APP下载

垄作与垄向区田技术对黑土区坡耕地土壤侵蚀影响的研究进展

2022-03-09沈海鸥温磊磊武佳龙

农业工程学报 2022年22期
关键词:横坡坡耕地黑土

沈海鸥,温磊磊,武佳龙,王 宇

·农业水土工程·

垄作与垄向区田技术对黑土区坡耕地土壤侵蚀影响的研究进展

沈海鸥1,温磊磊2,武佳龙1,王 宇1※

(1. 吉林农业大学资源与环境学院,长春 130118;2. 水利部松辽水利委员会,长春 130021)

东北黑土区在中国粮食安全与可持续发展中占据重要地位,但过度开发利用导致该区土壤侵蚀问题严峻。耕作方式的差异直接影响黑土区坡耕地土壤侵蚀特征,相关研究的开展对于准确评价水土保持措施的适宜性具有重要意义。该研究通过系统梳理文献资料,总结了垄向、垄规格以及垄向区田技术的内涵及应用条件,分别综述了其对黑土区坡耕地土壤侵蚀的影响;指出了目前研究中还存在垄作与垄向区田技术对坡耕地土壤侵蚀影响的机理研究不深、垄向与垄规格之间的耦合关系分析不细、垄向区田垄沟土埂优化设计不足、土壤侵蚀综合影响因素探索不全等方面主要问题;明确了未来研究中应加强量化垄向、垄规格、垄向区田技术与其他水土保持措施相结合对黑土区坡耕地土壤侵蚀影响的过程与机理,为筛选适宜的水土保持耕作措施提供科学依据。

土壤;侵蚀;耕地;顺坡垄作;横坡垄作;斜坡垄作;垄向区田

0 引 言

中国东北黑土区主要分布在黑龙江省、吉林省、辽宁省和内蒙古自治区,该区是中国最大的商品粮生产基地,是国家粮食的“压舱石”[1]。然而,不合理的人类生产经营活动以及自然因素的影响,导致黑土区土壤侵蚀严重,坡耕地黑土层因土壤侵蚀而变薄的速率为2~3 mm/a[2],其结果导致黑土地“量减质退”,影响黑土区农业高质量发展,严重威胁国家生态安全和粮食安全[3-5]。垄作具有改变田间微地形、扩大田间受光面积、提高苗期土壤温度、水分利用效率和作物产量等多方面优势[6-7],是东北黑土区一种非常普遍的耕作方式。垄向区田技术动土量极少、不占用耕地,在东北黑土区亦有一定的应用[8]。目前关于耕作方式的具体类型划分及其与坡耕地土壤侵蚀的关系研究已经取得一些成果[9-13]。然而,关于不同垄作方式及垄向区田技术防治坡耕地土壤侵蚀效果的研究现状和应加强研究的重点领域鲜有报道。鉴于此,本研究通过分析垄作方式、垄向区田技术与土壤侵蚀关系研究成果,综合评述垄向、垄规格以及垄向区田技术对黑土区坡耕地土壤侵蚀的影响,总结现有研究存在的主要问题,并展望未来应加强研究的重要内容,以期为黑土区坡耕地土壤侵蚀后续研究和黑土资源保护提供科学指导。

1 不同垄向耕作对黑土区坡耕地土壤侵蚀的影响

根据耕作行与等高线夹角不同,可将垄作方式划分为顺坡垄作(图1a)、横坡垄作(图1b)和斜坡垄作(图 1c)。受农户地块不连续特征的影响,顺坡垄作、斜坡垄作成为东北黑土区坡耕地比较普遍的垄作方式[6],多数地区均采用这两种垄向进行耕作。顺坡垄作耕作行与等高线夹角为90°,其在东北黑土区应用广泛且历史悠久[7,14-15],但是,顺坡垄作通常被认为会加剧坡耕地水流汇集,且机械犁耕下的垄丘相对较为疏松,土壤抗侵蚀能力较弱,因此,在强降雨条件下往往会造成严重的坡耕地土壤侵蚀[5]。横坡垄作又称等高耕作,是指耕作行与等高线夹角为0°,即垄作方向与等高线平行,主要应用于东北黑土区的漫川漫岗区和低山丘陵区。同时,横坡垄作是东北黑土区坡耕地实施其他水土保持措施的基础,例如,地埂植物带、深松耕等;在无其他水土保持措施的情况下,横坡垄作适用于小于5°的坡耕地。此外,在风力侵蚀起主导作用的区域或者水力风力复合侵蚀区域,横坡垄作的方向应与主风向正交,或者呈大于45°倾角。斜坡垄作是顺坡垄作和横坡垄作在不规则地形上的特殊表现,当坡面走向与等高线呈一定夹角时,顺坡垄作和横坡垄作便表现为斜坡垄作。相较于顺坡垄作,斜坡垄作能够在一定程度上增加降雨入渗和拦蓄坡面径流,从而达到防治坡耕地土壤侵蚀的目的。可见,不同垄向耕作方式的内涵和应用条件差异明显,其对黑土区坡耕地土壤侵蚀影响的研究现状和发展动态亟待系统归纳。

图1 黑土区坡耕地按垄向划分的3种垄作方式

1.1 顺坡垄作对黑土区坡耕地土壤侵蚀的影响

在东北黑土区农耕地开垦之初,为了尽快排出融雪径流、提高土壤温度、有利于通风透光以及便于耕作,多采用顺坡垄作方式进行耕作作业[16]。但是,由于东北黑土区降雨集中,夏季又以短历时、高强度的暴雨雨型为主[17],土壤水分饱和后,径流即汇聚于垄沟并顺坡流动,从而剥离并搬运表土,导致坡上和坡中位置土层逐渐变薄、土壤质量降低,加剧黑土退化[18-19]。可见,顺坡垄作方式既有优点,又有不足。

目前,东北黑土区坡耕地仍存在大量顺坡垄作方式[20],其对土壤侵蚀的影响研究主要基于天然降雨监测和室内模拟降雨试验方法开展。天然降雨条件下,顺坡垄作坡耕地的径流量多为1.4~54.3 mm/a,土壤侵蚀量多为66.8~4 735.8 t/(km2·a)(表1)。与对径流的影响相比,顺坡垄作对土壤侵蚀的影响更加明显。按照全国《土壤侵蚀分类分级标准》(SL 190—2007)[30],顺坡垄作坡耕地土壤侵蚀强度介于微度<200 t/(km2·a)至中度2 500~5 000 t/(km2·a);按照《黑土区水土流失综合防治技术标准》(SL 446—2009)[31],顺坡垄作坡耕地土壤侵蚀强度介于微度≤200 t/(km2·a)至极强烈3 600~4 800 t/(km2·a)。可见,东北黑土区坡耕地顺坡垄作方式土壤侵蚀强度较大。

顺坡垄作对黑土区坡耕地土壤侵蚀的影响也表现出显著的时空演变特征。基于天然降雨监测结果可知,与横坡垄作、垄向区田、免耕、少耕等其他耕作措施相比,顺坡垄作坡耕地最易产生地表径流和土壤侵蚀,且地表径流主要发生在6—8月,土壤侵蚀主要发生在6 —7月,尤其是地表覆盖度相对较低的7月,一旦发生降雨量或降雨强度较大的降雨时,其地表径流量和土壤侵蚀量均较大[13];应用137Cs示踪技术研究顺坡垄作坡耕地黑土侵蚀—沉积特征,发现坡肩处土壤侵蚀最严重,坡顶和坡背处土壤侵蚀相对较轻,而坡足和坡脚处则发生土壤沉积[25,32],沉积造成的土壤侵蚀量可达-2 461 t/(km2·a)(表 1)。因此,顺坡垄作坡耕地土壤侵蚀呈现显著的随时间而演变的特征和侵蚀—沉积空间分布特征。

表1 不同研究条件下顺坡垄作坡耕地的径流量和土壤侵蚀量对比

注:“——”表示无对应监测资料,下同。

Note: The “——” indicates that there is no corresponding monitoring data, the same as below.

