APP下载

基于一模分量的矿井高压电网故障区段定位方法

2021-11-05赵建文陈佳丽

工矿自动化 2021年10期
关键词:区段幅值分量

赵建文, 陈佳丽

(西安科技大学 电气与控制工程学院, 陕西 西安 710054)

0 引言

对于矿井高压供电系统,《煤矿安全规程》第443条规定地面供电变压器、发电机及井下配电变压器的中性点严禁直接接地。因此,矿井高压电网主要采用中性点经消弧线圈接地系统[1-2]。单相接地故障作为矿井高压电网的多发性故障类型,其故障电流会受到消弧线圈对容性电流的补偿作用而减小,使得故障难以检测与识别,无法迅速切除,进而导致绝缘击穿事故扩大,影响供电可靠性[3]。因此,根据单相接地故障特征快速识别故障区段,对于矿井高压电网安全稳定运行具有重要意义。

近年来,配电网故障区段定位技术取得了很大发展[4],但鲜有涉及矿井高压电网故障区段定位技术的研究[5]。矿井高压电网作为配电网的一部分,采用现有技术实现故障区段定位具有可能性[6]。根据故障特征量不同,现有配电网故障区段定位方法可分为稳态法、暂态法2种[7]。传统的稳态法(如零序功率方向法[8]、区段零序导纳法[9]、零序电流增量法[10]等)在中性点经消弧线圈接地系统中,特别是在过补偿情况下存在定位死区[11]。暂态法通常根据不同的相模变换方法(如Karrenbauer变换[12]、Clark变换[13]等)对故障发生后系统的三相电流进行处理[14],目前效果较好且理论研究最为广泛的是瞬时对称分量法[15]。利用该方法可得到零序电流的暂态量,从而构建故障判据[16],确定故障区段定位方法[17],但在实际应用中需配合相应的选相装置[18],且变换得到的暂态量会随着时间衰减,造成故障特征辨识不可靠[19]。

本文提出一种基于一模分量的矿井高压电网故障区段定位方法。对故障附加状态下经Clark变换得到的一模分量简化模型进行理论分析,结果表明故障点上游的电流一模分量远大于故障点下游,且该特征不受消弧线圈补偿度和负荷电流的影响。根据该特征构建了故障区段定位判据,同时确定了故障区段定位方法。该方法原理简单,无需选相且易于工程实现。仿真及实验结果表明该方法在不同故障条件下均可实现对故障区段的准确定位。

1 理论分析

1.1 模量选取

在不同的单相接地故障边界条件下,经Clark变换后的零模量在谐振接地系统中易受消弧线圈影响,电流一模量和二模量见表1,其中ia,ib,ic为故障点三相电流[20]。可看出二模量在b相发生单相接地故障时失效,而一模量能反映所有的单相接地故障类型。因此,选择经Clark变换后的电流一模量为对象,研究矿井高压电网故障区段定位方法。

表1 单相接地故障下电流一模量和二模量Table 1 One-mode component and two-mode component of current under single-phase grounding fault

1.2 故障一模分量特征分析

故障附加状态下的电气量能够反映线路的故障状态,且不受系统负荷电流的影响,因此选择故障附加状态下的一模量(定义为故障一模分量)为特征进行分析[21]。

由于矿井高压电网地处潮湿环境,线路较短且大多采用电缆线路,所以线路电阻和电抗较小,对地电容效应不可忽略。系统在发生单相接地故障进入稳态时,暂态高频分量迅速衰减为零,等值电路呈现容性。为便于工程分析,仅考虑线路对地电容,以a相发生单相接地故障为例,根据叠加定理建立矿井高压电网单相接地故障附加状态模型,如图1所示。其中UN为中性点对地电压;L为消弧线圈(补偿电感);Pk(k=1,2,3,4)为电流监测点;C11,C12,C13,C14分别为区段P1-P2、区段P2-P3、P3至负荷侧、P4至负荷侧的对地电容;C2为馈线2对地电容;ufa,ufb,ufc为故障点三相对地电压;ifa,ifb,ifc为故障点三相对地电流。定义故障点至母线的线路、母线、消弧线圈及其他健康馈线为故障点上游,故障点至负荷侧线路及故障馈线的无故障分支为故障点下游。

