冬季漏缝地板羊舍温热参数的时空分布规律
2021-09-02赵寿培李雪梅孙新胜车大璐张会文王新芳高玉红程素彩
赵寿培,李雪梅,孙新胜,车大璐,张会文,王新芳,高玉红,程素彩
冬季漏缝地板羊舍温热参数的时空分布规律
赵寿培1,李雪梅1,孙新胜2,车大璐1,张会文3,王新芳4,高玉红1※,程素彩5
(1. 河北农业大学动物科技学院,保定 071001;2. 河北农业大学信息与技术学院,保定 071001;3. 承德市农业农村局科技教育工作站,承德 067000;4. 河北省畜牧总站,石家庄 050035;5. 廊坊市农林科学院,廊坊 065000)
为研究冬季寒冷地区漏缝地板羊舍温热参数空间和时间变化规律。该研究选择两栋南北朝向且结构相同的传统漏缝地板羊舍,舍A的出粪口未作封堵处理,而舍B的出粪口进行密闭封堵,对两舍漏缝地板上部空间的温湿度进行时间和空间(水平和垂直)的动态测定,试验周期2个月,并利用红外热像仪对漏缝地板下部空间结构进行成像分析。结果表明:1)两舍日均温和湿度虽未表现出显著性差异(>0.05),舍A温度和湿度为-3.07 ℃和38.08%,但出粪口封堵的舍B温度呈现升高趋势,均温达-2.76 ℃,两舍最大温差可达1.05 ℃。2)从垂直空间看,漏缝地板上方1.5 m处温度(1.5)显著高于漏缝地板处温度(0)(<0.01),舍A的两处垂直温差达1.71 ℃,而舍B温差降至1.35 ℃,且舍B0平均温度提高了0.49 ℃。另外,舍A的0最低可降至-7.40 ℃,且每天有16.0 h温度低于-3 ℃。3)从水平空间看,两栋舍南侧的温度均高于北侧,尤其是漏缝地板处,两侧温差为0.59(舍A)和0.39 ℃(舍B),且舍东西方向的水平温差较大,尤其舍北侧,其水平温差舍A达2.11 ℃,而舍B降至0.92℃。所有测点中,两舍西北侧出粪口的漏缝地板处温度最低,舍B0和1.5分别较舍A提高了1.33和0.47 ℃。4)从漏缝地板下部结构的红外热成像图分析,舍A漏缝地板和粪沟底部温差达2.1 ℃,而舍B温差降至0.7 ℃,且两舍地板下部结构中侧壁温度最低,分别达-9.3(舍A)和-7.2 ℃(舍B)。5)从风寒温度(Wind Chill Temperature,WCT)分析,舍B 的WCT显著高于舍A(<0.05),且舍A出粪口处风速显著高于舍B(<0.05),最高达0.682 m/s。传统漏缝地板羊舍的出粪口进行密闭封堵可提高舍内温度,降低舍内水平和垂直温差,建议羊舍设置漏缝地板时增加出粪口的密闭性和保温性。
温度;湿度;风速;羊舍;漏缝地板
0 引 言
近几年随着中国集约化、标准化和现代化养羊业的发展,养殖环境的改善越来越受到重视,尤其是温热环境。温度、湿度和风速作为重要的温热参数,直接影响羊群的生产和繁殖性能,而这些温热参数与羊舍的外围护结构密切相关。但是,由于目前羊舍建设标准化程度较低,建筑结构及建筑材料随意性较强,导致舍内的温热环境难以满足羊群需求,这严重制约了现代化羊业的高效、健康、可持续发展。外围护结构中,除了墙体和屋顶,地面也是维持羊舍环境的重要围护结构[1-3]。漏缝地板是目前猪和牛应用较多的地面模式,其优越性已被养殖场所认可。大量研究认为,漏缝地板有助于改善舍内的空气质量,减少舍内氨气、硫化氢和甲硫醇等臭气成分的浓度[4-6],并且可提高饲养管理水平,减少劳动力,提高养殖效率。鉴于漏缝地板在猪和牛场应用上的成功案例,有些羊舍已开始采用漏缝地板模式。但随着漏缝地板的应用,其存在的缺点也逐渐暴露。Magrin等[7]和Hinterhofer等[8]研究认为,漏缝地板会降低动物福利,增加肢蹄发病率,且荷兰已禁用全漏缝地板的生产方式[9]。关于羊舍采用漏缝地板的研究也有报道[10],相比漏缝地板,母羊更偏好于实心地板上躺卧休息。
