用户侧储能参与需求响应的多时间尺度优化调度策略研究
2021-11-19王建波王春亮魏强周保中张继广朱烨扬范紫微
王建波 王春亮魏 强周保中 张继广朱烨扬范紫微
(1. 华电山东能源销售有限公司 济南 250000;2. 华电电力科学研究院有限公司 杭州 310000;3. 深圳华工能源技术有限公司 深圳 518000)
1 引言
需求响应能够从需求侧实现电力削峰填谷、增加清洁能源消纳,有利于缓解我国目前电力供应紧张的局面[1]。储能作为一种需求侧资源,因其响应速度快、调度运行方式灵活得到了飞速的发展[2-3]。文献[4]以家电舒适度为约束,建立混合整数线性规划模型,基于储能系统进行需求侧响应优化调度;在此基础上,文献[5-6]考虑用户的用电行为,构建凸优化问题,降低用户的用电费用。文献[7]综合考虑了储能系统与电网互动的应用场景,并建立线性规划模型来实现用户的收益最大化。上述文献对储能参与需求响应进行了研究,但所采用的模型并未计及负荷的不确定性。用户在申报参与需求响应并中标后,必须按照中标量进行响应,否则将面临偏差考核。然而,由于负荷预测的不确定性,多数用户无法按照实际中标量进行响应,造成了严重的经济损失。
为了处理负荷预测的不确定性,文献[8]提出了储能和需求侧可中断负荷相互协调的规划模型;文献[9]将家用负荷分为可调节、可中断、可削减以及可转移负荷,建立了考虑储能蓄电池的鲁棒优化调度策略,该调度控制策略可以节省电费支出;文献[10]提出了一种基于分层储能的主动配电网需求响应控制策略。
文献[8-10]所提出的模型采用不同的方法解决出力不确定性问题,但均属于开环优化调度策略,主要是基于一个时间断面或未来一段优化时段的开环优化调度控制,具有一定的局限性。模型预测控制是一种基于预测模型并结合实际数据进行修正的在有限时域内滚动优化的控制方法。文献[11]考虑配电网有功无功耦合特性,通过有功无功协调优化来降低网络损耗,利用模型预测控制算法,减少无功设备频繁动作所产生的操作成本,在保证主动配电网安全运行的同时进一步实现运行效益最大化。文献[12]结合同步型交替方向乘子法和模型预测控制,提出了一种微电网群分布式优化调度策略,实现微电网的经济运行。
本文在上述研究的基础上,提出了基于模型预测控制的用户侧储能参与需求响应的多时间尺度优化调度策略。利用模型预测控制“滚动优化控制”的思想解决用户侧储能参与需求响应时的调度功率波动问题,同时引入反馈校正,及时纠正外部不确定性输入的干扰,实现“多级协调,逐级细化,反馈校正”,最小化负荷预测不确定性带来的影响。
2 模型预测控制
模型预测控制是一种闭环控制方法,其核心思想包括预测模型、滚动优化和反馈校正三部分。预测模型是一个描述系统动态行为的模型,通过系统当前已知的历史输入信息和被控对象的优化得出未来的控制输入信息,预测模型只重视该模型能够根据输入信息来预测系统未来的动态输出值,而不重视该预测模型的结构表达形式。本文采用状态空间预测模型作为“预测系统未来动态行为”的模型。滚动优化的核心思想如图1 所示,在k时刻,基于一定的目标计算得到控制时域M内的控制变量,但只下发接下来第一个时刻的控制变量值。为了实现闭环反馈校正,当k+1 时刻到来时,测量输出变量值,将此测量值作为k+1 时刻优化初始值,从而最小化模型失陪和扰动误差带来的影响,如图2 所示。
图1 模型预测控制滚动优化过程
图2 模型预测控制反馈矫正过程
3 储能参与需求响应优化调度模型
3.1 储能参与需求响应日前优化调度策略