模拟降雨条件下,顺坡垄作坡面的径流量多为7.5~81.9 mm/h,土壤侵蚀量多为0.1~8.9 kg/(m2·h)(表1)。与天然降雨条件下坡耕地相似,顺坡垄作对土壤侵蚀的影响大于对径流的影响。在室内模拟降雨试验基础上,已有研究多以横坡垄作或无垄作坡面作为对照处理,揭示顺坡垄作坡面土壤侵蚀特征对降雨雨型、降雨强度、坡度等因子的响应[32-34],发现多数条件下,顺坡垄作坡面的径流量和土壤侵蚀量明显高于横坡垄作及无垄作坡面,这是由于顺坡垄作相当于坡面侵蚀由片蚀转变为细沟侵蚀,形成稳定集中的汇流路径,导致径流汇集,从而增加了径流流速和剪切力[6];降雨雨型中的峰值型在顺坡垄作坡面的土壤侵蚀量最大,分别是谷值型、减弱型、均匀型和增强型的1.2、1.6、1.8和1.8倍,而东北黑土区土壤侵蚀量较大的降雨雨型在天然降雨中出现的频率高于70%[32];降雨强度和坡度对顺坡垄体溅蚀特征影响明显,顺坡垄体溅蚀量随降雨强度和坡度的增加呈幂函数关系[34]。可见,针对顺坡垄作方式下黑土区坡耕地土壤侵蚀特征的响应机制还需持续开展系统的模拟研究。

关于顺坡垄作对黑土区坡耕地土壤侵蚀的影响研究较多,无论基于野外坡耕地的天然降雨监测,还是室内模拟试验方法,其研究结果均具有一致性,即顺坡垄作能够加剧坡耕地土壤侵蚀,影响土壤质量和作物产量等。但是,顺坡垄作仍然是东北黑土区坡耕地最常见的垄作方式,短时期内难以全面实现横坡垄作或垄向区田技术等其他耕作方式[20],因此,仍需针对顺坡垄作方式开展系统研究,结合降雨强度、降雨雨型等降雨特征,冻融作用,地形坡度和坡长,耕作管理等因素,明晰顺坡垄作对黑土区坡耕地土壤侵蚀的影响机制。建议将顺坡垄作与保护性耕作措施相结合,有效防治黑土区坡耕地土壤侵蚀,为顺坡垄作条件下坡耕地土壤侵蚀防治和农业生产保障提供科学指导。

1.2 横坡垄作对黑土区坡耕地土壤侵蚀的影响

横坡垄作能够有效推迟坡耕地产流时间,增加土壤水分入渗,拦截地表径流,控制径流冲刷所引发的土壤侵蚀[35-37]。然而,横坡垄不同于梯田土埂,垄丘稳定性较差,在遭遇强降雨时容易被径流冲垮发生断垄。此外,由于微地形的差异,横坡垄作难以严格地按照等高线进行修建,水流在较低处汇集可能引起垄丘的垮塌[38-39],造成更严重的耕层土壤流失[40]。因此,明晰横坡垄作坡面的土壤侵蚀特征,根据不同耕作区的气候、地形、土壤性质等的差异,制定横坡垄作标准以最大发挥横坡垄作的水土保持效益是非常有必要的。

关于横坡垄作对黑土区坡耕地土壤侵蚀的影响研究,与顺坡垄作相关研究相似,主要基于天然降雨监测和室内模拟降雨试验方法开展。天然降雨条件下,横坡垄作坡耕地的径流量多为0~4.8 mm/a,土壤侵蚀量多为1.7~150.8 t/(km2·a)(表2)。按照全国《土壤侵蚀分类分级标准》(SL 190—2007)[30]和《黑土区水土流失综合防治技术标准》(SL 446—2009)[31],横坡垄作坡耕地土壤侵蚀强度均为微度≤200 t/(km2·a)。可见,东北黑土区坡耕地横坡垄作方式土壤侵蚀强度较小。

总结横坡垄作对黑土区坡耕地土壤侵蚀影响的研究资料[13,21,23,27,41],发现横坡垄作在不同降雨量、降雨强度、降雨雨型、地形坡度和坡长等条件下对坡耕地土壤侵蚀的防治效果略有差异。总体而言,在以传统顺坡垄作为对照处理的基础上,横坡垄作坡耕地能够减少径流量60.4%~99.3%,减少土壤侵蚀量64.6%~100.0%;同时能够为作物生长提供充足的土壤水分条件,增加土壤养分57%,增加作物产量25%[13,41]。可见,横坡垄作方式对黑土区坡耕地土壤侵蚀的防治效果显著。

表2 不同研究条件下横坡垄作坡耕地的径流量和土壤侵蚀量对比

模拟降雨条件下,横坡垄作坡面的径流量多为0.3~64.0 mm/h,土壤侵蚀量多为0~15.8 kg/(m2·h)(表2)。与模拟降雨条件下顺坡垄作坡面相比,横坡垄作坡面径流量较小,但是个别研究中的土壤侵蚀量较高,这与横垄断垄密切相关[5-6]。横坡垄作方式对土壤侵蚀的防治主要取决于径流量的大小和垄丘的拦蓄能力,前者与降雨量、降雨强度、降雨雨型、降雨历时密切相关,后者垄丘在东北黑土区的土壤容重仅为0.90~1.10 g/cm3,孔隙度高,透水性好,而稳定性相对较差,一旦积水超过垄丘的拦蓄能力,垄丘即被破坏,垄丘下坡在上方来水的冲刷和渗流作用下形成细沟沟头,由于水流掏涮,在沟头下方产生水涮窝并促使沟头不断溯源,当垄丘剩余土体土壤颗粒间的黏结力小于土体自身重力和径流剪切力时,即发生断垄[5]。有研究指出适当增加垄丘高度能够缓解断垄的发生,但是,这又可能造成垄丘稳定性的进一步降低,反而加剧土壤侵蚀[42]。此外,随着坡度的增加,横坡垄作方式更容易发生断垄,从而影响其土壤侵蚀防治效果的发挥,甚至加剧土壤侵蚀[43]。总之,在未发生断垄时,横坡垄作坡面径流量和土壤侵蚀量均明显低于顺坡垄作和无垄作坡面;但是,一旦发生断垄,其径流量和土壤侵蚀量显著增加,甚至超过顺坡垄作和无垄作坡面,这是由于断垄后坡面土壤侵蚀方式从断垄前的片蚀演变为细沟侵蚀[44],使得瞬时径流流速急剧增加,径流水动力学特征发生改变,导致径流挟沙力增大,从而造成土壤侵蚀量的急剧增加[45]。如果任由细沟发育,则其逐渐演变为浅沟侵蚀[46],使土壤侵蚀由坡面尺度转入沟道尺度,更加难以防治[47]。可见,横坡垄作断垄发生的临界条件(垄的高度和间距以及垄沟大小等)值得关注;横坡垄作方式对土壤侵蚀影响的模拟研究应系统考虑降雨强度、降雨量、降雨雨型、地形坡度、汇水坡长、垄丘稳定性及垄间距等因素。

通过对比天然降雨条件[21]与模拟降雨条件[5-6]下横坡垄作方式对坡面土壤侵蚀的影响,发现二者之间具有一定差异:天然降雨条件下,2012—2015年黑龙江省哈尔滨市野外布设的横坡垄作坡面径流小区观测结果表明,横坡垄作处理整体具有较好的坡面土壤侵蚀防治效果;模拟降雨条件下,如果不发生断垄,则横坡垄作处理亦具有较好的坡面土壤侵蚀防治效果,但是,一旦发生断垄,其防治效果明显降低。造成二者差异的主要原因是室内模拟降雨试验进行了预降雨处理,供试土壤水分基本处于饱和状态,在正式降雨试验开始后,极易造成径流汇集,发生断垄;而野外坡耕地径流小区由于前期降雨、降雨强度及次降雨量等因素的影响,其结果与室内模拟降雨试验结果有所差异。综上可知,室内模拟降雨试验条件下横坡垄作方式防治坡耕地土壤侵蚀效果研究还有待进一步深入,进而更加客观反映横坡垄作措施的水土保持效益。

