APP下载

低碳城市试点政策的工业污染物净减排效应
——基于合成控制法

2021-11-17

关键词:控制组安慰剂废水

董 梅

(江苏师范大学 商学院,江苏 徐州 221116)

气候变化是人类面临的严峻挑战,如何有效控制温室气体排放是世界各国需要共同面对的问题。中国是应对气候变化的积极参与者和贡献者,政府已将应对气候变化融入经济社会中长期发展规划。为推进生态文明建设,推动绿色低碳发展,落实控制温室气体排放行动目标,不断探索低碳发展模式和路径,国家发改委于2010年正式启动首批包含五省八市的低碳试点,后续在2012年开展了包括一省28市的第二批低碳试点,以及2017年包括45个城市的第三批低碳试点,期望通过积极探索和推广工业化与城镇化过程中低碳建设的做法和经验,在保持经济稳定增长的同时,实现控制温室气体排放行动目标。

虽然低碳试点政策行动目标是有效控制温室气体排放,但促进政策有效实施是一个复杂的系统工程,涉及工业、交通、建筑、能源、农业、林业、废弃物管理等众多领域。通过能源结构优化、能源效率提升、降低高能耗高污染高排放产业比重、促进产业结构升级等路径,不仅有助于碳减排,而且能推动能源节约、污染物减排和环境治理,降低工业能耗和污染,有效控制工业废水、废气和固体废物排放,即低碳试点政策的“正外部效应”。排除非政策因素的影响,客观评估低碳城市试点政策的工业污染物净减排效应,不仅为低碳城市试点政策的科学评估提供量化依据,也为低碳发展的政策设计和推广提供经验与启示。

一、文献综述

近年来,针对低碳试点政策评价的研究不断涌现,研究的部分观点具有一致性。以下分别从研究对象和研究方法两个维度对以往文献进行梳理。

以低碳试点省市为研究对象的文献可分为三类:(1)评价低碳试点政策的碳减排效应,其中,部分文献关注试点省区层面[1-3],另一部分则聚焦于试点城市层面[4-9]。(2)评价低碳试点政策的空气污染治理效应,如对政府空气污染治理的评估[10],以及对雾霾的缓解作用[11]。(3)评价低碳试点政策对产业结构和技术进步等方面的促进,如评价低碳试点政策对外贸依存度[12]和外商直接投资[13]的影响,对产业结构升级的促进[14],对技术创新的推动[15-16],以及综合评价绿色增长效应[17]。

以政策效应评价方法类别可将文献分为四类:(1)综合指标评价法,即通过构建低碳综合评价指标体系衡量低碳政策效果[18-20],或直接比较试点政策实施前后的碳排放及能源消费等指标变动[4-5][21]。该方法只能对政策效应做直接判断,无法剔除非政策因素的影响。(2)双重差分法(Difference in Difference,DID)是近年来广泛应用的政策评价方法,不仅用于评估低碳试点政策的碳减排效应[1][6][8],还用于评价该政策对外贸[12]、外商直接投资[13]、技术创新[15]和绿色增长效应[17]等方面的影响。但DID方法应用条件较为苛刻,需要假设实验组和对照组特征基本相同,并满足平行趋势假定,在对照组的选择上难以避免选择性偏误和内生性偏差。(3)倾向得分匹配(Propensity Score Matching,PSM)与双重差分结合法(以下简称PSM-DID),该方法利用PSM方法匹配样本,再进行DID估计,用于评价低碳试点政策对碳减排[7]、缓解雾霾[11]、技术创新[16]和产业结构升级[14]的影响。该方法修正了DID方法的内生性偏差和样本选择偏误,但在大样本条件下才能获得最优匹配,而且也不能完全剥离非政策因素。(4)合成控制法(Synthetic Control Method,SCM)是用于政策评估的准自然实验方法,通过数据驱动选择控制组,并有效剔除非政策因素,弥补了以上研究方法的不足。该方法由Abadie[22-23]提出后,即被国外学者广泛应用,如分析德国统一对其经济的影响[24]、《京都议定书》对碳减排的推动[25]、控制温室气体对煤改气的促进[26]、举办北京奥运会对空气质量的改善[27]、南非的控烟效果[28]、国际货币基金组织对世界经济的影响[29]、改革劳动力市场对经济的促进[30]等众多领域。国内较早采用合成控制评价政策效应的学者有:王贤彬和聂海峰[31]关注重庆从大四川中分离的经济效应,刘甲炎和范子英[32]聚焦重庆房产税试点的政策效果,苏治和胡迪[33]研究新兴市场国家通货膨胀目标的有效性。近几年,合成控制法的应用更加广泛,在低碳政策评估方面,陆伟贤[2]关注低碳试点政策对首批试点省市的碳减排效应;宋德勇和李瑶[3]不仅关注低碳试点政策的减排效应,对企业经营绩效的变动也进行衡量;刘传明等[34]聚焦碳排放权交易试点政策的碳减排效应。合成控制法在区域试点方面运用较多,如研究经济特区[35]、上海自贸区[36]、国家综合配套改革试验区[37]、经济区划调整[38]、西部大开发[39]等区域政策对经济的影响。此外。该方法还用于评价阶梯电价[40]、长三角扩容[41]、汶川地震[42]等准自然实验的效果。