日前优化调度策略结合日前负荷预测功率在不影响用户正常生产活动的前提下对用户侧储能和可转移负荷进行优化控制[13],使用户购电成本、储能电池损耗成本以及用户不满意费用之和最小。日前优化调度模型的目标函数为式中,Pact(t) 、PDR(t) 、Pbat(t) 以及Pshift(t) 分别表示t时段用户净负荷功率、用户参与需求响应功率、储能蓄电池充放电功率以及可转移负荷功率;T表示调度总时段数;ρ(t) 和ρDR分别表示分时电价和需求响应收益;Cbat和Cshift分别表示储能蓄电池单位充放电功率下的损耗成本以及由于单位功率可转移负荷造成的用户不满意费用。
储能蓄电池单位充放电损耗成本计算方法[14]如下式中,Cw为储能蓄电池容量成本系数;Na为储能全寿命周期的充放电循环次数;Ddod为储能充放电深度。
用户不满意度的定义以及计算方法可参见文献[15],图3 中展示了用户不满意费用以及单位功率不满意费用随用户转移负荷功率的关系。
图3 用户不满意费用以及单位功率不满意费用随用户转移负荷功率的关系
由图3 可知,用户不满意费用与该时段转移负荷功率成近似线性关系,为简便起见本文假设Cshift为常数。
为了保证用户的用电体验以及蓄电池的安全工作,日前调度计划需要满足如下约束条件。
(1) 储能设备充放电深度约束
式中,S(t+1)代表t时段内蓄电池的SOC 值;σ代表蓄电池自放电率;V代表蓄电池容量;cη、dη分别代表蓄电池充放电效率;Pc(t) 、Pd(t) 分别代表t时段蓄电池充放电功率;tΔ 代表一个调度周期的时间长度;Smax、Smin分别代表蓄电池SOC 的上下限。
(2) 储能蓄电池SOC 周期平衡约束
式中,Pd,max(t) 和Pd,min(t) 分别代表蓄电池放电功率的上下限;Pc,max(t) 和Pc,min(t) 分别代表蓄电池充电功率的上下限。
(4) 功率平衡约束
3.2 储能参与需求响应实时滚动调度策略
基于日前负荷预测进行优化调度是一种开环的调度方案,并且随着时间预测时间尺度的缩短,预测误差的改变也会对日前调度结果产生一定的影响。因此应在实时调度环节对日内负荷预测出现的偏差进行修正,以日前优化调度结果为参考值,通过模型预测控制算法修正由于负荷预测结果变更带来的影响。
(1) 模型预测
通过求解蓄电池充放电功率以及用户可转移负荷增量,进而预测实时滚动优化调度的有功出力,其预测模型为
图4 实时滚动优化调度流程图
4 算例分析
4.1 算例数据介绍
以广东省某园区为例进行仿真算例分析,园区中配置的储能蓄电池参数如表1 所示。其典型日日前负荷预测结果如图5 所示,分时电价数据如表2所示。用户不满意费用Cshift取0.5 元/(kW·h),用户可转移负荷比例系数λ取值为0.4。为了对日前调度策略的经济性进行定量分析,本文设置了4 种调度场景,如表3 所示。
表2 分时电价
表3 用户侧4 种不同的调度场景
图5 日前负荷预测结果
其中,场景5 为园区实际运行场景,该场景下的调度策略计及了储能的充放电作用,但并未计及需求响应收益、可转移负荷以及用户不满意费用,园区仅依靠储能的调节作用利用不同时段的电价差进行套利。
选取日前调度时间尺度为1 h,日内实时滚动优化调度时间尺度为15 min。日前优化调度模型为线性规划问题,日内优化调度模型为二次规划问题,因此选用商用求解器CPLEX 进行求解。
4.2 日前优化调度
表4 展示了5 种不同场景下该工业园区用电成本情况。其中,在场景5 中园区并未参加需求响应,仅依靠不同时段的电价差进行套利。在场景 1 中,未考虑储能以及可转移负荷的调节作用,此时园区用电成本即为总成本,花费最高;场景2 考虑了储能蓄电池的调节作用,可以看到虽然储能蓄电池具有一定的损耗成本,但由于储能蓄电池可以在电价高峰时放电,电价低谷时充电,使得总成本得到了一定的降低;场景3 中仅考虑了可转移负荷,可以看出由于每个时段可转移负荷的总量有限且会造成较高的用户不满意费用,因此总成本并未得到较大改善;场景4 中综合考虑了储能蓄电池与可转移负荷的调节作用,两者高效的配合得到了最优的日前调度结果。场景5 中,并未计及需求响应、可转移负荷以及用户不满意成本,仅仅依靠储能的深度调节作用进行套利,因此储能损耗成本增加。另一方面,由于并未参加需求响应,不存在足够的利益驱动用户进行负荷转移,园区购电成本仅次于场景1。