近几年,河北省现代农业羊产业技术体系对全省羊舍设计与环境进行系统调研发现,寒冷季节羊舍采用漏缝地板在实际生产中存在一些问题,漏缝地板下的风速可能会影响舍内的温热环境,进而对肉羊的育肥效果产生一定的负面影响[11],甚至会增加羔羊的腹泻率及其死亡率[12],但目前尚未有漏缝地板羊舍温热环境的相关研究,为了漏缝地板在羊舍的应用获得更高的效率,本试验选择承德坝上典型的漏缝地板羊舍,对漏缝地板的出粪口进行封堵处理,研究冬季漏缝地板舍温热参数的时间和空间分布规律,为漏缝地板舍的应用与改造提供科学依据。
1 材料与方法
1.1 试验羊舍
试验于2020年1—2月在承德坝上地区某规模化羊场进行,选择2栋南北朝向且建筑结构完全相同的有窗密闭式半钟楼舍(舍A和舍B),舍顶部阳坡设置阳光板,地面设置塑料漏缝地板,漏缝地板板块规格为60 cm×60 cm,板条间隙尺寸为6.5 cm×2.0 cm,板条厚度5 cm。羊舍南北两侧靠墙位置各设75 cm宽素土地面,漏缝地板下粪沟深度为0.6 m,并设置刮板清粪系统。出粪口位于羊舍西侧且于舍西侧设单层彩钢板耳房,以减少风通过出粪口倒灌入舍。舍A的出粪口不采取任何封堵措施,而舍B出粪口用聚乙烯材料进行密闭封堵,2栋舍均为母羔舍空舍,且试验期间舍内门窗关闭,确保羊舍处于封闭状态。试验羊舍结构特点如图1所示。
1.2 试验指标及方法
1.2.1 环境温度和湿度
分别于2栋舍内12个检测点处安装KTH-350电子温湿度记录仪(量程:温度:-40~180 ℃,湿度:0~100% RH;测量精度:±0.25 ℃,±0.15% RH),记录每天24 h温湿度的连续变化,每隔0.5 h记录一次。布点位置为:水平空间上,料道南北侧的东、中、西位置(如图1所示);垂直空间上,漏缝地板处(漏缝地板上方0处)和漏缝地板上方1.5 m处。
1.2.2 风速
于羊舍西侧(出粪口处)安装WFWZY-1电子风速记录仪(量程:0.05~30 m/s;测量精度:±0.05 m/s),记录每天24 h风速的连续变化,每隔0.5 h记录一次,并计算风寒温度(Wind Chill Temperature,WCT),具体公式如下[13]:
WCT= 13.12+ 0.621 5a-11.37×0.16+0.396 5×a×0.16(1)
式中WCT为风寒温度,℃;a为环境温度,℃;为风速,km/h。
1.2.3 红外热像图分析
利用Testo-890红外热成像仪(量程:-20~350 ℃;测量精度:±2 ℃,波长范围:8~14m)对两栋舍出粪口处的漏缝地板及其下部空间进行拍照,形成热像图,以分析漏缝地板下部空间的水平和垂直温度变化,并分析漏缝地板结构的温度变化。
1.3 数据分析
利用GraphPad Prism 7.0对羊舍温度、湿度和风速等温热参数进行绘图,同时利用热成像分析软件 Testo IRSoft2对测得的热谱图像进行处理,并提取温度信息。另外,采用SPSS 21.0统计软件对所测数据进行方差分析,多重比较采用Duncan氏法进行检测。<0.05表示差异显著,<0.01表示差异极显著,>0.05表示差异不显著。
2 结果与分析
2.1 漏缝地板处及上部空间的温湿度动态分布