以上文献在低碳试点政策评价方面提供了重要理论基础,但仍存在进一步探讨的空间:第一,现有研究集中于对低碳试点省市碳减排、空气质量、产业结构、技术进步、对外贸易等方面的评价,但鲜有对工业废水、废气、固体废物(即工业“三废”)污染物排放是否改善的评价。第二,多数研究方法难以剔除非政策因素,包括综合指标评价法、DID方法和PSM-DID方法均存在此问题。第三,部分研究方法存在内生性偏差和样本选择偏误,如DID方法选择控制组样本具有主观性,PSM-DID方法难以满足大样本条件,这些问题可能导致部分研究结论存在分歧。

综上所述,本文以“低碳城市”试点政策为准自然实验,兼顾数据的获得性、可靠性和可比性,选取24个试点城市为实验组,另选60个城市为控制组,以这些城市的工业废水、废气、固体废物排放为研究对象,采用合成控制法剔除非政策因素,分析低碳试点政策对工业污染物减排的影响。本文的边际贡献在于:(1)分别刻画废水排放强度、SO2排放强度、烟尘排放强度和固体废物利用率在政策实施前后的演变路径。(2)探讨低碳试点政策对污染物减排中呈现的污染物种类异质性和城市异质性的原因。(3)在合成控制法的安慰剂检验中,构造单侧检验统计量判断其显著性,并结合DID检验对合成控制分析做验证和补充。

二、低碳城市试点政策对工业污染物减排的机理分析

陈宇和孙枭坤[43]认为,低碳城市试点政策属于具有模糊属性的试点政策,除确定政策总目标外,并未提出具体的实现路径和手段,中央希望地方政府能够探索出可复制和推广的执行模式,形成符合当地的政策目标和实现路径。各试点城市也都在规定时间内制定了结合自身基础条件的相关发展规划,低碳建设目标逐渐由模糊走向清晰,包括细化能源强度和碳排放峰值等目标,由此提出经济结构优化、能源结构优化、提升能源效率等一系列举措。庄贵阳[44]认为,低碳城市试点政策是一项综合类的环境规制政策,资金和制度上享有中央和地方的双重支持,通过打造低碳产业,优化产业结构和能源结构,突破经济发展瓶颈。

碳减排、能源节约和污染治理,这些并非是经济发展中毫无关联的独立目标,而是生态文明建设和绿色发展的共同要求,也是更好满足人民美好生活的题中之意。尽管低碳试点政策最直接的目标是控制温室气体排放,但通过能源结构优化、能源效率提升、产业结构升级等一系列措施,所获得的效应不仅是碳减排,还会推动雾霾治理、技术创新、促进经济转型升级等多种“正外部效应”,低碳试点政策对工业废水、废气、固体废物减排的推动作用,正是本文重点关注的“正外部效应”之一。

通过梳理低碳城市试点政策的具体任务、工作要求,以及政策传递路径,总结出低碳试点政策对工业污染物减排的影响机理如下:(1)低碳城市试点政策实行主要领导负责制,属于命令控制型工具,政策目标分解至重点企业,形成自上而下的监管机制。一方面,污染型企业生产成本增加,促使企业严格限制废水、废气排放,及固体废物倾倒,抑制污染型行业发展;另一方面,清洁产业获得更多优势,逐步推动产业结构优化升级。(2)灵活运用产业支持政策和财政补贴政策,包括资金配套、贷款贴息、投资补助和项目奖励等多种方式对企业的低碳化升级改造进行补贴,鼓励企业技术创新,支持企业通过生产流程优化提高企业生产率和废物处置率,从而降低污染物排放。(3)吸取其他地区低碳发展的有效经验,建立及扩大低碳产业规模,优化能源消费结构,降低生产能耗,促进产业结构由高投入、高排放向清洁低碳型转变,从而减少工业污染物排放。