1.3 斜坡垄作对黑土区坡耕地土壤侵蚀的影响

尽管横坡垄作能够有效防治坡耕地土壤侵蚀[5,13],但是一旦发生断垄,横坡垄作反而会加剧坡耕地土壤侵蚀[48]。因此,单纯将顺坡垄作改为横坡垄作并不能有效防治土壤侵蚀,且严格的等高耕作在黑土区复杂地形条件下又难于实现。相对于横坡垄作,野外坡耕地上斜坡垄作方式则更为普遍[49],原因主要包括3个方面:一是东北黑土区的丘陵区地形比较破碎,坡面弯曲起伏现象明显,导致横坡垄作多有不便;二是黑土区地块较大,沿坡面方向常发育侵蚀沟,形成很多次一级坡面,导致沿坡面进行横坡垄作时,次一级坡面即形成斜坡垄作或顺坡垄作;三是在坡度较大的地块,大型机械沿等高线进行耕作时,其两边车轮不在一个水平面,导致车辆作业不平稳。宁静等[50]研究指出坡度与坡长交互的“大坡度+小坡长”或“大坡度+大坡长”条件下斜坡垄作是最优的选择,合理的垄向空间分布能够有效降低土壤侵蚀,适用于黑土漫川漫岗区坡耕地。然而,目前关于斜坡垄作对坡耕地土壤侵蚀影响的研究相对较少。

2004年,中国科学院水利部成都山地灾害与环境研究所和北京师范大学在黑龙江省农垦总局九三分局鹤山农场鹤北1号小流域内,选择1个斜坡垄作坡面(长约400 m、平均坡度2.8°)进行网格采样,经137Cs活度分析,得到坡面平均土壤侵蚀厚度约为1.8 mm/a[24]。室内模拟降雨试验发现斜坡垄作试验处理均发生了断垄[51],其在断垄前能够较好地拦蓄径流泥沙,而在断垄后土壤侵蚀方式演变为以细沟侵蚀为主,相应的汇流作用增强,土壤侵蚀强度也随之增大。可见,如果不发生断垄,斜坡垄作坡面亦能够有效防治黑土区坡耕地土壤侵蚀;一旦发生断垄,与顺坡垄作坡面相比,斜坡垄作坡面仍具有一定的减少径流效果,但是无减少侵蚀效果,甚至能够增加坡耕地土壤侵蚀量。因此,进一步加强斜坡垄作垄向坡度适宜性及垄丘稳定性等方面的研究,将有效遏制断垄的发生,有助于调控黑土区坡耕地斜坡垄作方式的径流侵蚀过程,提高斜坡垄作措施对坡耕地土壤侵蚀的防治效果。

通过对比桑琦明等[51]斜坡垄作研究结果与王磊等[5]横坡垄作研究结果,发现在50 mm/h降雨强度下,斜坡垄作坡面径流量和土壤侵蚀量均高于横坡垄作坡面,这是由于该降雨强度下横坡垄作坡面未发生断垄,而斜坡垄作坡面发生了断垄;但是,在100 mm/h降雨强度下,斜坡垄作坡面与横坡垄作坡面均发生了断垄,二者坡面径流量和土壤侵蚀量均差异很小,且坡面90%以上的径流泥沙来自断垄后。可见,上述试验条件下,斜坡垄作坡面较横坡垄作坡面更容易发生断垄,特别是在降雨强度相对比较小的情况下。

2 不同垄规格耕作对黑土区坡耕地土壤侵蚀的影响

根据不同垄规格,可将垄作方式分为小垄(图2a)和大垄(图2b)。小垄又称窄垄,一般指间距为30~70 cm的较小规格垄,垄上仅种植一行作物[9,12]。小垄在东北黑土区的应用非常普遍,特别对于农村散户,由于其缺少大型农业机械,现有的小型农业机械多适用于传统的小垄耕作作业,该作业模式包括旋耕机灭茬整地、起垄机起垄、播种机播种、垄形修复和镇压等,一系列流程已经形成固有的耕作习惯,虽然该小垄作业模式也存在一定的局限性[52-53],但是,短期内难以改变这种垄作方式。大垄又称宽垄,一般指间距为80~140 cm的较大规格垄,垄上种植2~6行作物[10-11]。大垄耕作方式需要满足地块较大、具备大型农业机具等要求,主要适用于大型集约化农场和农村合作社,尚未普及到个体农户。可见,不同垄规格垄作方式的内涵和应用条件亦有一定差异,其对黑土区坡耕地土壤侵蚀影响的研究现状和发展动态也需系统综述。

图2 黑土区坡耕地按垄规格划分的2种垄作方式

2.1 小垄对黑土区坡耕地土壤侵蚀的影响

小垄间距一般为30~70 cm[9,12],在模拟小垄处理的试验中,其垄间距多设计为65 cm、垄高15 cm、垄丘顶宽20 cm[54]。与大垄坡面相比,小垄坡面单位面积垄沟条数较多,而垄沟相当于坡面小型集水区及径流流通区,加之垄丘边坡可为土壤侵蚀提供大量泥沙,导致小垄侧方汇水能力及其坡面径流量和土壤侵蚀量均高于大垄坡面。王磊等[54]基于野外大型坡面径流场观测资料和室内模拟降雨试验数据,对比分析东北黑土区坡耕地顺坡小垄和大垄耕作的坡面土壤侵蚀特征,发现野外大型坡面径流场小垄坡面的径流量和土壤侵蚀量分别是大垄坡面的2.1~3.3和2.8~10.4倍;室内模拟降雨试验条件下小垄坡面的土壤侵蚀量是大垄坡面的1.5~2.4倍,而小垄坡面和大垄坡面的径流量变化与野外观测结果有一定差异,在降雨强度较小时,小垄坡面的径流量依然高于大垄坡面,但是,随着降雨强度的增加,二者径流量差异先逐渐减小,后表现为小垄坡面的径流量低于大垄坡面,其原因是正式模拟降雨试验前进行了前期降雨试验,即正式试验前一天,采用30 mm/h降雨强度进行预降雨至坡面产流为止,导致土壤水分基本处于饱和状态;而野外坡面由于前期降雨以及汇流面积和地表糙度等因素的影响,导致其与室内模拟降雨试验结果有所差异。综上可知,小垄耕作方式对黑土区坡耕地土壤侵蚀的影响同时与降雨强度及坡面条件等因素相关;此外,现有基于小垄耕作方式开展的研究多与不同垄向坡度即顺坡垄作、横坡垄作、斜坡垄作等相结合。因此,建议在开展垄向坡度对黑土区坡耕地土壤侵蚀的防治效果研究中,综合考虑垄规格因素,从而有效提高复合耕作措施防治土壤侵蚀的效果。

2.2 大垄对黑土区坡耕地土壤侵蚀的影响

大垄间距一般为80~140 cm[10-11],在模拟大垄坡面的试验中,其垄间距多设计为110 cm、垄高15 cm、垄丘顶宽70 cm[54]。与传统小垄相比,大垄耕作方式能够降低作业成本、提高土壤温度、有效提高0~20 cm耕层土壤含水量、改善土壤结构、增加土壤蓄水保水能力,同时增加光照强度、有助于作物生长,提高粮食产量[9-11],是东北黑土区一种比较理想的保护性耕作方式。近年来,国内外学者对不同垄作方式下坡面土壤侵蚀特征进行了大量研究[6,32,42],而对大垄耕作方式的研究大多局限于作物产量、土壤水热变化等[11,38,40],针对顺坡大垄耕作对坡耕地土壤侵蚀影响的定量研究相对较少。通过总结大垄耕作方式对土壤侵蚀的防治效果资料[54-55],发现在以传统顺坡窄垄处理为对照的基础上,大垄耕作方式可减少坡面径流量29.1%~67.3%,减少坡面土壤侵蚀量58.9%~85.8%;与其他坡耕地典型耕作措施相比,天然降雨条件下大垄坡面的径流量是深松、顺坡垄作、垄向区田的60.4%、24.0%~27.4%、47.0%~50.9%,而大垄坡面的土壤侵蚀量是深松、顺坡垄作、垄向区田的34.8%、9.1%~11.0%、14.7%~28.3%[23]。可见,大垄耕作方式具有较好的土壤侵蚀防治效果,在一定的研究条件下,其防治效果明显优于其他耕作措施。基于人工模拟降雨试验研究,发现黑土坡面径流量整体呈现为大垄大于小垄;而坡面土壤侵蚀量在降雨强度和坡度较小时,大垄和小垄处理无显著差异,随着降雨强度和坡度的增加,土壤侵蚀量呈现为小垄大于大垄[55]。此外,多数研究发现大垄耕作措施由于种植密度的增加,可以有效提高单位面积作物产量[12]。东北黑土区的相关研究也表明大垄双行耕作方式比传统小垄耕作方式的玉米产量提高了6.7%~9.5%[10]。综上可知,大垄耕作方式不但能够有效减少坡耕地土壤侵蚀,而且有望提高单位面积作物产量。因此,今后应加强在个体农户中普及大垄耕作方式,既有利于保护黑土资源,又有利于保障粮食安全。

