APP下载

可控自聚集胶体颗粒对特低渗透非均质油藏的封堵能力及适应性评价

2022-04-01李秋言岳湘安陈余平

油气地质与采收率 2022年2期
关键词:胶粒采收率岩心

李秋言,岳湘安,陈余平

(1.中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;2.中国石油大学(北京)石油工程学院,北京 102249;3.卡尔加里大学化学与石油工程系,阿尔伯塔卡尔加里T2N1N4;4.中国石油长庆油田分公司第十二采油厂,甘肃庆阳 745400)

中国特低渗透油气资源储量十分丰富,如何高效开发该类油气资源已成为石油科技工作者关注的焦点[1-4]。与中高渗透油藏不同,特低渗透油藏基质十分致密且普遍发育裂缝,导致储层非均质性较强[5],在开发过程中极易产生水窜,特别是对于存在边水供给的油藏,严重的水窜往往会导致油藏采收率较低[6-8]。因此,调堵技术作为一种针对非均质油藏有效提高采收率的主导技术一直以来都是石油行业研究的热点[9-13],其中具有特殊功能的颗粒型堵剂及其调堵技术发展非常迅速[14-17],并且在塔河油田取得了良好的增油效果[18-19]。

以长庆油区西峰油田某试验区油藏(目标油藏)为例,基质渗透率多为0.1~5.0 mD,采用水平井交错井网布井模式,水平井井段长度为800~1 000 m,平均井距为600 m。若布置注采井,则井间无法建立有效的驱动压差[20],因此到目前为止目标油藏内绝大部分油井采用天然能量衰竭开采的开发方式[21]。目标油藏水平井改造工艺采用大排量体积压裂,初期单井日产油量为10.2~14 t/d,开发效果较好。但由于目标油藏边水发育且储层非均质性较强(渗透率级差超过10),水平井含水率上升较快,部分油井5 个月内含水率上升超过40%;目标油藏产量递减快,年递减率超过25%。为抑制水窜而造成储层能量耗竭,诸多学者提出在油藏开发前事先通过油井向油藏中注入一定量的调堵剂,通过封堵水窜通道解决后续开采过程中的水窜问题,该技术已被证实可有效应用于矿场试验阶段[22-23]。为研究可控自聚集胶体颗粒(CSA胶粒)对目标油藏窜流通道的封堵能力及其注入量对油藏开发效果的影响,笔者首先通过柱状岩心调堵-水驱渗流实验,考察CSA 胶粒的注入性和封堵强度,并证明平均粒径为0.5 μm 的CSA 胶粒对目标油藏的适应性;然后借助笔者自主设计的、可模拟真实油藏能量变化动态特征的实验装置,利用人造非均质储层模型,开展调堵-天然能量开采模拟实验,研究CSA 胶粒注入量对油藏剩余油分布、油井含水率、油井采油速度、油井产油量、油藏开发时间、油藏压力衰减速率和油藏采收率的影响;最后优选出针对目标油藏的CSA胶粒最适宜的注入量。

1 实验器材与方法

1.1 实验器材

1.1.1 CSA胶粒封堵能力评价实验

实验仪器主要包括:ISCO 泵、恒温箱、岩心夹持器、中间容器、手摇泵、计算机、压力信号采集系统、采出液计量装置、日立SU8010冷场发射扫描电镜等(图1)。

图1 CSA胶粒封堵能力评价实验装置Fig.1 Experimental devices for evaluating plugging capability of CSA colloidal particles

实验用水为长庆油区西峰油田长7层模拟地层水,总矿化度为54 072 mg/L。K++Na+,Ca2+,Mg2+,Cl-,SO42-和HCO3-的质量浓度分别为20 500,2 528,270,29 703,734,337 mg/L。

实验岩心为人造柱状岩心,渗透率为50 mD,尺寸为2.5 cm×30 cm,孔隙度为18.94%,平均孔喉直径为2.91 μm。

封堵剂为CSA 胶粒,质量浓度为1 000 mg/L,耐温为300 ℃,平均粒径为0.5 μm。

1.1.2 CSA 胶粒堵水-TIECC 剂驱油天然能量开采实验

实验仪器主要包括:ISCO 泵、恒温箱、压力仓、压力传感器、中间容器、六通阀、手摇泵、含水饱和度测定仪、计算机、采出液收集装置等(图2)。除上述常规仪器外,在该实验流程中,核心部分为笔者自主设计并研发的“边底水油藏天然能量开采模拟实验装置”,通过调节实验装置相关参数,可实现室内开采实验动态对目标油藏开采特征的精准模拟。该装置中主要包含能量存储模拟器、油水隔离器、能量衰减模拟器、压力缓冲器和回压稳定系统等部件。