三、研究设计及数据来源

(一)合成控制法

(二)数据来源

本文选取2001—2018年84个城市的面板数据为研究样本①城市样本的选择,兼顾所有大中城市和数据可得性的双重原则:第一步,依据第一财经发布的《2019年商业魅力排行榜》一线城市(4个)、新一线城市(15个)、二线城市(30个)、三线城市(70个),共选入119个城市;第二步,对照国家统计局统计房地产价格的全国70个大中城市,再增添11个城市样本(属于70个大中城市,但不属于三线及以上城市),共选入130个城市;第三步,查询130个城市的相关变量数据后,将数据缺失较多的城市剔除,最终确定84个城市为研究样本。这些城市中,将24个低碳试点城市视为实验组,其余60个城市视为控制组。,将第一批(8个城市包括:天津、重庆、深圳、杭州、厦门、南昌、贵阳、保定)和第二批(16个城市包括:北京、上海、广州、昆明、武汉、宁波、苏州、青岛、石家庄、温州、乌鲁木齐、桂林、镇江、吉林、秦皇岛、遵义)共24个低碳试点城市视为实验组,其余60个城市视为控制组②控制组包括城市有:唐山、邯郸、济南、烟台、济宁、潍坊、淄博、泰安、沈阳、大连、锦州、鞍山、长春、哈尔滨、牡丹江、南京、无锡、扬州、徐州、常州、南通、连云港、绍兴、湖州、福州、泉州、珠海、湛江、汕头、韶关、海口、太原、呼和浩特、包头、郑州、洛阳、平顶山、西安、咸阳、合肥、芜湖、马鞍山、九江、宜昌、荆州、长沙、岳阳、株洲、湘潭、常德、南宁、柳州、北海、成都、绵阳、泸州、南充、兰州、西宁、银川。。需要说明的是,第二批试点实际有28个城市,但由于数据的可得性限制,只选择了其中16个城市纳入实验组。第三批低碳城市试点设立时间较短,不利于政策前后的对比,因此暂不包含。

1. 结果变量选取。为衡量低碳试点政策对城市污染物减排的有效性,选取以下四个结果变量:(1)废水排放强度(p_wwater,单位:吨/万元),即单位地区生产总值的工业废水排放量;(2)SO2排放强度(p_SO2,单位:吨/亿元),即单位地区生产总值的工业废气中SO2排放量;(3)烟尘排放强度(p_wsmoke,单位:吨/亿元)即单位地区生产总值的工业废气中烟(粉)尘排放量;(4)固体废物利用率(p_wsolid,单位:%),即一般工业固体废物综合利用的百分比③一般固体废物可通过回收循环利用的比例较高。工业固体废物的常见指标中,“产生量”已包含“综合利用量”“贮存量”和“倾倒丢弃量”,而许多城市的“倾倒丢弃量”存在大量缺失或零值,以上指标都难以衡量固体废物排放。现阶段生态环保相关政策中更加重视提高工业固体废物综合利用率,例如2016年国务院印发的有关《“十三五”生态环境保护规划》通知中明确“到2020年全国工业固体废物综合利用率提高到73%”。综上,本文选择“工业固体废物利用率”作为衡量固体污染物排放的结果变量,与工业废水和废气排放相比,该指标是逆向的,即数值越高,表明固体污染物排放越低。。其中,前三个强度指标不仅考虑了污染物排放总量的变动,也考虑了经济发展的增速。

2. 控制变量选取。控制变量通过式(1)的因子模型形成实验组的合成值,在选择控制变量时,既要考虑对污染物减排效应的影响,也要辨别城市的相似度。依据数据的可得性并经过反复测试对比,确定以下5个指标纳入控制变量Zi:(1)人均地区生产总值(p_gdp,单位:万元),该指标代表地区经济发展水平;(2)工业占地区生产总值比重(p_ind,单位:%),该指标代表产业结构,工业占比越高,越不利于污染物减排;(3)城镇就业人员平均工资(p_wages,单位:元/人),该指标为城镇在岗职工工资总额与城镇单位从业人员之比,代表人力资本投入的单位成本;(4)人均社会消费零售额(p_sales,单位:元/人),该指标是城市社会消费品零售总额与年末总人口之比,反映人民生活水平和社会零售商品购买力,用于辨别城市的相似度;(5)用电强度(p_power,单位:千瓦时/万元),即单位地区生产总值的全年用电量,是城市能源消费的一种衡量。