3 垄向区田技术对黑土区坡耕地土壤侵蚀的影响

在上述垄作方式基础上,沿着垄向每隔一定距离在垄沟内修筑的高度略低于垄高的土埂治理措施即为垄向区田[29](图3)。垄向区田适用地区极为广泛,尤其适合在干旱、半干旱地区或雨旱分明的湿润地区应用,在东北黑土区主要适用于漫川漫岗区和低山丘陵区坡度小于5°的坡耕地。东北半干旱区降水量少且时空分布不均,在没有灌溉条件的地区,利用好有限的降水就显得尤为重要,垄向区田正是这样一种有效的坡耕地水土保持耕作措施[8,56],其在作物最后一次中耕(趟地)后修筑,在垄沟中筑小土埂可将长长的垄沟截成许多小区段(形成许多浅穴),既能够有效拦蓄降雨径流,防治土壤侵蚀,保证表土和肥料集中利用,同时又能够改变小地形,增加天然降雨的利用率,改善作物生长发育状况,从而达到稳产增产和保水保土的目标[57]。垄作区田保持水土的基本原理是缩短坡耕地坡长和降低坡降,尽量使每个浅穴底部近似平地,就地贮存降雨,避免径流汇集,保持水土。以土埂间形成的小浅穴贮存雨水,直到浅穴中的雨水全部渗入土壤,从而解决了坡耕地上较大降雨强度和较弱土壤水分入渗之间的矛盾,既有助于坡岗地防旱,也可避免雨水流入平洼地成涝,又可增产增收。此外,垄向区田技术不需要考虑地块是横坡垄作或是顺坡垄作,只需根据垄的方向实施其筑埂技术即可[57-59]。

图3 黑土区坡耕地垄向区田技术

垄向区田技术兼顾横坡垄作和顺坡垄作方式的特征,既在技术上可行,又在经济成本和劳动力投入方面可行,同时能够增产10%~30%[15]。天然降雨条件下,垄向区田坡耕地的径流量多为0~8.3 mm/a,土壤侵蚀量多为0~112.0 t/(km2·a)(表3)。按照全国《土壤侵蚀分类分级标准》(SL 190—2007)[30]和《黑土区水土流失综合防治技术标准》(SL 446—2009)[31],垄向区田坡耕地土壤侵蚀强度多属于微度≤200 t/(km2·a)。但是,值得注意的是,李续峰等[23]研究中垄向区田方式的土壤侵蚀量为455.1~875.6 t/(km2·a),其值高于黑土区的允许土壤流失量(200 t/(km2·a)或141 t/(km2·a))[31,63],属于轻度侵蚀水平,这可能与年降雨特征有关。总结垄向区田技术对坡耕地土壤侵蚀的防治效果资料[23,59-62]发现,在以传统顺坡窄垄处理为对照的基础上,垄向区田技术可减少径流量43.4%~100.0%,减少土壤侵蚀量80.2%~100.0%,该技术防治土壤侵蚀的效果随着降雨强度或坡度的增加而降低。在降雨强度或坡度较小时,垄向区田处理一般不产生径流,这是由于垄沟中土埂对地表径流的有效拦蓄作用,导致降雨就地汇集并入渗,未形成径流即不具备径流侵蚀力,加之较小的降雨侵蚀力[64-65]和地形坡度,使其土壤侵蚀量非常微小,甚至为0;随着降雨强度或坡度的增加,垄向区田处理的地表径流量和土壤侵蚀量略有增加,但是仍小于相同降雨及地形条件下的顺坡垄作和横坡垄作等其他垄作处理[31,59,62]。可见,垄向区田技术能够有效减小雨滴击溅侵蚀、降低径流流速,进而减少地表径流量和土壤侵蚀量,具备显著的水土保持效果。

表3 不同研究条件下垄向区田技术坡耕地的径流量和土壤侵蚀量对比

通过对地下排水工程措施进行研究,发现鼠道、暗管和明沟等单一的地下排水工程措施能够调节土壤水分、防治土壤侵蚀并增加作物产量;但是,如果将地下排水工程措施与垄向区田技术相结合,上述效益将明显提高[61]。此外,将垄向区田技术与大垄相结合,形成的新型水土保持措施能够有效减少地表径流发生次数,其径流量和土壤侵蚀量是大垄对照处理的8.4%和5.8%,其值亦明显小于垄向区田处理[23]。可见,垄向区田技术与其他水土保持措施相结合对土壤侵蚀的影响还需持续深入研究。

综上可知,垄向区田技术对黑土区坡耕地土壤侵蚀的防治效果整体较好,但是这种效果同时受到降雨量、降雨强度、地形坡度及垄向区田垄沟土埂规格和间距等因素的影响。因此,建议在东北黑土区坡耕地逐渐推广应用垄向区田技术,其应用可单独布设,也可与大垄、坡式梯田、地埂、植物缓冲带、深松和秸秆还田等措施相互配合[66-69],其优化配置模式将进一步提高复合水土保持措施防治土壤侵蚀的效果。

4 存在的问题及研究展望

尽管垄作方式与垄向区田技术对黑土区坡耕地土壤侵蚀影响研究已经取得了一定的成果,为深入揭示黑土区土壤侵蚀规律及其调控机制提供了重要参考。但是,受研究方法和技术条件所限,目前关于垄向坡度、垄规格及垄向区田技术等对土壤侵蚀防治效果的评价研究还存在一些问题和不足,同时也是需要加强的重点领域。

4.1 垄作与垄向区田技术对坡耕地土壤侵蚀影响的机理研究需强化

垄作与垄向区田技术对坡耕地土壤侵蚀的影响主要基于野外天然降雨监测资料或室内模拟降雨试验方法开展研究,研究结果多是针对地表径流总量和土壤侵蚀总量进行分析,而针对径流侵蚀过程及其径流侵蚀水动力学机制的研究较少,导致机理分析还比较薄弱。因此,垄作与垄向区田技术防治土壤侵蚀的理论研究明显滞后于实践研究,在今后的研究中,需要加强其防蚀机理的量化研究。

4.2 垄向与垄规格对坡耕地土壤侵蚀影响的耦合关系研究需深化

垄作方式中顺坡垄作、横坡垄作、斜坡垄作或小垄、大垄对坡耕地土壤侵蚀的影响多是局限于不同垄向或不同垄规格中,而涉及二者耦合关系对土壤侵蚀的影响研究较少。因此,为了探究更加合理的垄作组合模式,需要将垄向与垄规格的具体方式进行结合,开展系统的耦合关系研究。

4.3 垄向区田垄沟土埂设计对坡耕地土壤侵蚀影响的机制研究需优化

垄向区田垄沟土埂规格及间距的设计关系到水土保持效果的发挥程度及作业成本和工作量等,然而目前针对垄向区田垄沟土埂的设计尚有待深入研究。因此,需要根据实际垄向、垄规格等应用条件,科学优化垄向区田技术。

4.4 垄作与垄向区田技术对坡耕地土壤侵蚀影响的综合因素分析需细化

土壤侵蚀是一个复杂的过程,其影响因素较多,主要包括降雨、地形、土壤、水文、植被及人为等因素。因此,垄作与垄向区田技术需要与上述主要因素进行融合,开展系统研究,从而针对不同区域进行科学评价并筛选适宜的水土保持措施,指导黑土区水土保持规划。