图2 CSA胶粒堵水-TIECC剂驱油天然能量开采实验装置Fig.2 Experimental devices for production by natural energy with CSA colloidal particles for plugging and TIECC agents for displacement

新研发的边底水油藏天然能量开采模拟实验装置主要优势包括:①通过设计能量存储模拟器参数,在开采之前注入TIECC剂、CSA胶粒和地层水的过程中,实现了对油藏能量储存过程的模拟。②通过设计和人为调节能量衰减模拟器参数,在开采过程中,实现了油藏压力衰减速率的精确控制并与目标油藏相似。③通过设计压力缓冲器附加阻尼并配合回压稳定系统,在目标油藏条件下,实现了2%以内的人为操作实验误差。④实现了覆盖整个开发过程的油藏能量和开采特征的实时监测。

实验用油为长庆油区西峰油田西-233 井试油取样,在油藏温度65 ℃条件下黏度为1.5 mPa·s。

实验用水为长庆油区西峰油田长7层模拟地层水,各离子含量同CSA胶粒封堵能力评价实验。

驱油剂为TIECC(Tandem In-situ Emulsification and Conformation Control)剂,是一种由多种表面活性剂复配的强乳化体系,在油藏中兼具助调(辅助调整宏观驱替剖面)、微调(调整储层微观波及体积)和高效驱动剩余油等多重功能。TIECC 剂与原油具有强乳化能力,在油藏中微弱的运移扰动条件下,易与剩余油或残余油就地乳化,形成分散的、对孔喉具有一定封堵能力的乳液液滴[24]。本研究选用的TIECC 剂在油藏条件下乳化油率为71%,油水界面张力为7.53×10-3mN/m,黏度为1.3 mPa·s。

封堵剂为CSA胶粒。CSA胶粒是一种采用特殊工艺由单体聚合而成,分散于水中且具有自动聚集功能的胶体颗粒。运移到油藏深部的分散胶粒在粒间物理-化学效应作用下,可自动聚集成大尺寸的胶粒簇[25]。本研究选用的CSA 胶粒质量浓度为1 000 mg/L,耐温为300 ℃[26],平均粒径为0.5 μm。

实验岩心为人造双层板状非均质岩心,设计尺寸为2.0 cm×10.0 cm×30.0 cm。岩心渗透率相对高的层(模拟水窜通道)厚度为1 cm,渗透率为50 mD;岩心渗透率相对低的层(模拟基质)厚度均为9 cm,渗透率为5 mD。非均质岩心渗透率级差为10。岩心基本物性参数见表1。

表1 岩心基本物性参数Table1 Basic petrophysical parameters of cores

将板状岩心的高渗透层和低渗透层正、背面对应均匀布置45 个电极引线,形成45 个电极对用以测试岩心不同位置的含油饱和度,并用树脂密封电极对和岩心表面,制作成可放入压力仓中的物理模型(图3)。

图3 带有饱和度测点的岩心物理模型Fig.3 Prepared physical core model with saturation measuring points

1.2 实验方法

1.2.1 CSA胶粒封堵能力评价实验

在目标油藏温度(65 ℃)下,利用多测压点岩心夹持器,开展30 cm 长柱状岩心渗流、封堵实验。首先注水至各测压点压力稳定,然后注入0.3 PVc的CSA 胶粒,关闭阀门12 h 候凝,并开展后续水驱,待各测压点压力稳定后结束实验。实验中注入速度均为0.5 mL/min。实验过程中记录注入端入口压力p0和各测压点压力p1,p2,p3,p4,p5,并计量出口端产水量。