结果变量和控制变量均来源于历年《中国城市统计年鉴》和Wind经济数据库,实验组和控制组各变量的描述统计特征如表1所示。以结果变量和控制变量数据为基础,运用Stata15软件进行合成控制分析。

表1 2001—2018年城市面板数据描述性统计

四、低碳城市试点政策的工业污染物净减排效应

(一)污染物排放趋势

图1展示了2001—2018年实验组和控制组四种污染物相关指标均值的演进历程。

图1 实验组与控制组的工业污染物排放

聚焦工业废水排放情况(如图1a所示),其排放总量的特点如下:(1)实验组和控制组的废水排放均值在2001—2018年缓慢下降,第一、第二批试点城市和控制组均值分别由2001年的253.383万吨、189.521万吨和105.279万吨,逐渐降至2018年的136.953万吨、98.532万吨和62.514万吨。(2)第一批试点城市废水排放均值最高,其次是第二批试点城市,控制组该指标最低。(3)第一、第二批试点城市均值分别在2010年和2013年后快速下降,控制组该指标降速缓慢。就排放强度来看有如下特点:一是实验组和控制组的废水排放强度快速下降,第一、第二批试点城市和控制组该指标分别由2001年的20.205吨/万元、15.801吨/万元和22.266吨/万元,快速降至2018年的1.627吨/万元、1.134吨/万元和1.497吨/万元。二是在2010年之前,第一、第二批试点城市的废水排放强度均低于控制组,但2010年后,三组均值逐渐收敛并重合。

关注工业SO2排放情况(如图1b所示),其排放总量有以下特点:(1)实验组和控制组的该指标均值经历了先上升、再波动下降的过程,其中,在2005年达到波峰,这是由于“十五”时期(2001—2005年)出现重工业化过程,房地产、汽车工业等快速发展,资源密集型行业集聚扩张,能源消费大幅上升,致使SO2排放快速增加;“十一五”时期(2006—2010年)首次以能源强度下降20%为约束指标,因此SO2排放均值在2006年后波动下降。(2)第一批试点城市的SO2排放均值最高,其次是第二批试点城市,控制组该均值最低,这三组指标在2001年分别为15.459万吨、11.543万吨和6.778万吨,到2018年分别降至2.656万吨、1.903万吨和1.693万吨。(3)第一批试点城市SO2排放均值降速最快,其次是第二批城市,控制组降速最慢,因此三个组的该指标逐步收敛。就SO2排放强度来看有以下特点:一是实验组和控制组的该指标快速下降,且各组在2006年后趋势逐步靠近,第一、第二批试点城市和控制组SO2排放强度分别由2001年的177.597吨/万元、122.854吨/万元和149.681吨/万元,快速降至2018年的2.106吨/亿元、4.267吨/亿元和4.956吨/亿元。二是在2006年之前,控制组该均值在第一、第二批试点城市之间,而2006年之后,试点城市的该指标均低于控制组。

再关注工业烟尘排放情况(如图1c所示),烟尘排放总量的特点如下:(1)实验组和控制组的该指标在2001—2018年波动下降,在2010年前降幅显著。(2)2010年之前,第一批试点城市的烟尘排放总量最高,其次是控制组,第二批试点城市最低,到2018年,第一、第二批和控制组的烟尘排放均值分别为2.155万吨、2.012万吨和2.592万吨。就烟尘排放强度来看:一是实验组和控制组的该指标快速下降,在2010年后降速放缓,且不断收敛;二是控制组的烟尘排放强度高于实验组,第二批试点城市在2010年后略高于第一批试点城市,到2018年,第一、第二批和控制组的烟尘排放强度分别为2.056吨/亿元、3.983吨/亿元和7.962吨/亿元。

就固体废物利用情况来看(如图1d所示),实验组和控制组的固体废物综合利用率在2001—2018年呈现先升后降的过程。其中,第一批试点城市的固体废物利用率在2011年之前波动上升,2011年达到峰值(88.4%)后波动下降;第二批试点城市的该指标波动比第一批试点城市略小;控制组该指标走势相对平缓,前期缓慢上升至2014年峰值(86.183%),其后略有下降。

总体而言,实验组废水、废气的排放量和排放强度均值在低碳政策实施后与控制组的发展趋势不再平行,即实验组的相关指标降速均高于控制组降速。固体废物利用率的实验组趋势在低碳政策实施后并未呈现预期的显著上升。以上分析没有剔除非政策因素的影响,下文采用合成控制法,以实验组真实值与合成值的差值来评价政策效果。