5 结 论

通过综述垄向、垄规格以及垄向区田技术对黑土区坡耕地径流量和土壤侵蚀量影响的研究进展,发现东北黑土区坡耕地顺坡垄作方式土壤侵蚀强度较大,多介于微度至中度或极强烈;且呈现显著的时空演变特征。横坡垄作方式土壤侵蚀强度一般较小,多属于微度。斜坡垄作方式土壤侵蚀强度介于顺坡垄作和横坡垄作方式之间。横坡垄作和斜坡垄作方式对土壤侵蚀的防治效果与是否发生断垄密切相关,一旦发生断垄,二者反而可能加剧坡耕地土壤侵蚀,且斜坡垄作坡面较横坡垄作坡面更容易发生断垄,特别是在降雨强度相对较小的情况下。小垄侧方汇水能力及其坡面径流量和土壤侵蚀量均高于大垄坡面,与传统小垄相比,大垄耕作方式不但能够有效减少坡耕地土壤侵蚀,而且能够提高单位面积作物产量。垄向区田坡耕地能够有效减少地表径流量和土壤侵蚀量,土壤侵蚀强度多属于微度,个别情况下受降雨特征影响可达到轻度。但是,目前还存在垄作方式与垄向区田技术对土壤侵蚀影响的过程性规律研究不足、不同耕作方式之间耦合关系研究缺乏、垄向区田技术有待优化、综合影响因素探索不足等问题。综上,建议将顺坡垄作与保护性耕作措施相结合、关注横坡垄作与斜坡垄作断垄发生的临界条件、加强大垄耕作方式和垄向区田技术的普及推广,同时,建议将垄向、垄规格,垄向区田技术与其他水土保持措施相结合开展系统研究,从而有效提高复合耕作措施防治土壤侵蚀的效果,为水土保持措施优化配置提供科学指导。

[1] 郑粉莉. 东北黑土区复合土壤侵蚀特征及其防治[M]. 北京:科学出版社,2020.

[2] 张兴义,刘晓冰. 中国黑土研究的热点问题及水土流失防治对策[J]. 水土保持通报,2020,40(4):340-344.

Zhang Xingyi, Liu Xiaobing. Key issues of mollisols research and soil erosion control strategies in China[J]. Bulletin of Soil and Water Conservation, 2020, 40(4): 340-344. (in Chinese with English abstract)

[3] Shen H O, He Y F, Hu W, et al. The temporal evolution of soil erosion for corn and fallow hillslopes in the typical Mollisol region of Northeast China[J]. Soil & Tillage Research, 2019, 186: 200-205.

[4] Ouyang W, Wu Y Y, Hao Z C, et al. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development[J]. Science of the Total Environment, 2018, 613/614: 798-809.

[5] 王磊,何超,郑粉莉,等. 黑土区坡耕地横坡垄作措施防治土壤侵蚀的土槽试验[J]. 农业工程学报,2018,34(15):141-148.

Wang Lei, He Chao, Zheng Fenli, et al. Soil-bin experiment on effects of contour ridge tillage for controlling hillslope soil erosion in black soil region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 141-148. (in Chinese with English abstract)

[6] Xu X M, Zheng F L, Wilson G V, et al. Comparison of runoff and soil loss in different tillage systems in the Mollisol region of Northeast China[J]. Soil & Tillage Research, 2018, 177: 1-11.

[7] 贾洪雷,马成林,刘昭辰,等. 东北垄作蓄水保墒耕作体系与配套机具[J]. 农业机械学报,2005,36(7):32-36.

Jia Honglei, Ma Chenglin, Liu Zhaochen, et al. Application of systematic farming technique and its implement for soil water storage and preservation of ridge tilling area in Northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(7): 32-36. (in Chinese with English abstract)

[8] 王超,魏永霞,王立敏,等. 垄向区田蓄水保土技术对大豆生长状况及产量的影响[J]. 东北农业大学学报,2006,37(6):725-728.

Wang Chao, Wei Yongxia, Wang Limin, et al. Effects of ridge tillage’s technology on growing condition and yield of soybean[J]. Journal of Northeast Agricultural University, 2006, 37(6): 725-728. (in Chinese with English abstract)

[9] 韩毅强,高亚梅,郑殿峰,等. 寒区玉米大垄双行直播技术研究[J]. 干旱地区农业研究,2014,32(4):128-132.

Han Yiqiang, Gao Yamei, Zheng Dianfeng, et al. Effects of wide ridge and double row planting of maize in cold regions[J]. Agricultural Research in the Arid Areas, 2014, 32(4): 128-132. (in Chinese with English abstract)

[10] 王庆杰,李洪文,何进,等. 大垄宽窄行免耕种植对土壤水分和玉米产量的影响[J]. 农业工程学报,2010,26(8):39-43.

Wang Qingjie, Li Hongwen, He Jin, et al. Effects of wide-ridge and narrow-row no-till cultivation on soil water and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 39-43. (in Chinese with English abstract)

[11] 汪顺生,刘慧,王兴,等. 宽垄灌溉方式下冬小麦耗水量及产量相互关系研究[J]. 灌溉排水学报,2015,34(11):60-64.

Wang Shunsheng, Liu Hui, Wang Xing, et al. Relationship between water consumption and yield of winter wheat in wide ridge irrigation mode[J]. Journal of Irrigation and Drainage, 2015, 34(11): 60-64. (in Chinese with English abstract)

[12] 王晓凌,陈明灿,易现峰,等. 垄沟覆膜集雨系统垄宽和密度效应对玉米产量的影响[J]. 农业工程学报,2009,25(8):40-47.

Wang Xiaoling, Chen Mingcan, Yi Xianfeng, et al. Effects of ridge width and planting density on corn yields in rainwater-harvesting system with plastic film mulching on ridge[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(8): 40-47. (in Chinese with English abstract)

[13] 张少良,张兴义,刘晓冰,等. 典型黑土侵蚀区不同耕作措施的水土保持功效研究[J]. 水土保持学报,2009,23(3):11-15.

Zhang Shaoliang, Zhang Xingyi, Liu Xiaobing, et al. Tillage effect on soil erosion in typical black soil region[J]. Journal of Soil and Water Conservation, 2009, 23(3): 11-15. (in Chinese with English abstract)

[14] 张晶玲,周丽丽,马仁明,等. 天然降雨条件下横垄与顺垄坡面产流产沙过程[J]. 水土保持学报,2017,31(5):114-119.

Zhang Jingling, Zhou Lili, Ma Renming, et al. Runoff and sediment yield process on longitudinal and cross ridge slopes under natural rainfall[J]. Journal of Soil and Water Conservation, 2017, 31(5): 114-119. (in Chinese with English abstract)

[15] 沈昌蒲,龚振平,温锦涛. 横坡垄与顺坡垄的水土流失对比研究[J]. 水土保持通报,2005,25(4):48-49,80.

Shen Changpu, Gong Zhenping, Wen Jintao, et al. Comparison study on soil and water loss of cross ridge and longitudinal ridge[J]. Bulletin of Soil and Water Conservation, 2005, 25(4): 48-49, 80. (in Chinese with English abstract)

[16] 张之一. 黑土开垦后黑土层厚度的变化[J]. 黑龙江八一农垦大学学报,2010,22(5):1-3.

Zhang Zhiyi. The thickness changes of Ah horizon after the phaeozems cultivated[J]. Journal of Heilongjiang Bayi Agricultural University, 2010, 22(5): 1-3. (in Chinese with English abstract)

[17] 温磊磊,郑粉莉,杨青森,等. 雨型对东北黑土区坡耕地土壤侵蚀影响的试验研究[J]. 水利学报,2012,43(9):1084-1091.

Wen Leilei, Zheng Fenli, Yang Qingsen, et al. Effects of rainfall patterns on hillslope farmland erosion in black soil region of Northeast China[J]. Journal of Hydraulic Engineering, 2012, 43(9): 1084-1091. (in Chinese with English abstract)

[18] 翟星雨,张兴义,李浩,等. 田块尺度顺坡垄作改等高垄作提高黑土有机质含量[J]. 农业工程学报,2018,34(19):155-161.