冬季2栋舍漏缝地板处及其上部空间的环境温度和湿度时间动态变化曲线如图2所示。2栋羊舍的漏缝地板处和漏缝地板上方1.5 m处的日动态环境温度均呈中午高、早晚低的变化趋势,湿度变化则相反。未封堵出粪口的传统漏缝地板舍A所有测点舍温度日变化为-6.54~2.60 ℃,而封堵舍B日变化为-6.26~3.41 ℃。从日平均温湿度来看,舍A日平均温度为-3.07 ℃,平均湿度为38.08%,与封堵的舍B比较,舍内温度差异未达显著水平(>0.05),但舍B温度比舍A高0.31 ℃,为-2.76 ℃,两舍最大温差可达1.05 ℃。从漏缝地板上部空间的温度看,舍A和舍B分别为-2.22和-2.09 ℃,而漏缝地板处的均温舍A降至-3.93 ℃,最低仅-7.40 ℃,且每天有16.0 h温度低于-3 ℃,而舍B漏缝地板处温度比舍A提高了0.49 ℃,为-3.44 ℃。
2.2 漏缝地板处及上部的温湿度空间分布
冬季2栋舍漏缝地板处及其上部温湿度空间变化如表1所示。羊舍垂直和水平方向的温湿度均表现出一定的差异。从垂直分布可知,漏缝地板处的温度与漏缝地板上1.5 m处的温度表现出显著性差异(<0.01),舍A漏缝地板上方温度比漏缝地板处高1.71 ℃(<0.01),而舍B温差则较小,为1.35 ℃。
从南北向的水平温差可知,舍内南北两侧温度虽未表现出显著性差异(>0.05),但舍A的南侧平均温度比北侧高0.3 ℃,南侧平均温度和平均湿度分别为-2.92 ℃和37.50%;舍B南侧和北侧温度分别为-2.66和-2.87 ℃,湿度分别为36.04%和38.17%。其中,漏缝地板处南北温差更大,舍A温差达0.59 ℃,舍B温差降低了0.20 ℃,为0.39 ℃。
表1 2栋舍漏缝地板处及上部的温湿度空间分布
从东西向水平温差可知,舍内东、中、西部温度存在较大差异,南侧和北侧均表现为西部温度最低,尤其西北侧漏缝地板处的温度最低,舍B 和舍A西北侧漏缝地板处的温度分别为-4.13和-5.46 ℃,舍B较舍A提高了1.33 ℃。另外,舍B漏缝地板上方1.5 m处的温度较舍A也提高了0.47 ℃,且两栋舍北侧漏缝地板处的最大水平温差分别达0.92 ℃(舍B)和2.11 ℃(舍A),而两栋舍南侧的水平温差分别为1.33 ℃(舍B)和1.71 ℃(舍A),封堵舍B相较舍A温差降低了0.36 ℃。从表1也可看出,相对湿度与温度的分布规律基本相反。
2.3 漏缝地板及下部空间结构的热成像图
冬季漏缝地板下部空间及漏缝地板处的红外热像图如图3所示。从图3a、3b可知,舍A漏缝地板上侧表面温度为-4.2 ℃,而封堵舍B为-3.6 ℃。另外,与漏缝地板相邻的土地面温度高于漏缝地板表面温度,舍A、B素土地面的温度分别为-2.3 ℃、-1.7 ℃。由图3c、3d可知,舍A漏缝地板下侧表面温度为-4.1 ℃,粪沟底部温度为-6.2 ℃,温差2.1 ℃,且最低温度为-9.3 ℃(侧壁)。图3c、3d可知,封堵的舍B漏缝地板下侧表面温度为-3.6 ℃,粪沟底部-4.3 ℃,温差仅0.7 ℃,侧壁温度最低,为-7.2 ℃。
2.4 羊舍出粪口处的风速以及风寒温度的日动态变化
冬季2栋舍出粪口风速及WCT的动态变化曲线如图4所示,两栋舍的风速差异显著(<0.05)。舍A日均风速为0.216 m/s,最高达0.682 m/s,而舍B日均风速仅0.005 m/s,且A舍风速于22:00—次日5:30保持较高水平,达0.318 m/s。而舍A和舍B的日均WCT分别为-5.02和-4.10 ℃,舍A 最低降至-8.86 ℃,且各时间段WCT均表现为舍B高于舍A(<0.05)。
3 讨 论
3.1 冬季漏缝地板羊舍温热参数的时空分布规律