(二)工业污染物净减排效应分析

1. 污染物净减排效应判断依据

实验组24个城市对应四种污染物一共可计算出96组平均政策效应结果,并绘制96幅实际值与合成值的对比图。但因篇幅所限,本文经过反复测算对比,仅将有显著政策效应的18组结果进行展示(如图2、图3、表2所示)。选出这18组结果的条件有:(1) R MSPE1

图2 废水与SO2排放强度的真实值与合成值

图3 烟尘排放强度与固体废物利用率的真实值与合成值

2. 污染物的实际值与合成值比较

将18组结果变量的实际值与合成值绘制成线形图(如图2、图3所示),能直观反映各污染物排放的演变路径。图组显示:(1)垂直虚线左侧,各城市的真实值与合成值都非常接近,部分省区几乎重叠;在垂直虚线右侧,各城市的真实值与合成值逐步偏离,二者的差值即为政策效果。(2)不同种类污染物的合成值拟合程度不同。其中,废水和SO2排放强度的合成值拟合程度较好,而烟尘排放强度和固体废物利用率的合成值拟合程度略有欠缺。

聚焦废水排放强度(如图2a~图2g和表2所示)发现:有7个城市(天津、南昌、贵阳、昆明、青岛、镇江、遵义)的该指标在低碳试点政策实施后下降了,其中,遵义、南昌和镇江的政策效应位于前三位,实施低碳试点政策使废水排放强度年平均分别下降1.667吨/万元、1.279吨/万元和1.031吨/万元;昆明(-0.729吨/万元)、天津(-0.621吨/万元)和贵阳(-0.423吨/万元)的政策效应紧随其后,青岛的废水排放强度年平均降幅最小(-0.226吨/万元)。

关注废气排放情况,厦门和镇江的SO2排放强度在政策实施后有减排效应,该指标年平均分别下降6.197吨/亿元和6.790吨/亿元(如图2h、图2i和表2所示);宁波、青岛和镇江的烟尘排放强度也呈现出减排效应,每年平均分别下降5.591吨/亿元、4.959吨/亿元和11.765吨/亿元(如图3a~图3c和表2所示)。其中,宁波和青岛烟尘排放强度在政策实施前的拟合程度略有欠缺(如图3a、图3b所示),这与烟尘排放强度的波动较大有关。

聚焦固体废物利用率(如图3d~图3i和表2所示),有6个城市(天津、南昌、保定、北京、石家庄、乌鲁木齐)的固体废物利用率在政策实施后提高了,其中,乌鲁木齐、石家庄和保定的该政策效应位于前三位,固体废物利用率每年平均分别提升18.611%、17.576%和11.122%,天津(9.758%)和北京(9.445%)的政策效应紧随其后,南昌的固体废物利用率提升幅度最小(5.906%)。固体废物利用率在政策实施前的拟合程度偏离较大,使这些城市烟尘排放强度合成值的可靠性略有不足,这是由各城市固体废物利用率波动较大所致,图1d也印证了该判断。

(三)稳健性检验

1. 安慰剂检验

为判定合成控制分析的政策效应在统计上是否显著,可采用安慰剂检验(placebo test)来测定。安慰剂检验是将控制组的60个城市都假设为实验组,对每个城市各做一次合成控制分析,计算真实值Yjt与合成值的差值对废水、SO2和烟尘排放强度来说,若t2时期实验组的来源于低碳政策试点,则的降幅应该远大于安慰剂检验的降幅,说明低碳试点政策能有效降低这些污染物的排放强度;对固体废物利用率来说,若的增幅远高于安慰剂检验的增幅,说明低碳试点政策能有效提高固体废物利用率。需要指出的是,若t1时期差异较大,则t2时期的差异也可能是拟合不好导致的,与政策实施无关。所以,为避免拟合误差太大带来的问题,本文参照Abadie[23]的做法,在图4与图5剔除了RMSPE1值超过实验组2倍的控制组城市。

图4和图5分别展示了18组结果变量的安慰剂检验,图中黑色线为实验组的灰色线为控制组安慰剂检验的若t2时期废水、SO2和烟尘排放强度的黑线走势远低于灰线,或固体废物利用率的黑线走势远高于灰线,则说明政策效应是显著的。本文未采用以往文献的排序检验法[2][32],而是构造统计量做显著性判断[45]:对废水、SO2和烟尘排放强度而言,用下边沿超过黑线的灰线数量除以灰线总条数(不包含剔除的样本和黑线本身),记为P(φ),并将P(φ)<0.2作为安慰剂检验是否显著的标准,即置信水平调整为80%的单侧检验①通常显著性检验采用P值<0.05的显著性条件,即对应95%的置信水平。但本文控制组样本只有60个,再剔除部分RMSPE1值超过实验组2倍的样本,所剩样本较少,难以满足统计量P值<0.05的显著性条件,因此将置信水平适当放宽。。同理,对固体废物利用率而言,关注上边沿超过黑线的灰线数量。