表4 不同调度场景的成本分析
场景4 的调度结果如图6 所示,储能蓄电池SOC 变化情况如图7 所示。在图6 所示的日前优化调度结果中,放电功率为正代表储能电池处于放电状态,反之处于充电状态;可转移负荷为正代表该时段存在转入负荷,反之存在转出负荷。
图6 日前优化调度结果
结合表2 和图6 可以看出,在00:00~7:00 时段电价处于低谷时段,负荷也处于低谷时段,此时储能电池充电,且转入负荷值为正;在10:00~15:00时段和17:00~22:00 电价处于高峰时段,负荷也处于高峰时段,此时储能蓄电池放电,且转出负荷为正;日前调度策略通过储能蓄电池的充放电和可转移负荷的灵活调度进行套利,以减小用户购电费用。
从图7 也可以看出,储能蓄电池在负荷高峰时段放电,在负荷低谷时段充电,起到了削峰填谷的作用,同时在运行中也保证了蓄电池荷电状态的平衡,提高了电力系统运行的可靠性和经济性。
图7 日前调度储能蓄电池SOC 变化情况
4.3 实时滚动优化调度
负荷预测误差满足正态分布[16],因此为了直观的体现实时优化调度的效果,短时间尺度的负荷预测值由日前负荷预测值叠加一组正态分布误差数据得到。使用负荷预测工具对历史负荷进行日前负荷预测并计算负荷预测误差,利用所得到的负荷预测误差值对负荷预测误差的概率分布函数进行拟合,进而得到负荷预测误差的概率分布函数参数。叠加正态分布误差之后的实时负荷预测结果和测量结果的对比图如图8 所示。图8 中,以时间间隔15 min 为一次样本点,共取96 个点。
图8 实时负荷预测结果与测量结果对比图
图9 为实时滚动优化调度中储能蓄电池有功出力调度结果以及可转移负荷有功出力调度结果。从图9 中可以看到,实时滚动优化调度中蓄电池和可转移负荷有功出力的变化趋势与日前调度基本相同,但在短期负荷预测误差的影响下,为了实现对日前调度计划的跟踪,储能蓄电池的充放电功率和可转移负荷功率均出现了频繁且范围较小的功率波动,来实现对于日前调度计划的跟踪。
图9 实时优化调度结果
在图10 中展示了实时滚动优化对于用户净负荷功率的跟踪效果,其中虚线为仅仅缩短优化时间尺度而仍采用开环调度方式的跟踪效果,实线为施加模型预测控制方法的跟踪结果。可以看出,若仅仅缩短调度的时间尺度会造成园区净负荷功率在计划值附近快速波动,这对于电网的调度运行将产生不利影响;而施加模型预测控制方法后,净负荷功率保持稳定并与日前计划值基本保持一致,基本消除了负荷预测误差的改变对于园区净负荷功率的影响。
图10 净负荷功率跟踪结果
5 结论
为了应对负荷预测的精度对分布式储能参与需求响应策略产生的影响,文中研究了一种基于模型预测控制的用户侧储能参与需求响应多时间尺度优化调度策略。在日前调度阶段,以用户购电费用最小为目标建立模型,实现了用户可转移负荷以及储能蓄电池充放电策略的优化,提高了运行经济性;在实时调度阶段,以用户净负荷功率偏差最小为目标建立调度模型,并引入模型预测控制的方法来应对负荷预测误差带来的影响。在算例分析中,对比了4 种不同的优化调度场景,结果表明在同时对储能蓄电池和可转移负荷进行优化调度的情况下,最高可将运行成本减少5.2%;同时能够在一定程度上减小负荷预测误差带来的影响,并实现了对用户净负荷功率的有效跟踪。