中国北方地区春冬季节气候寒冷,持续的低温不仅给家畜生产带来较大的经济损失,并且对畜体的健康和免疫造成一定的影响[14-15]。本研究结果表明,羊舍采用传统漏缝地板结构可使冬季舍内的日均温降至-3.07 ℃,而漏缝地板处的均温更低达-3.93 ℃,全天7:30时温度最低,仅-7.40 ℃,且每天有16.0 h温度低于-3 ℃。采用聚乙烯材料对羊舍西侧出粪口进行密闭封堵后,舍内温度明显提高,漏缝地板处日均温可提高0.49 ℃。已报道文献指出,绵羊的最适温度为-3~23 ℃,家畜长时间处于低温环境中会抑制其感觉神经和运动神经功能,甚至可能发生不可逆损伤[16-18],并且家畜在寒冷条件下躺卧时间会减少,运动和进食时间延长,通过加快机体代谢以增加对外界环境的适应性。也有研究认为,绵羊处于急性冷应激条件下,机体会消耗部分脂肪以提供能量适应外界环境的变化,这势必降低了机体对能量的利用效率[19]。
本研究结果中漏缝地板舍垂直空间的温湿度差异较大,传统漏缝地板舍的地板处与其漏缝地板上方环境温度相差达1.71 ℃,通过对出粪口封堵可缩小温差。从漏缝地板下部空间的红外热成像图可以看出,漏缝地板下部空间的温度分布极不均匀,呈现漏缝地板下表面高于粪坑底部温度,上下温差可相差2.1 ℃。红外热像仪是基于辐射热能分布的数值,包括目标自身发出的能量以及周围环境通过物体表面反射的能量[20-21],利过红外热成像技术可对室内围护结构进行测温并成像以反映室内的热环境[22],已有研究也发现,围护结构温度和环境温度密切相关,外围护结构内表面温度与舍内环境温度呈显著的线性正相关关系。本研究表明,密闭性差的漏缝地板出粪口冬季容易导致漏缝地板处温度降低,同时影响了漏缝地板上方环境温度的分布,简单封堵后舍内保温性能增加。据报道,相比素土地面,漏缝地板牛舍温度可降低0.73 ℃[23],采用棉帘围堵高架漏缝地板可显著增加地面附近的温度,有效缓解冷应激[11]。目前,关于漏缝地板羊舍内部空间的温湿参数变化规律尚无报道,漏缝地板是羊群活动和躺卧休息的区域,其重要性不言而喻。本研究中漏缝地板羊舍内水平空间的温湿度差异较大,舍内南半侧比北半侧的环境温度高,尤其漏缝地板处的温度,南北侧差异较大,传统漏缝地板舍南北两侧可相差0.59 ℃,出粪口封堵后,舍内地板表面的南北温差有所降低。从舍东西轴的水平方向看,2栋羊舍西侧温度最低,尤其是西北侧,主要是由于羊舍北侧采光差,再加上出粪口处的密封性差,这直接影响了西北侧的温度。通过对出粪口处封堵大大降低了漏缝地板处北半侧的水平温差,且提高了舍内西北侧漏缝地板上方的温度。因此,羊舍建筑采用漏缝地板模式时,应结合当地气候特点,特别要考虑冬季寒冷地区,避免因漏缝地板的强透风性引起羊的冷刺激。
3.2 漏缝地板舍冷环境的评价
温度、湿度和气流等温热参数是直接影响畜舍环境的主要因素[24]。关于温湿度评价冷环境的研究已有很多[25-26],风速作为舍内温热参数的重要指标,直接影响舍内的温热环境。有研究指出,围栏育肥牛场采用防风墙降低风速可提高肉牛的体感温度,有利于冬季肉牛养殖[27],关于羊冷刺激的研究也认为,低温环境下,随着风速增强引起的冷刺激可使绵羊日增重呈现负增长[28]。本研究中,传统漏缝地板出粪口处由于密闭性较差,风速显著高于封堵舍,这也造成了舍内温度的降低。目前将风速和温度相结合的WCT指标常常用来评价家畜的冷应激,-10~-25、-25~-45和-45~-59 ℃分别代表轻度、中度和高度冷应激,但也有研究认为,当风速不高于1.34 m/s时,WCT与实际温度相等[29-30],而Shitzer等[31]认为,风速为0~1.34 m/s时不应该被忽略,认为此时的WCT应该是逐渐变化的而不是突变的。本研究中2栋舍内风速均低于1.34 m/s,但封堵的舍出粪口处WCT明显提高,这可缓解羊冬季受到的冷刺激,降低羊的冷应激风险。尤其是对于羊群影响较大的漏缝地板处温度,由出粪口进入的冷风穿过漏缝地板缝隙直接直接刺激畜体,加快机体热量散失,容易引起羊群冷应激,虽然绵羊较为耐寒,但采用漏缝地板结构羊群仍存在遭受轻度冷应激的风险。