图1 矿井高压电网单相接地故障附加状态模型Fig.1 Additional state model of single-phase grounding fault of mine high-voltage power network

对上述模型中各部分进行Clark变换。

(1)

(2)

同理分别对b,c相发生单相接地故障后的系统进行Clark变换,可得中性点b,c相仍对地短路,对应的故障点电流一模分量分别为(1/3)If,(1/6)If。

(3)

考虑到一模分量等效模型中故障点下游电流一模分量为零,可对图2(a)简化,如图2(b)所示,其中虚线箭头方向即故障电流流向。

(a) 一模分量等效模型

由此得出故障附加状态下故障点上下游电流一模分量特征:① 故障点上下游电流一模分量幅值存在显著差异,为矿井高压电网故障区段定位提供了理论依据。② 中性点经消弧线圈接地系统在一模分量简化模型中相当于对地短路,避免了消弧线圈产生的电感电流对电流一模分量的影响。③ a,b,c任一相发生单相接地故障时都具有特征①,②,只存在模分量幅值差异,因此在进行故障定位前无需选相。

2 基于一模分量的故障区段定位方法

2.1 故障区段定位判据

矿井高压电网是辐射性多段多分支结构的配电网络,以图3所示的简单配电馈线多分支网络为例,定义开关设备为节点1—7,①和②为分支节点[22]。

(1) 假设故障发生在区段5—6,则电流一模分量沿路径1—2—4—5流入并与中性点形成电流回路。上游节点为1,2,4,5,下游节点为3,6,7。对于分支节点①,此时相邻节点2,4的电流一模分量大小相等,而节点2 的电流一模分量远大于节点3;对于分支节点②,相邻节点4,5的电流一模分量大小相等,节点4的电流一模分量远大于节点7。根据故障路径上电流一模分量大小相等且不为零确定故障路径为1—2—4—5—6。而在故障路径上,根据节点5的电流一模分量远大于节点6,确定故障区段为5—6。

图3 配电馈线多分支网络Fig.3 Distribution feeder multi-branch network

(2) 假设故障发生在区段2—3或2—4,由于该区段包含分支节点①,节点3,4都属于负荷侧线路,即处于故障点下游,所以区段2—3,2—4两侧的电流一模分量幅值差值相等,且在任一路径中差值都是最大的。

由此可得故障定位判据:在分支节点处确定故障路径,分支节点处不同方向的2个节点故障一模分量幅值差值相等时,可任选一条路径作为故障路径,不相等时选择差值最小的方向为故障路径。故障路径确定后,故障路径上相邻节点故障一模分量幅值差值最大的为故障区段。

2.2 故障区段定位流程

按照上述故障区段定位判据实现中性点经消弧线圈接地系统的故障区段定位:根据变压器二次侧的零序电压是否越限及三相电压之间的关系确定是否发生单相接地故障,若是则利用故障一模分量幅值比较方法确定故障馈线。将故障馈线在发生故障前后的三相电流通过馈线终端设备上传至主站,此时启动故障区段定位程序即可确定故障区段。故障区段定位流程如图4所示。

3 仿真验证

3.1 仿真及结果分析

通过Matlab/Simulink模块搭建10 kV矿井高压电网仿真模型,如图5所示。该网络为典型的单电源辐射式结构,1—8为各区段对应的分断开关,1和8对应的馈线开关所在线路为电缆线路,其余线路为架空线路[23]。线路参数见表2。将K点闭合即为中性点经消弧线圈接地系统。模型采用过补偿10%的运行方式。

图4 故障区段定位流程Fig.4 Flow of fault section location

图5 矿井高压电网仿真模型Fig.5 Simulation model of mine high-voltage power network

表2 线路参数Table 2 Line parameters

设区段3—4发生a相单相接地故障,故障接地电阻Rf=500 Ω,故障角α=60°。故障点上下游节点在故障附加状态下电流一模分量波形如图6所示。可见故障点上游节点的电流一模分量幅值明显大于下游节点,虽在故障瞬间故障点下游会产生较大的冲击电流,但其幅值仍小于故障点上游节点。