1.2.2 CSA 胶粒堵水-TIECC 剂驱油天然能量开采

实验

在目标油藏温度(65 ℃)、原始油藏压力(15 MPa)的条件下,依靠油藏的天然能量开展特低渗透非均质油藏CSA 胶粒堵水-TIECC 剂驱油天然能量开采实验。共设计5组实验,首先注入TIECC 剂,然后注入CSA 胶粒,最后注入地层水,使TIECC 剂段塞位于模型高渗透层前部,实验中注入速度均为0.5 mL/min,然后关井候凝12 h,依靠天然能量开采至含水率达98%。比较不同CSA 胶粒注入量条件下的油井含水率、采油速度、累积产油量、开采时间、油藏采收率、地层压力衰减速率以及油藏中含油饱和度分布特征。

具体实验步骤主要包括:①测量岩心尺寸,抽真空,利用侧向饱和法对岩心饱和地层水、饱和油并老化24 h,计算岩心模型孔隙度及原始含油饱和度。②把饱和油的物理模型从侧向饱和油装置中转移至压力仓中,将模型电极对接线引出压力仓并连接到含水饱和度测定仪排线上。③在实验开始前,首先向能量存储模拟器注水使其压力升高至15 MPa(模拟油藏原始地层压力),然后将回压设定为10 MPa(模拟生产压差)。④从出口端向模型中注入0.3 PVc的TIECC 剂。⑤以2 号实验为例,从出口端向模型中注入0.1 PVc的CSA 胶粒,再注入0.6 PVc地层水,关井候凝12 h。⑥开井生产,模拟油藏依靠天然能量衰竭开采过程,当油井含水率达到98%时停止实验。开采过程中需记录能量存储模拟器、模型入口压力变化和油、水产量,并记录各电极对之间实时电阻率,进而计算出岩心不同位置处的含水饱和度。

保持0.3 PVcTIECC 剂注入量不变的条件下,设置CSA胶粒注入量分别为0,0.3,0.5和0.7 PVc,地层水注入量分别为0.7,0.4,0.2和0 PVc,重复实验步骤①—⑥,开展1,3,4和5号实验。

2 实验结果分析

2.1 CSA胶粒封堵能力评价

2.1.1 驱替压力动态

由驱替过程中岩心压力沿程变化(图4)可以看出,随着CSA 胶粒的注入,压力p0,p1和p2相比于水驱后期有小幅上升,增幅分别为26.02%,17.43%和8.66%,说明平均粒径为0.5 μm 的CSA 胶粒注入性较好,可在岩心孔隙中运移较远距离。而岩心后半部分压力p3,p4,p5基本与水驱阶段无差异,这说明0.3 PVc的注入量仅使CSA 胶粒分布于岩心的中前部。随着后续水驱的开始,压力p0和p1显著升高,其稳定值分别为水驱末期的4.78 倍和3.29 倍,说明CSA胶粒具有较强的降低渗透率的能力。而值得注意的是,实验中岩心的平均孔喉直径为CSA 胶粒粒径的5.82倍,按照Abrams的1/3架桥理论,该尺寸的CSA 胶粒显然无法形成有效封堵,那么压力p0和p1的明显提高是CSA 胶粒具有自聚集功能的强有力证据。

图4 驱替过程中岩心压力沿程变化Fig.4 Variation curve of core pressure during displacement

2.1.2 阻力系数和残余阻力系数

阻力系数和残余阻力系数分别反映一种调堵剂在多孔介质渗流过程中的渗流能力降低程度和产生封堵后流体渗流能力的降低程度。通过岩心不同位置处阻力系数和残余阻力系数变化(图5)可以看出,整个岩心长度范围内阻力系数升高不明显,说明平均粒径为0.5 μm 的CSA 胶粒的注入性良好、体系中颗粒的分散性较好。在后续水驱过程中,在岩心与注入端距离为0~8 cm 范围内的残余阻力系数明显提高,这说明分散状态的CSA 胶粒已聚集成为较大粒径的颗粒簇并发挥了较强的封堵能力。CSA胶粒的自聚集能力有效解决了调堵剂的注入性与封堵性之间的矛盾。

图5 岩心不同位置处阻力系数和残余阻力系数变化Fig.5 Variation of resistance coefficient and residual resistance coefficient at different positions of core