从漏缝地板处热成像图也可以看出,板条缝隙间的温度相较于板条温度较低,并且漏缝地板板条温度比相邻的素土地面温度要低约1.9 ℃,可见,漏缝地板虽然能提高羊场的管理水平,但冬季地面的保温性能值得考虑,温度尤其是寒冷地区。Tölü等[32]研究认为,漏缝地板更适用于温带环境,认为板条之间的缝隙会增加机体热量散失,导致躺卧比例降低。Færevik等[33]研究也表明,冬季羊更喜欢躺卧于低导热性能的材料表面。相关研究也认为,地板材料与温度之间存在密切关系,低温条件下,相比漏缝地板,实木和床垫对畜体更有利[2,34]。因此,实际生产中应结合当地气候特点选择地面类型。
4 结 论
本研究通过对漏缝地板羊舍温热参数时空动态变化的分析得出,冬季漏缝地板羊舍出粪口及漏缝地板缝隙透风性较强,对舍内温热参数分布影响较大。主要结论如下:
1)传统漏缝地板舍温度日变化为-6.54~2.60 ℃(均温-3.07 ℃),出粪口封堵后日变化为-6.26~3.41 ℃(均温-2.76 ℃),两舍最大温差1.05 ℃。
2)传统漏缝地板羊舍垂直和水平温差均较大,地板上方1.5 m处的环境温度显著高于漏缝地板处的环境温度,温差达1.71 ℃,封堵后温差降低0.36 ℃;传统漏缝地板舍的地板处水平温差较大,距出粪口较近的西北侧地板处的温度最低,仅-5.46 ℃,封堵后提高1.33 ℃。
3)漏缝地板羊舍出粪口风速两舍差异显著(<0.05),舍A风速高于封堵舍B,分别为0.216 m/s和0.005 m/s。
[1] 王美芝,任方杰,臧建军,等. 保温灯变功率供暖对哺乳仔猪环境调控及节能效果[J]. 农业工程学报,2019,35(15):182-191.
Wang Meizhi, Ren Fangjie, Zang Jianjun, et al. Environmental control and energy saving effect of heat lamp with variable power heating for piglets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 182-191. (in Chinese with English abstract)
[2] 颜培实,李如治. 家畜环境卫生学[M]. 北京:高等教育出版社,2011.
[3] 臧强,李保明,施正香,等. 夏季运动场遮阳对舍饲小尾寒羊行为和生理指标的影响[J]. 农业工程学报,2006,22(4):143-147.
Zang Qiang, Li Baoming, Shi Zhengxiang, et al. Effects of sheepcot shade on behavior and physiological indexes of Chinese little fat-tailed sheep in housing system during summer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(4): 143-147. (in Chinese with English abstract)
[4] Aarnink A J A, Van den Berg A J, Keen A, et al. Effect of slatted floor area on ammonia emission and on the excretory and lying behaviour of growing pigs[J]. Journal of Agricultural Engineering Research, 1996, 64(4): 299-310.