Zhai Xingyu, Zhang Xingyi, Li Hao, et al. Improving mollisols organic matter contents as downslope tillage replaced by contour tillage in field scale[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 155-161. (in Chinese with English abstract)

[19] 杨维鸽,郑粉莉,王占礼,等. 地形对黑土区典型坡面侵蚀—沉积空间分布特征的影响[J]. 土壤学报,2016,53(3):572-581.

Yang Weige, Zheng Fenli, Wang Zhanli, et al. Effects of topography on spatial distribution of soil erosion and deposition on hillslope in the typical of black soil region[J]. Acta Pedologica Sinica, 2016, 53(3): 572-581. (in Chinese with English abstract)

[20] 赵玉明,刘宝元,姜洪涛. 东北黑土区垄向的分布及其对土壤侵蚀的影响[J]. 水土保持研究,2012,19(5):1-6.

Zhao Yuming, Liu Baoyuan, Jiang Hongtao, et al. Distribution of tillage-induced direction and its effect on soil erosion in black soil area of Northeast China[J]. Research of Soil and Water Conservation, 2012, 19(5): 1-6. (in Chinese with English abstract)

[21] 何超,王磊,郑粉莉,等. 垄作方式对薄层黑土区坡面土壤侵蚀的影响[J]. 水土保持学报,2018,32(5):24-28.

He Chao, Wang Lei, Zheng Fenli, et al. Effects of ridge tillage on hillslope soil erosion in thin layer black soil region[J]. Journal of Soil and Water Conservation, 2018, 32(5): 24-28. (in Chinese with English abstract)

[22] 陈强,Kravchenko Y S,陈渊,等. 少免耕土壤结构与导水能力的季节变化及其水保效果[J]. 土壤学报,2014,51(1):11-21.

Chen Qiang, Kravchenko Y S, Chen Yuan, et al. Seasonal variations of soil structures and hydraulic conductivities and their effects on soil and water conservation under no-tillage and reduced tillage[J]. Acta Pedologica Sinica, 2014, 51(1): 11-21. (in Chinese with English abstract)

[23] 李续峰,张兴义,高燕,等. 东北水保工程项目区水土保持效益评价[J]. 水土保持通报,2013,33(4):43-47.

Li Xufeng, Zhang Xingyi, Gao Yan, et al. Benefits assessment for soil and water conservation projects in black soil region of Northeast China[J]. Bulletin of Soil and Water Conservation, 2013, 33(4): 43-47. (in Chinese with English abstract)

[24] 刘宝元,阎百兴,沈波,等. 东北黑土区农地水土流失现状与综合治理对策[J]. 中国水土保持科学,2008,6(1):1-8.

Liu Baoyuan, Yan Baixing, Shen Bo, et al. Current status and comprehensive control strategies of soil erosion for cultivated land in the Northeastern black soil area of China[J]. Science of Soil and Water Conservation, 2008, 6(1): 1-8. (in Chinese with English abstract)

[25] 方华军,杨学明,张晓平,等.137Cs示踪技术研究坡耕地黑土侵蚀和沉积特征[J]. 生态学报,2005,25(6):1376-1382.

Fang Huajun, Yang Xueming, Zhang Xiaoping, et al. Study on soil erosion and deposition of black soils on a sloping cultivated land using137Cs tracer method[J]. Acta Ecologica Sinica, 2005, 25(6): 1376-1382. (in Chinese with English abstract)

[26] 阎百兴,汤洁. 黑土侵蚀速率及其对土壤质量的影响[J]. 地理研究,2005,24(4):499-506.

Yan Baixing, Tang Jie. Study on black soil erosion rate and the transformation of soil quality influenced by erosion[J]. Geographical Research, 2005, 24(4): 499-506. (in Chinese with English abstract)

[27] 刘艳杰. 不同坡度的顺坡垄和横坡垄两种耕作措施保水保土效应分析[J]. 黑龙江水利科技,2020,48(5):20-23,158.

Liu Yanjie. Analysis of water and soil conservation effects of two tillage measures: downslope ridge and crosswalk ridge with different slopes[J]. Heilongjiang Hydraulic Science and Technology, 2020, 48(5): 20-23, 158. (in Chinese with English abstract)

[28] 宋玥,张忠学. 不同耕作措施对黑土坡耕地土壤侵蚀的影响[J]. 水土保持研究,2011,18(2):14-16,25.

Song Yue, Zhang Zhongxue. The effect of different tillage measures on soil erosion in slope farmland in black soil region[J]. Research of Soil and Water Conservation, 2011, 18(2): 14-16, 25. (in Chinese with English abstract)

[29] 郑粉莉,边锋,卢嘉,等. 雨型对东北典型黑土区顺坡垄作坡面土壤侵蚀的影响[J]. 农业机械学报,2016,47(2):90-97.

Zheng Fenli, Bian Feng, Lu Jia, et al. Effects of rainfall patterns on hillslope erosion with longitudinal ridge in typical black soil region of Northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 90-97. (in Chinese with English abstract)

[30] 中华人民共和国水利部. 土壤侵蚀分类分级标准(SL 190—2007)[S]. 北京:中国水利水电出版社,2008:8.

[31] 中华人民共和国水利部. 黑土区水土流失综合防治技术标准(SL 446—2009)[S]. 北京:中国水利水电出版社,2009:5.

[32] 莫帅豪,郑粉莉,冯志珍,等. 典型黑土区侵蚀-沉积对土壤微生物数量空间分布的影响[J]. 应用生态学报,2022,33(3):685-693.

Mo Shuaihao, Zheng Fenli, Feng Zhizhen, et al. Effects of soil erosion and deposition on the spatial distribution of soil microbial quantity in Mollisol area of Northeast China[J]. Chinese Journal of Applied Ecology, 2022, 33(3): 685-693. (in Chinese with English abstract)

[33] 边锋,郑粉莉,徐锡蒙,等. 东北黑土区顺坡垄作和无垄作坡面侵蚀过程对比[J]. 水土保持通报,2016,36(1):11-16.

Bian Feng, Zheng Fenli, Xu Ximeng, et al. Comparison of soil erosion process between longitudinal ridge slope and non-ridge slope in mollisol region of Northeast China[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 11-16. (in Chinese with English abstract)

[34] 张兴义,乔宝玲,李健宇,等. 降雨强度和坡度对东北黑土区顺坡垄体溅蚀特征的影响[J]. 农业工程学报,2020,36(16):110-117.

Zhang Xingyi, Qiao Baoling, Li Jianyu, et al. Effects of rainfall intensity and slope on splash erosion characteristics of downslope ridge on farmland in black soil areas of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 110-117. (in Chinese with English abstract)

[35] Stevens C J, Quinton J N, Bailey A P, et al. The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss[J]. Soil & Tillage Research, 2009, 106: 145-151.

[36] 杨世琦,邢磊,刘宏元,等. 植物篱埂垄向区田技术对坡耕地水土和氮磷流失控制研究[J]. 农业工程学报,2019,35(22):209-215.

Yang Shiqi, Xing Lei, Liu Hongyuan, et al. Effect of reducing runoff, sediment, soil nitrogen and phosphorus losses in sloping farmland based on short ridge of clover hedgerow with ridge tillage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 209-215. (in Chinese with English abstract)

[37] 盖浩,刘平奇,张梦璇,等. 黑土坡耕地横坡垄作对减少径流及土壤有机碳流失的作用[J]. 水土保持学报,2022,36(2):300-304,311.

Gai Hao, Liu Pingqi, Zhang Mengxuan, et al. Effects of ridge planting on reducing runoff and soil organic carbon loss in black soil slope[J]. Journal of Soil and Water Conservation, 2022, 36(2): 300-304, 311. (in Chinese with English abstract)

[38] Griffith D R, Parsons S D, Mannering J V. Mechanics and adaptability of ridge-planting for corn and soya bean[J]. Soil & Tillage Research, 1990, 18(2): 113-126.

[39] An J, Liu Q J. Soil aggregate breakdown in response to wetting rate during the inter-rill and rill stages of erosion in a contour ridge system[J]. Catena, 2017, 157: 241-249.