以天津废水排放强度的安慰剂检验为例(如图4a所示),剔除RMSPE1值超过实验组2倍样本后剩余灰线总数为16条,在t2时期的多数时段,黑线以下的边沿灰线数为3条,P(φ)=3/16=0.188<0.2,说明天津废水排放强度降幅显著大于安慰剂检验的降幅,安慰剂检验显著,即政策实施后天津废水排放强度平均每年下降0.621吨/万元是可靠的。

青岛废水排放强度的安慰剂检验是个特例,剔除RMSPE1值超过实验组2倍样本后剩余灰线总数为0条,即安慰剂检验无法判断青岛废水排放强度的政策效应是否显著,结合青岛该指标的政策效应数值很小(−0.226吨/万元),可判定低碳试点政策对青岛废水排放强度降低无效。

通过安慰剂检验可以看出(如表2所示):(1)就废水而言,天津、南昌、贵阳、昆明、镇江和遵义这6个城市的废水排放强度降低是由低碳试点政策引起的;(2)就废气而言,厦门和镇江的SO2排放强度降低是由低碳试点政策引起的,宁波、青岛和镇江的烟尘排放强度降低也是由低碳试点政策引起的。(3)就固体废物来看,保定、石家庄和乌鲁木齐的固体废物利用率提高是由低碳试点政策引起的。

2. DID检验及政策净效应再测算

除合成控制法外,DID方法也是常用的政策有效性分析工具。本文采用该方法对政策效应做稳健性检验,并与合成控制分析结论对比讨论。DID方法设定如下

其中,Yit是结果变量;treat(取1为实验组,取0为控制组)和period(取0表示政策实施前,取1表示政策实施后)均为虚拟变量;交互项 tr eat×period 的系数 β1反应低碳试点政策的净效应;是控制变量,同式(1)含义相同;ui为 个体固定效应; τt为时间固定效应。需要说明的是,为了DID估计结果与合成控制分析结果可比,对安慰剂检验中因RMSPE1值超过实验组2倍的样本,DID估计也做同样的剔除。以天津废水排放强度的安慰剂检验为例,安慰剂检验剔除了控制组中44个城市,仅保留了16个城市,则DID估计也只对这16个城市做面板模型估计。天津废水排放强度DID估计的treat×period系数(-1.475)即为DID效应,该系数与合成控制分析的平均政策效应(-0.621)符号相同,说明两种检验的方向是一致的,但DID效应并不显著。合成控制分析与DID分析的结论可能产生分歧,依据模型原理,前者将实际值与合成值进行对比,而后者仅对实验组与混合的控制组作对比,两者相较,合成控制分析对非政策因素的剔除更合理。因此就天津废水排放强度而言,以合成控制分析判断为准,DID效应的系数符号可对合成控制分析做补充验证,综合判定低碳试点政策对天津废水排放强度降低是有效的。

DID检验对低碳政策有效性的补充分析总结如下:(1)模型整体评价。18组估计中(除了青岛),废水、SO2和烟尘相关估计的Adj_R2在0.654~0.799之间,即模型估计整体代表性较高,DID检验的代表性较好;固体废物利用率相关估计的Adj_R2在0.036~0.147之间,即模型估计整体代表性较弱,DID检验的代表性不强,这与各城市固体废物利用率波动较大有关。(2)DID效应系数符号与合成控制分析的符号一致,可说明合成控制分析结果是稳健的。表2的18组模型中,有13组DID效应的方向与合成控制分析是一致的,说明合成控制分析的政策效应整体是稳健而可靠的。当两者不一致时,以合成控制分析和安慰剂检验的判断为主①合成控制分析在本文也存在一些局限性:第一,实验组结果变量的实际值与合成值在政策实施前存在较大偏离时,会降低政策有效性评估的准确性;第二,安慰剂检验中,除去RMPSE1高于2倍实验组的控制组样本后,所剩样本较少会影响安慰剂检验统计量显著性判断;第三,因子模型中控制变量的选取带有主观性,这将直接影响合成控制分析的结果。。