2.1.3 封堵率

岩心不同位置处封堵率变化(图6)反映封堵剂在岩心各处的封堵能力,在岩心与注入端距离为0~8 cm 范围内封堵率超过90%,而在岩心与注入端距离为18~30 cm 范围内封堵率低于20%,说明CSA 胶粒的封堵能力较强,而且CSA 胶粒段塞在岩心中的分布位置是人为可控的。CSA胶粒段塞这种定位可控、高效封堵性能,在矿场应用上优势十分明显,一方面可实现油藏窜流通道的精确定位封堵,另一方面可有效减弱剩余油富集区域的污染问题。

图6 岩心不同位置处封堵率变化Fig.6 Variation of plugging rate at different positions of core

2.1.4 岩心剖面处CSA胶粒扫描电镜图像

在距岩心注入端5 cm 处将其切开进行扫描电镜,得到岩心剖面处CSA 胶粒扫描电镜图像(图7),可直观地看到单个分散的CSA 胶粒粒径是远小于岩心孔喉尺寸的,这就保证了CSA 胶粒良好的注入性,可在岩心中长距离运移。停止注入后,岩心深部分散状态的CSA 胶粒在粒间物理-化学效应作用下,自动聚集成大尺寸的胶粒簇,实现了对窜流通道的有效封堵。由此可见,实验中选用平均粒径为0.5 μm的CSA胶粒对目标油藏的适应性较好。

图7 岩心剖面处CSA胶粒扫描电镜图像Fig.7 SEM images of CSA colloidal particles at core section

2.2 CSA胶粒注入量对天然能量开采的影响

2.2.1 油藏含油饱和度分布

从油藏开采后期含油饱和度分布(图8)可以看出,若不注入CSA 胶粒,直接依靠油藏天然能量进行开采,则绝大部分TIECC 剂沿窜流通道(高渗透层)无效返排。注入小段塞(0.1 PVc)CSA 胶粒虽能够达到所需封堵强度,但TIECC 剂较易绕流过CSA胶粒段塞而窜入高渗透层中发生无效渗流,导致基质中仍存在大量剩余油。增大CSA 胶粒注入量,TIECC 剂返排时在基质中的波及效率越高,岩心出口端附近的基质中含油饱和度越低,但当CSA 胶粒注入量超过0.3 PVc后,若注入量继续增大,基质波及效率的提高程度变得越来越有限。

图8 不同CSA胶粒注入量下油藏开采后期含油饱和度分布Fig.8 Distribution of oil saturation under different injection volumes of CSA colloidal particles in later production stage

2.2.2 油井含水率

在整个油井开采时间内,对含水率动态曲线积分即可得到油井整体开发阶段的平均含水率,从含水率随CSA 胶粒注入量的变化(图9)可以看出,对于含有边底水的特低渗透非均质油藏,若未事先注入CSA 胶粒堵水而直接开采,整个开发阶段平均含水率和最低含水率分别高达94.04%和77.42%;随着CSA 胶粒注入量的增加,二者均开始明显降低,当CSA 胶粒注入量达到0.3 PVc时,油井平均含水率和最低含水率分别降至90.32%和42.55%;而进一步增加CSA 胶粒注入量,则对降低油井含水率的能力变得越来越弱。

图9 不同CSA胶粒注入量下油井含水率变化Fig.9 Water cut variation of production well under different injection volumes of CSA colloidal particles

2.2.3 油井采油速度

由不同CSA 胶粒注入量下油井采油速度变化(图10)可以看出,当CSA 胶粒注入量为0.1~0.3 PVc时,随着注入量的增加,油井采油速度迅速提高,与未注入CSA 胶粒直接开采的开发方式相比,注入0.3 PVcCSA 胶粒堵水后再开采,可使油井的平均采油速度和采油速度峰值分别提高1.83 倍和2.6 倍;但当CSA 胶粒注入量超过0.3 PVc时,采油速度的提高幅度对CSA胶粒注入量的增加不再敏感。

图10 不同CSA胶粒注入量下油井采油速度变化Fig.10 Production rate variation of production well under different injection volumes of CSA colloidal particles

2.2.4 油井累积产油量和开采时间

由油井累积产油量和开采时间随CSA 胶粒注入量变化(图11)可以看出,随着CSA 胶粒注入量的增加,油井的累积产油量呈先快速升高而后缓慢升高趋势,油井的开采时间也呈现相似的规律;而当CSA 胶粒注入量增加至某一临界值后,油井累积产油量的增长和开采时间的延长并不明显。在本文的油藏情况和实验条件下,该临界值应为0.3 PVc,此时油井的开采时间相对较长,累积产油量也处于相对较高水平。