[40] Hatfield J L, Allmaras R R, Rehm G W, et al. Ridge tillage for corn and soybean production: Environmental quality impacts[J]. Soil & Tillage Research, 1998, 48(3): 145-154.

[41] Liu X B, Zhang S L, Zhang X Y, et al. Soil erosion control practices in Northeast China: A mini-review[J]. Soil & Tillage Research, 2011, 117: 44-48.

[42] Liu Q J, Zhang H Y, An J, et al. Soil erosion processes on row sideslopes within contour ridging systems[J]. Catena, 2014, 115: 11-18.

[43] Wang L H, Dalabay N, Lu P, et al. Effects of tillage practices and slope on runoff and erosion of soil from the Loess Plateau, China, subjected to simulated rainfall[J]. Soil & Tillage Research, 2017, 166: 147-156.

[44] 王鹏飞,郑子成,张锡洲,等. 玉米季横垄坡面细沟侵蚀特征及其影响因素[J]. 土壤学报,2016,53(4),869-880.

Wang Pengfei, Zheng Zicheng, Zhang Xizhou, et al. Characteristics and influencing factors of rill erosion in slope land with contour ridges during maize growing season[J]. Acta Pedologica Sinica, 2016, 53(4): 869-880. (in Chinese with English abstract)

[45] 欧阳铖人,字淑慧,吴开贤,等. 玉米马铃薯间作和起垄对坡面水动力学特性的影响[J]. 水土保持学报,2019,33(6):143-149.

Ouyang Chengren, Zi Shuhui, Wu Kaixian, et al. Effects of maize and potato intercropping and ridging on flow hydraulics under simulation rainfal[J]. Journal of Soil and Water Conservation, 2019, 33(6): 143-149. (in Chinese with English abstract)

[46] Hagmann J. Contour ridges: cure for, or cause of, rill erosion?[J]. Land Degradation & Development, 1996, 7: 145-160.

[47] 孟令钦,李勇. 东北黑土区坡耕地侵蚀沟发育机理初探[J]. 水土保持学报,2009,23(1):7-11,44.

Meng Lingqin, Li Yong. The mechanism of gully development on sloping farmland in black soil area, Northeast China[J]. Journal of Soil and Water Conservation, 2009, 23(1): 7-11, 44. (in Chinese with English abstract)

[48] 安娟,于妍,吴元芝. 降雨类型对褐土横垄坡面土壤侵蚀过程的影响[J]. 农业工程学报,2017,33(24):150-156.

An Juan, Yu Yan, Wu Yuanzhi. Effects of rainfall patterns on hillslope soil erosion process of cinnamon soil in contour ridge system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 150-156. (in Chinese with English abstract)

[49] 赵玉明,姜洪涛,王世界. 东北黑土区不同地形垄向坡度的相对水土保持效益研究[J]. 水土保持研究,2014,21(5):28-34.

Zhao Yuming, Jiang Hongtao, Wang Shijie. Study on relative soil and water conservation benefits in different terrain conditions in black soil area of Northeast China[J]. Research of Soil and Water Conservation, 2014, 21(5): 28-34. (in Chinese with English abstract)

[50] 宁静,杨子,姜涛,等. 东北黑土区不同垄向耕地沟蚀与地形耦合规律[J]. 水土保持研究,2016,23(3):29-36.

Ning Jing, Yang Zi, Jiang Tao, et al. The coupling laws between gully erosion of cultivated lands with different ridge directions and terrain in northeast black soil region of China[J]. Research of Soil and Water Conservation, 2016, 23(3): 29-36. (in Chinese with English abstract)

[51] 桑琦明,王磊,郑粉莉,等. 东北黑土区坡耕地斜坡垄作与顺坡垄作土壤侵蚀的对比分析[J]. 水土保持学报,2020,34(3):73-78.

Sang Qiming, Wang Lei, Zheng Fenli, et al. Comparative study on hillslope soil erosion between sloping ridge-tillage and longitudinal ridge-tillage in Chinese mollisol region[J]. Journal of Soil and Water Conservation, 2020, 34(3): 73-78. (in Chinese with English abstract)

[52] 刘宏新,尹林伟,解勇涛,等. 地轮前置式中型免耕覆秸垄作玉米播种机转运平台研制[J]. 农业工程学报,2022,38(10):10-18.

Liu Hongxin, Yin Linwei, Xie Yongtao, et al. Development of the transfer platform with ground wheel in front for the medium-sized no-tillage stalk mulching ridge corn planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 10-18. (in Chinese with English abstract)

[53] 林静,李博,李宝筏,等. 东北地区玉米垄作免耕播种机破茬装置的研究[J]. 沈阳农业大学学报,2013,44(2):178-184.

Lin Jing, Li Bo, Li Baofa, et al. Residues cutting device design of ridge planting no-tillage maize planter in Northeast China[J]. Journal of Shenyang Agricultural University, 2013, 44(2): 178-184. (in Chinese with English abstract)

[54] 王磊,师宏强,刘刚,等. 黑土区宽垄和窄垄耕作的顺坡坡面土壤侵蚀对比[J]. 农业工程学报,2019,35(19):176-182.

Wang Lei, Shi Hongqiang, Liu Gang, et al. Comparison of soil erosion between wide and narrow longitudinal ridge tillage in black soil region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19): 176-182. (in Chinese with English abstract)

[55] 李坤衡,焦剑,秦伟,等. 东北典型黑土区土壤侵蚀过程顺坡起垄垄沟水力学特征分析[J]. 水土保持学报,2021,35(3):77-82.

Li Kunheng, Jiao Jian, Qin Wei, et al. Hydraulic characteristics of longitudinal ridges and furrows in soil erosion in the typical black soil area of Northeast China[J]. Journal of Soil and Water Conservation, 2021, 35(3): 77-82. (in Chinese with English abstract)

[56] Shen H O, Wang D L, Wen L L, et al. Soil erosion and typical soil and water conservation measures on hillslopes in the Chinese Mollisol region[J]. Eurasian Soil Science, 2020, 53(10): 1509-1519.

[57] 孟令钦,王念忠. 坡耕地水土流失防治技术[M]. 北京:中国水利水电出版社,2012:74-81.

[58] 王斌,魏永霞,张忠学,等. 有限供水和垄作区田的技术集成效应研究[J]. 灌溉排水学报,2004,23(4):61-63.

Wang Bin, Wei Yongxia, Zhang Zhongxue, et al. Study on the effect of integrated technique including limited water supply and ridge plotted field[J]. Journal of Irrigation and Drainage, 2004, 23(4): 61-63. (in Chinese with English abstract)

[59] 牛晓乐,秦富仓,杨振奇,等. 黑土区坡耕地几种耕作措施水土保持效益研究[J]. 灌溉排水学报,2019,38(5):67-72.

Niu Xiaole, Qin Fucang, Yang Zhenqi, et al. Efficacy of several tillages in conserving soil and water in slopping areas at the black soil in Northwest China[J]. Journal of Irrigation and Drainage, 2019, 38(5): 67-72. (in Chinese with English abstract)

[60] 魏永霞,李晓丹,胡婷婷. 坡耕地保护性耕作技术模式的保水保土增产效应研究[J]. 东北农业大学学报,2013,44(5):51-55.

Wei Yongxia, Li Xiaodan, Hu Tingting. Soil and water conservation and water-saving and soybean yield increasing effects of different conservation tillage technology modes in slopping farmland[J]. Journal of Northeast Agricultural University, 2013, 44(5): 51-55. (in Chinese with English abstract)

[61] 杨爱峥,魏永霞,张忠学,等. 坡耕地综合治理技术模式的蓄水保土及增产效应[J]. 农业工程学报,2011,27(11):222-226.

Yang Aizheng, Wei Yongxia, Zhang Zhongxue, et al. Effects of technology modes for sloping farmland comprehensive control on soil water conservation and crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 222-226. (in Chinese with English abstract)

[62] 杨爱民,沈昌蒲,刘福,等. 坡耕地垄作区田水土保持效益的研究[J]. 水土保持学报,1994,8(3):52-58.