(a) 上游节点

(b) 下游节点

定义ΔIm,n为区段m-n(m,n=1,2,…,8,且m≠n)两侧的电流一模分量幅值差值。在2个分支节点处,ΔI1,2<ΔI1,6,ΔI2,3<ΔI2,5,因此确定故障路径为1-2-3-4,故障区段定位向量M=[ΔI1,2ΔI2,3ΔI3,4]=[0 0 0.254],ΔI3,4最大,由此确定故障区段为3-4。

3.2 方法适应性及特征正确性分析

3.2.1 不同故障条件下方法适应性分析

根据故障位置、故障初始角、故障接地电阻不同,对三相分别发生单相接地故障时的情况进行仿真,结果见表3—表5。可看出在不同的故障条件下,矿井高压电网任一相发生单相接地故障时,故障区段两侧的电流一模分量幅值差值均明显大于非故障区段,即使在高阻情况下该特征依然存在。这表明本文方法不仅能够实现准确的故障区段定位,而且进行故障定位前无需选相。

表3 不同故障位置下故障区段定位结果(Rf=500 Ω,α=60°,过补偿10%)Table 3 Fault section location results under different fault positions(Rf=500 Ω, α=60°, over compensation of 10%)

表4 不同故障初始角下故障区段定位结果(Rf=500 Ω,过补偿10%)Table 4 Fault section location results under different fault initial angles(Rf=500 Ω, over compensation of 10%)

表5 不同接地电阻下故障区段定位结果(α=60°,过补偿10%)Table 5 Fault section location results under different grounding resistances(α=60°, over compensation of 10%)

3.2.2 系统运行方式对定位结果的影响分析

为了验证本文方法在分析部分故障特征量时不受消弧线圈补偿度的影响,设置区段3-4发生单相接地故障,对不同运行方式下的故障区段定位进行仿真,结果见表6。可看出在不同补偿度条件下,a,b,c任一相发生单相接地故障时,故障区段两侧电流一模分量幅值差值均明显大于非故障区段,表明故障特征不随系统运行方式而改变,且在任一相发生单相接地故障时始终存在,验证了本文方法不受消弧线圈补偿度及单相接地故障相的影响,可实现准确的故障区段定位。

表6 不同运行方式下故障区段定位结果(Rf=500 Ω,α=60°)Table 6 Fault section location results under different operation modes(Rf=500 Ω, α=60°)

4 实验验证

为了进一步验证本文方法,采用380 V矿井低压电网模拟实验平台(图7)进行实验,网络拓扑如图8所示。设置系统运行方式为过补偿10%,限于实验条件,故障初始角随机,故障发生在电流监测点5和6之间。

图7 380 V矿井低压电网模拟实验平台 Fig.7 Simulation experimental platform of 380 V mine low-voltage power network

图8 故障区段定位实验网络拓扑Fig.8 Network topology for fault section location experiment

a相发生单相接地故障且接地电阻Rf=500 Ω时,故障点上下游监测点的电流一模分量波形如图9所示。可看出实验与仿真结果相同,故障点上游电流一模分量幅值明显大于故障点下游。实验结果见表7,可看出a,b,c任一相发生单相接地故障时都具有同一故障特征,即不同分支故障路径的分支向量最小,故障路径上故障区段的定位向量最大。

(a) 故障点上游

(b) 故障点下游

表7 故障区段定位实验结果Table 7 Experimental results of fault section location

5 结论

(1) 为保证矿井高压电网安全稳定运行,提出一种无需选相、基于故障一模分量的矿井高压电网故障区段定位方法。

(2) 该方法利用故障附加状态下故障点上下游电流一模分量幅值差异性实现故障区段定位,具有特征显著、不随时间衰减、不受消弧线圈补偿度及负荷电流影响的优势。

(3) 仿真和实验结果表明,该方法对于矿井高压电网任一相发生的单相接地故障均能实现准确的故障定位,不受故障初始角、故障接地电阻、故障位置和系统运行方式的影响,且算法简单,无需设置阈值,易于工程实现。

猜你喜欢

区段幅值分量
中老铁路双线区段送电成功
帽子的分量
一物千斤
站内特殊区段电码化设计
站内轨道区段最小长度的探讨
论《哈姆雷特》中良心的分量
基于S变换的交流电网幅值检测系统计算机仿真研究
浅析分路不良区段解锁的特殊操作
正序电压幅值检测及谐波抑制的改进
低压电力线信道脉冲噪声的幅值与宽度特征