图11 不同CSA胶粒注入量下油井累积产油量和开采时间变化Fig.11 Cumulative oil production and production time variation of production well under different injection volumes of CSA colloidal particles

2.2.5 油藏采收率和地层压力衰减速率

由不同CSA 胶粒注入量下油藏采收率和地层压力衰减速率变化(图12)可以看出,若未注入CSA胶粒段塞直接依靠天然能量开采,油藏采收率仅为7.11%,而注入0.1 PVc和0.3 PVcCSA 胶粒段塞便可使油藏采收率分别提高至28.42%和32.43%,注入少量的CSA 胶粒段塞即可产生有效的堵水作用,油藏采收率大幅提高;但当注入的CSA 胶粒段塞超过0.3 PVc后采收率增加幅度并不明显,例如注入0.7 PVcCSA 胶粒段塞所获得的油藏采收率也仅比注入0.3 PVc的方式下提高3.25个百分点。

图12 不同CSA胶粒注入量下油藏采收率和地层压力衰减速率变化Fig.12 Variation of reservoir recovery and attenuation rate of formation pressure under different injection volumes of CSA colloidal particles

地层压力衰减速率反映油藏能量释放的快慢,关系到依靠天然能量开采油藏的开发效果。随着CSA 胶粒注入量的增加,地层压力衰减速率明显降低。在整个油藏开发阶段,注入0.1,0.3,0.5 和0.7 PVc的CSA 胶粒时地层压力衰减速率分别为未注入CSA 胶粒方式下的55.01%,40.54%,33.52% 和31.81%。注入的CSA 胶粒可有效封堵窜流通道,显著抑制油藏能量因窜流导致的无效释放,使油藏能量更多地消耗在基质中,并有效转化为驱替基质油滴的动力。

综上研究分析认为,特低渗透非均质油藏的封堵剂用量对开采效果的影响规律不同于传统的中高渗透油藏,注入过多的封堵剂并不会明显提高油藏的开发效果,必然存在某一临界封堵剂用量,能够在保证相对较好的油藏开发效果同时最大限度地节约投入成本。对于目标油藏,选用CSA 胶粒作为封堵剂即可发挥较强的封堵性能,其适宜的注入量为0.3 PVc,此时油藏采收率可达到32.43%。

3 结论

平均粒径为0.5 μm 的CSA 胶粒针对目标油藏条件兼具较好的注入性和较高的封堵强度,其段塞在岩心中的分布范围亦可人为精准设置。笔者研发的边底水油藏天然能量开采模拟实验装置可准确模拟目标油藏生产特征,所获得的实验数据对目标油藏模拟度更高。TIECC剂驱油效果的发挥依赖于CSA胶粒对窜流通道的封堵能力。少量注入CSA胶粒,即可有效封堵窜流通道,大幅提高基质的波及效率,使采收率明显提高;但当其注入量超过某一临界值时,继续增加并不会明显提高采收率。对于目标油藏,其适宜的注入量为0.3 PVc,此时油藏采收率可达到32.43%。总体来说,对于依靠天然能量开发的特低渗透非均质油藏,确保封堵剂顺利进入油藏深部,并匹配以适当长度的封堵剂段塞对提高低渗透区域的波及效率十分关键。该研究结果将为矿场上合理制定调堵施工方案提供理论参考和实验依据,此外,依靠油井单井的注驱油剂-调堵-回采的独特开发方式将为无法布置注采井网的小断块油藏等特殊油藏的开发提供一套可行的技术思路。

猜你喜欢

胶粒采收率岩心
《油气地质与采收率》征稿简则
腐植酸和Cd2+对黏土胶粒在饱和多孔介质中迁移的影响
《油气地质与采收率》征稿简则
《油气地质与采收率》第六届编委会
《油气地质与采收率》征稿简则
Osteotomized folded scapular tip free flap for complex midfacial reconstruction
基于正交试验胶粒混凝土抗渗性的研究
一种页岩岩心资料的保存方法
胶粒混凝土力学性能与耐久性性能分析
Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models