Yang Aimin, Shen Changpu, Liu Fu, et al. Study on soil and water conservation benefits of contour check in sloping field[J]. Journal of Soil and Water Conservation, 1994, 8(3): 52-58. (in Chinese with English abstract)

[63] 谢云,段兴武,刘宝元,等. 东北黑土区主要黑土土种的容许土壤流失量[J]. 地理学报,2011,66(7):940-952.

Xie Yun, Duan Xingwu, Liu Baoyuan, et al. Soil loss tolerance for black soil species in Northeast China[J]. Acta Geographica Sinica, 2011, 66(7): 940-952. (in Chinese with English abstract)

[64] Guy B T, Dickinson W T, Rudra R P. The roles of rainfall and runoff in the sediment transport capacity of interrill flow[J]. Transactions of the ASAE, 1987, 30(5): 1378-1386.

[65] An J, Zheng F L, Lu J, et al. Investigating the role of raindrop impact on hydrodynamic mechanism of soil erosion under simulated rainfall conditions[J]. Soil Science, 2012, 177: 517-526.

[66] 贺云锋,沈海鸥,张月,等. 黑土区坡耕地不同秸秆还田方式的水土保持效果分析[J]. 水土保持学报,2020,34(6):89-94.

He Yunfeng, Shen Haiou, Zhang Yue, et al. Analysis of soil and water conservation effects of different straw returning patterns in sloping farmland in the Chinese black soil region[J]. Journal of Soil and Water Conservation, 2020, 34(6): 89-94. (in Chinese with English abstract)

[67] 李胜龙,李和平,林艺,等. 东北地区不同耕作方式农田土壤风蚀特征[J]. 水土保持学报,2019,33(4):110-118,220.

Li Shenglong, Li Heping, Lin Yi, et al. Effects of tillage methods on wind erosion in farmland of northeastern China[J]. Journal of Soil and Water Conservation, 2019, 33(4): 110-118, 220. (in Chinese with English abstract)

[68] 许晓鸿,隋媛媛,张瑜,等. 黑土区不同耕作措施的水土保持效益[J]. 中国水土保持科学,2013,11(3):12-16.

Xu Xiaohong, Sui Yuanyuan, Zhang Yu, et al. Effects of different tillages on the soil and water conservation benefits in Northeast black soil area of China[J]. Science of Soil and Water Conservation, 2013, 11(3): 12-16. (in Chinese with English abstract)

[69] 牟廷森,沈海鸥,王东丽,等. 玉米秸秆粉碎还田对黑土坡面土壤侵蚀特征的影响[J]. 水土保持学报,2022,36(2):78-83,91.

Mou Tingsen, Shen Haiou, Wang Dongli, et al. Effects of crushed corn straw returning on soil erosion characteristics at the black soil hillslopes[J]. Journal of Soil and Water Conservation, 2022, 36(2): 78-83, 91. (in Chinese with English abstract)

Review on the effects of ridge pattern and ridge-furrow intervals on soil erosion of sloping farmland in the black soil region

Shen Haiou1, Wen Leilei2, Wu Jialong1, Wang Yu1※

(1.,,130118,; 2.,,130021,)

Black soil can be one of the most fertile soil groups with relatively high carbon stocks and production capacity. The black soil region can also play an important role in national food security and sustainable development in China. However, overexploitation and utilization have caused serious soil erosion in the black soil region of northeast China in recent years. There is a direct impact of the difference in tillage pattern on the soil erosion characteristics of sloping farmland. Fortunately, ridge farming can be commonly used in the tillage pattern. Furthermore, the ridge-furrow intervals with less amount of soil movement can also be used without occupying the farmland in this region. Therefore, it is of great significance to accurately evaluate the suitable measures of soil and water conservation. In this study, a systematic review was proposed to clarify the effects of ridge direction, ridge size, and ridge-furrow intervals on the soil erosion characteristics of sloping farmland in the Chinese black soil region. Furthermore, the relationship among the ridge patterns, the ridge-furrow intervals, and soil erosion was then established to determine the key fields to be strengthened in future studies for the major challenges. The results indicated that the pattern of longitudinal ridge-tillage was still the most common-used tillage pattern. The soil erosion gradually deteriorated to shift the soil erosion types from sheet to rill erosion, leading to less soil quality and crop yield. A better way was found to control soil erosion in the general patterns of contour ridge-tillage and sloping ridge-tillage, which was closely related to ridge failure. Among them, the pattern of sloping ridge-tillage was more likely to occur the ridge failure. Once the ridge failure occurred, the soil erosion increased significantly, even much more than that of the pattern of contour ridge-tillage. Thus, the pattern of contour ridge-tillage can be expected to effectively decrease the soil erosion at the sloping farmland in the black soil region. Furthermore, the pattern of the narrow ridge is also commonly used in the black soil region of northeast China in the long term. Therefore, it is very necessary to determine the effects of narrow ridges and their operation patterns on soil erosion. The pattern of the wide ridge is widely used in large-scale intensive farms and rural cooperatives, rather than individual farms, due to the outstanding control effect on the soil erosion for the high crop yield. Thus, it is a high demand for wide ridges among the individual farms in the future, in order to protect the precious black soil resources. The control effect of the ridge-furrow intervals pattern on the soil erosion depended mainly on the rainfall amount, rainfall intensity, slope gradient, ridge size, and the spacing of the ridge-furrow intervals. Therefore, it is suggested that the pattern of ridge-furrow intervals is gradually applied to the sloping farmland in the black soil region, in order to separate the layout, and then cooperate with the wide ridge, slope terrace, plant hedge, subsoiling, and straw return. The optimal allocation mode can be further improved the better measures of the composite soil and water conservation for less soil erosion. Much effort was also made into the effects of tillage patterns on the soil erosion of sloping farmland in the black soil region. Nevertheless, the technical conditions can still be limited to systematic research in this field. As such, the future directions can be proposed to analyze the influencing mechanism of ridge patterns, the coupling relationship between ridge direction and ridge size, the ridge design for the pattern of ridge-furrow intervals, and the comprehensive factors analysis of the effect of ridge pattern on the soil erosion in the sloping farmland. In conclusion, the systematic research is very necessary to focus on the effects of ridge patterns and ridge-furrow intervals on soil erosion at the sloping farmland in the black soil region.

soils; erosion; farmland; longitudinal ridge-tillage; contour ridge-tillage; sloping ridge-tillage; ridge-furrow intervals

10.11975/j.issn.1002-6819.2022.22.006

S157

A

1002-6819(2022)-22-0052-11

沈海鸥,温磊磊,武佳龙,等. 垄作与垄向区田技术对黑土区坡耕地土壤侵蚀影响的研究进展[J]. 农业工程学报,2022,38(22):52-62.doi:10.11975/j.issn.1002-6819.2022.22.006 http://www.tcsae.org

Shen Haiou, Wen Leilei, Wu Jialong, et al. Review on the effects of ridge pattern and ridge-furrow intervals on soil erosion of sloping farmland in the black soil region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(22): 52-62. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.22.006 http://www.tcsae.org

2022-06-06

2022-11-10

国家重点研发计划项目(2016YFE0202900);国家自然科学基金项目(41601281)

沈海鸥,博士,副教授,研究方向为土壤侵蚀与水土保持。Email:shensusan@163.com

王宇,博士,副教授,研究方向为水土保持与黑土地保护。Email:wangyujlc@163.com

猜你喜欢

横坡坡耕地黑土
自然资源部:加强黑土耕地保护
添加木本泥炭和膨润土对侵蚀退化黑土理化性质的影响*
基于Sentinel-2遥感影像的黑土区土壤有效磷反演
坡耕地治理助推西和县万寿菊产业发展
寒地黑土无公害水产品健康养殖发展思路
山区公路曲线预制小箱梁桥面横坡的调整方法
国家坡耕地水土流失综合治理工程助力建平县脱贫攻坚
桥面预制 T 梁横坡及线形的控制
资阳市雁江区:防治并重 建管结合 创建坡耕地水土流失综合治理示范区
浅谈宽幅高速公路施工中路面横坡的控制方法