(四)工业污染物净减排效应的异质性分析

图2~图5和表2展示了合成控制法剔除非政策因素影响后,低碳试点政策的污染物净减排效应。虽然其他城市的污染物排放也有不同程度下降,但并非是低碳试点政策引起的。由于各种污染物减排技术不同,减排难度差异较大,导致低碳政策效应呈现污染物种类的异质性。各城市地理位置、经济水平、产业结构、环保意识等因素存在差异,也导致低碳政策效应存在城市异质性。

1. 污染物种类异质性分析

低碳试点政策下工业废水排放强度下降最为显著。在实验组中,有6个城市的废水排放强度因低碳试点政策而显著下降,并且这些城市在低碳政策实施前的此项指标拟合程度最高,因此对废水减排效应的判断比较准确。其中,2001年,镇江和贵阳的废水排放强度超过20吨/万元,天津、遵义和昆明的此项指标相对较低(12吨/万元以下),到2018年,这6个城市的废水排放强度降至0.279~1.541吨/万元之间。

低碳试点政策对工业废气减排效应仅次于废水。实验组中,有两个城市的SO2排放强度和三个城市的烟尘排放强度因低碳试点政策而显著下降,其中,厦门和镇江的SO2排放强度,以及镇江的烟尘排放强度在政策实施前拟合较好,但宁波与青岛的烟尘排放强度在政策实施前的拟合程度有欠缺,因此对废气减排效应判断的准确性也会降低。其中,厦门和镇江的SO2排放强度分别由2001年的61.314吨/亿元和215.336吨/亿元下降至2018年的0.177吨/亿元和1.752吨/亿元,宁波、青岛和镇江在2001年的烟尘排放强度分别由22.617吨/万元、23.910吨/万元和99.382吨/万元,降至2018年的1.663吨/亿元、0.402吨/亿元和1.421吨/亿元。

低碳试点政策对固体废物利用率的提升作用较小。各城市该指标在政策实施前的拟合都比较松散,再排除安慰剂检验不显著的城市后,仅有3个城市(保定、石家庄和乌鲁木齐)的固体废物利用率因低碳试点政策而显著提升。

废水、废气和固体废物减排效应呈现异质性,与不同种类污染物的治污减排技术和环境规制力度有关。一方面,环保部门对企业废水和废气排放监测技术普及和处罚力度加大,加之公众环保意识提升和对污染容忍度降低,推动企业增加废水、废气治理的各项投入。另一方面,工业固体废物处理需要通过循环利用技术及辅助行业支持来提升其利用率,但由于固体废物易于贮存,增加了固体废物利用率的波动;并且在低碳试点政策中,有关提高固体废物利用率的针对性举措较少。以上多种因素致使固体废物利用率的提升效果较弱。

2. 城市异质性分析

中国幅员辽阔,区域差异大,城市异质性使低碳试点政策的污染物净减排效果不尽相同。

第一,低碳试点政策对经济发展水平处于中、低等城市的污染物减排更有效。表3中“p_gdp排序”所示,实验组中污染物减排效应显著的城市,除了天津、厦门和宁波外,其余城市的p_gdp均在10名以后,说明这些经济水平处于中、低等城市的治污减排有较大提升空间。经济发展水平越高的城市,其人财物积累的富足程度也越高,低碳发展的基础越好,特别是工业企业治污减排设施相对先进与完善,技术创新与人才支撑具有优势,这些城市的废水和废气排放强度处于较低的水平,污染物减排空间很小;而经济发展水平处于中、低等的城市,其工业治污减排技术、设备、人才及各种资源配置都有很大提升空间,因此低碳试点政策对这类城市的污染物减排更有效。

表3 工业污染物减排效应显著城市的特征

第二,低碳试点政策对工业占比较高城市的污染物减排更有效。表3中“p_ind排序”所示,实验组中污染物减排效应显著的12个城市中,有七个城市的工业占比排名在前十,说明低碳试点政策通过促进经济结构优化能够有效降低这些城市对资源的依赖程度,促进污染物排减排。工业占比是反映各个城市经济结构的指标,工业占比越高的城市对资源依赖性较强。低碳试点政策在一定程度上降低了城市发展对资源的依赖,降低能源需求,污染物排放随之减少。

