、390~570 Ma 和680~880 Ma 等,这与前文锆石U-Pb年龄谱和重矿物相似度指数分析结果一致。
4 JL 剖面0.44 Ma 以来加积型红土物源讨论
基于JL 剖面0.44 Ma 以来加积型红土的重矿物组成和碎屑锆石U-Pb 年龄谱特征,裸露的长江沉积物可能是长江以南加积型红土的主要粉尘源区,但黄棕色土与网纹黄棕色土相比,增加了来自秦岭—大别山造山带的北方物源。然而,环境信息的解译存在粒度效应[57-59]。有研究认为次生风化信息主要富集于细粒组分,而粗粒组分则更多地记录物源信号和源区风化状况[60]。JL 剖面0.44 Ma 以来黄棕色沉积的化学风化指数(CIA)介于77%~84%,为中等风化强度。而重矿物和碎屑锆石主要富集在粗粒组分中,单粒矿物和碎屑锆石的粒径多在20 μm以上,某种程度上消除了细粒组分,特别是湿热条件下<2 μm化学风化组分的干扰,物源判别结果有一定可靠性,这与黄颖等[28]针对该剖面粉砂粒级样品的稳定元素地球化学物源示踪的研究结论也较为相似,即0.44 Ma 以来亚热带地区气候渐趋干凉,东亚冬季风不断增强,导致北方远源粉尘在黄棕色土物源贡献中的比例增加。所不同的是,黄颖等的结果更倾向于混合源,而本文的结果更倾向于近源,究其原因还是与粒级效应有关。
就粉尘沉积而言,<20 μm 组分可以在空中悬浮时间较长,能被风力携带至高空并做远距离传输[61-62],往往被看做远源粉尘的示踪组分。如利用该组分稳定元素地球化学特征示踪下蜀黄土的物源,发现其与北方黄土的物质联系并不密切[13,63]。考虑到<20 μm 组分中包含风化信息,且JL 剖面0.44 Ma以来黄棕色沉积的化学风化指数CIA值(77%~84%)明显高于下蜀黄土(66%~76%)[64]和北方黄土(63~68%)[65],加之九江JL 红土剖面上段的黄棕色沉积的粘粒含量较高(25.45%)、砂粒含量极少(1.28%),黄颖等[28]选择该剖面粉砂粒级(4~63 μm)样品的稳定地球化学元素来进行物源示踪,结果得出网纹红土层段以近源物质贡献为主,黄棕色土则体现混合源的特征,且随冬季风逐渐增强,北方远程物源的贡献增加。现代气象资料亦表明,北方粉尘可以输移至30°N以南地区,粉尘粒径主要集中于2~16 μm,其中4~16 μm 组分的含量约占61%[66-68]。可见,JL 剖面0.44 Ma以来的加积型红土中不排除北方远程物源的影响,但信号可能体现在4~20 μm 粒级组分中。要想解译南方风尘沉积中来自北方物源的贡献,有必要对该粒级做更加细致的研究。而本文基于重矿物组成和碎屑锆石年龄的物源示踪证据,充分表明加积型红土中>20 μm组分的物质与近源长江沉积物的物质贡献有关。
从长尺度气候记录来看,0.44 Ma 正直中布容气候转型期。中布容事件(MBE)为全球性气候转型事件,对应MIS12∕MIS11,主要表现为0.43 Ma以来全球冰量的显著增加[69]以及冰期—间冰期气候反差的进一步增大[70]。该阶段气候系统的变化在深海沉积[71]、南极Vostok 和Dome C 冰芯[72-73]、中国黄土[74-76]中均有记录。近年来,我国中低纬度南海ODP1143C 孔[77]、苏北盆地XH-2 孔[78]、成都平原胜利红土剖面[79]中也发现了该事件的记录。中布容事件以来,间冰期强大的夏季风带来充足的降水,长江谷地拓宽,流域内侵蚀量增加,大量碎屑物质沿长江干支流搬运至中下游地区堆积;冰期时长江水量减少、水位下降,有大面积碎屑物质裸露于地表,加之,秦岭自中更新世以来快速抬升[80]产生大量侵蚀碎屑,在冬季风强盛时期,长江沉积物及来自秦岭地区的侵蚀碎屑可以为下风向的粉尘堆积提供丰富的物源。
综上所述,JL剖面0.44 Ma以来的黄棕色沉积的物源应该以近源粉尘为主,粉尘主要来源于冰期时裸露的长江谷地及河漫滩地;但不排除北方粉尘的贡献,其贡献量可能富集于4~20 μm组分,有待于进一步细致的工作。
5 结论
通过对江西九江JL 加积型红土剖面上段0.44 Ma 以来黄棕色沉积的重矿物组成及碎屑锆石U-Pb定年研究,初步得到以下结论:
(1)JL剖面上段22个加积型样品共鉴定出19种重矿物。重矿物组成均以不透明矿物为主,且以锆石、金红石、锐钛矿、电气石、绿帘石、辉石等为常见重矿物,重矿物稳定度高。但黄棕色土和网纹黄棕色土两类样品的锆石和绿帘石含量存在差异,前者锆石含量(9.15%)明显低于后者(16.49%),而绿帘石含量(12.68%)则明显高于后者(2.77%)。
(2)黄棕色土和网纹黄棕色土极稳定矿物和稳定矿物含量较高,分别为52.49%和52.88%,32.22%和41.49%,明显高于北方黄土(17.77%、19.21%),与长江风成砂(55.93%、20.15%)较为相似。两类样品ZTR 指数和GZi 指数分别为47.53 和0.10,72.73 和0.06 略高于风成砂(43.65 和0.02),而明显不同于北方黄土(8.42 和0.47)。以北方黄土和长江沉积物为端元进行物源指数计算,黄棕色土和网纹黄棕色土的PI值分别为0.73和0.70,偏长江源;与长江沿岸风成砂样品间的相似度指数cosθ 值可达0.76 和0.74,亦支持长江源的结论。
(3)典型样品锆石年龄峰多且分布范围广,<65 Ma、70~130 Ma、150~300 Ma、390~570 Ma 以及680~870 Ma等处年龄峰强,870~3 013 Ma年龄峰弱,特别是70~130 Ma、200~300 Ma、390~570 Ma、680~870 Ma、870~3 013 Ma 等年龄峰与长江沉积物相应年龄峰吻合度高。<65 Ma、150~200 Ma 年龄段锆石多出现在黄棕色土样品中,且可能与秦岭造山带的贡献有关,但贡献不显著。JL剖面0.44 Ma以来加积型红土的物源主要是长江源。
(4)与该剖面粉砂粒级稳定元素地球化学物源示踪结果(混合源)相比并不完全一致,这可能意味加积型红土的物源存在粒级效应。因此,我们推测0.44 Ma以来南方风尘加积型红土以近源物质贡献为主,粉尘主要源自长江谷地裸露的河漫滩;但不排除北方物源贡献的可能性,其贡献量可能富集于4~20 μm组分。本文的研究结论来自有限的数据分析,期待进一步细致的工作和更多定量化分析工作的检验或修正。
致谢 感谢审稿专家和编辑部给予本文的意见和建议,使得本文得以完善!