第三,省会城市的污染物减排更有效。表3中有五个城市(占41.7%)是省会城市,而原实验组24个城市中,有8个省会城市(占33.3%);相比之下,直辖市、副省级城市和地级市在污染物减排有效的12个城市的占比,均小于原实验组中的占比。城市的行政等级差异是影响各种政策有效性的制度因素,行政等级越高的城市能享有更多政策扶持,吸引更多资金支持、产业集聚和人才供给,在低碳试点政策中有更多的资源配置权限,从而获得更好的政策效果[17]。直辖市的规模远高于其他城市,且已推行与节能、减排和治污相关的政策较多,尽管其污染物也呈现降低,但合成控制分析认为其不是由低碳试点政策带来的。而省会城市是仅次于直辖市的城市等级,较好的资源调配能力,为低碳城市试点提供了有力的人财物等支持,获得污染物减排的显著效果。

五、结论与启示

本文基于2001—2018年84个城市工业污染物排放和相关经济数据,通过合成控制法对第一、第二批24个低碳试点城市的污染物净减排效应进行分析,并以安慰剂检验和DID检验做补充验证。研究发现:(1)废水方面,低碳试点政策使天津、南昌、贵阳、昆明、镇江和遵义等6个城市的废水排放强度显著降低。(2)废气方面,低碳试点政策使厦门和镇江的SO2排放强度,以及宁波、青岛和镇江的烟尘排放强度显著下降。(3)固体废物方面,低碳城市试点政策使保定、石家庄和乌鲁木齐的固体废物利用率显著提高。(4)污染物减排效应有种类异质性,低碳试点政策对工业废水减排效应最显著,对工业废气(包括SO2和烟尘)的减排效应次之,对工业固体废物减排的效应最弱,该异质性是由治污减排技术和环境规制力度差异导致的。(5)污染物减排效应有城市异质性,经济发展水平、经济结构和行政等级对低碳试点政策效果均产生影响,即低碳试点政策对经济发展水平处于中低等的城市、工业占比较高的城市和省会城市的工业污染物减排更有效。

低碳城市建设是一个复杂的系统工程,涉及工业、能源、交通、建筑、环境、居民消费等诸多领域,该试点政策在有效控制碳排放的同时,通过打造低碳产业,优化经济结构和能源结构,必定对工业污染物减排产生积极效果,以回应公众对城市环境改善的社会诉求。本文发现低碳试点政策只对部分城市的部分污染物减排产生显著影响,而其他城市在低碳建设中如何通过政策机制设计、市场调节和技术推动等各方面综合推动污染物减排水平,是推行低碳试点需要解决的问题。

基于以上分析,得出如下政策启示:第一,就结构层面而言,优化城市产业结构对工业污染物减排具有重要作用。在低碳建设中,应降低工业在增加值中的比重,着力打造低碳产业,合理布局低能耗、低排放的第三产业,为城市经济结构调整和经济增长方式转型奠定良好基础。该政策需因城而异:北京、上海、广州和深圳的污染物减排效应不显著,但这些一线城市具有先天的区位和行政优势,有较好的初期资源积累和经济发展水平,服务业占比较高,这些城市应继续大力发展服务业,注重治污减排技术推广和生产效率提升;对于重庆、杭州、武汉、苏州和温州而言,优化产业结构和降低工业占比是促进污染物减排的主要路径;对于桂林、吉林和秦皇岛来说,快速发展经济是首要任务,这些城市的污染物排放总量并不高,通过提升经济发展水平,能够有效降低污染物排放强度。第二,就技术层面来说,促进治污减排技术的研发、推广和应用,有效提升对清洁能源的使用,减少对化石能源的依赖程度,加大对高新技术产业的引进,提高工业产品的科技含量,为低碳城市建设提供技术支持。第三,就效率层面来看,着力提升工业企业管理能力,有效提高能源效率、能源转换率,和资源循环利用率,使现有生产和治污减排设备发挥最大效能,提高企业生产效率和治污减排效率。第四,就城市管理层面,提升城市管理能力,深入研究并用好各项低碳支持政策,制定步骤完善、目标明确和可操作的具体方案。特别是武汉、重庆和桂林等中西部城市,在制度环境、人才供给、交通条件、科技实力、资源协调方面有较大提升空间。有效提升城市的资源调配能力,吸引更多的资金支持、产业集聚和人才供给,将低碳试点政策红利最大化,吸纳和复制其他城市的有益经验,推动城市低碳转型,实现治污减排与经济发展和谐共赢。

猜你喜欢

控制组安慰剂废水
净水机的“废水比”到底该如何理解?
沉淀/吸附法在电镀废水重金属处理中的应用
对于废水排放相关分析
给商品起名字
福岛核电站废水排入太平洋?
“神药”有时真管用
为什么假冒“神药”有时真管用
马来西亚华文小学识字教学的字理识字研究
跟踪导练(3)
跟踪导练(三)2