[5] Aarnink A J A, Swierstra D, Van den Berg A J, et al. Effect of type of slatted floor and degree of fouling of solid floor on ammonia emission rates from fattening piggeries[J]. Journal of Agricultural Engineering Research, 1997, 66(2): 93-102.
[6] Cai L, Yu J, Zhang J, et al. The effects of slatted floors and manure scraper systems on the concentrations and emission rates of ammonia, methane and carbon dioxide in goat buildings[J]. Small Ruminant Research, 2015, 132: 103-110.
[7] Magrin L, Gottardo F, Brscic M, et al. Health, behaviour and growth performance of Charolais and Limousin bulls fattened on different types of flooring[J]. Animal, 2019, 13(11): 2603-2611.
[8] Hinterhofer C, Ferguson J C, Apprich V, et al. Slatted floors and solid floors: Stress and strain on the bovine hoof capsule analyzed in finite element analysis[J]. Journal of Dairy Science, 2006, 89(1): 155-162.
[9] 戚咸理,黄兴国,陈铁桥. 改善畜床环境对减小猪肢蹄损伤发病率影响的研究[J]. 农业工程学报,2003,19(2):203-206.
Qin Xianli, Hang Xingguo, Chen Tieqiao, et al. Influence of improved environmental conditions of stall floors on incidence rate of foot and limb injuries among sows[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(2): 203-206. (in Chinese with English abstract)
[10] Jørgensen G H M, Johanssen J R E, Bøe K E. Preference in shorn sheep for different types of slatted flooring at low ambient temperatures[J]. Small Ruminant Research, 2017, 153: 17-22.
[11] 王超,张会文,赵娟娟,等. 不同地面类型对育肥羊生长性能、养分表观消化率和血清生化指标的影响[J]. 动物营养学报,2020,32(6):2730-2737.
Wang Chao, Zhang Huiwen, Zhao Juanjuan, et al. Effects of different floor types on growth performance, nutrient apparent digestibilities and serum biochemical parameters of fattening sheep[J]. Chinese Journal of Animal Nutrition, 2020, 32(6): 2730-2737. (in Chinese with English abstract)
[12] Hernández-Cortazar I B, Jiménez-Coello M, Acosta-Viana K Y, et al. Comparing the dynamics of Toxoplasma gondii seroconversion in growing sheep kept on raised slatted floor cages or floor pens in Yucatan, Mexico[J]. Small Ruminant Research, 2014, 121(2/3): 400-403.
[13] Graunke K I, Schuster T, Lidfors L M. Influence of weather on the behaviour of outdoor-wintered beef cattle in Scandinavia[J]. Livestock Science, 2011, 136(2/3): 247-255.
[14] 陈浩,敖日格乐,王纯洁,等. 慢性冷应激对放牧蒙古母牛血清酶活力、蛋白代谢及血清激素分泌的影响[J]. 中国农业大学学报,2019,24(10):47-54.
Chen Hao, Aorigele, Wang Chunjie, et al. Effects of chronic cold stress on the serum enzyme activity, protein metabolism and serum hormone secretion of grazing Mongolian cows[J]. Journal of China Agricultural University, 2019, 24(10): 47-54. (in Chinese with English abstract)
[15] 高静雯,汪骁轩,魏殿华,等. 强冷应激对阿勒泰羔羊血清IgG、皮质醇及小肠免疫相关细胞的影响[J]. 中国兽医学报,2019,39(5):967-974.
Gao Jingwen, Wang Xiaoxuan, Wei Dianhua, et al. Effect of severe cold stress on serum IgG, cortisol concentration and intestinal immune-related cell in Altay lambs[J]. Chinese Journal of Veterinary Science, 2019, 39(5): 967-974. (in Chinese with English abstract)
[16] 赵有璋. 羊生产学[M]. 北京:中国农业出版社,2011.
[17] Hangalapura B N, Kaiser M G, van der Poel J J, et al. Cold stress equally enhances in vivo pro-inflammatory cytokine gene expression in chicken lines divergently selected for antibody responses[J]. Developmental & Comparative Immunology, 2006, 30(5): 503-511.
[18] Westfall T C, Yang C L, Chen X, et al. A novel mechanism prevents the development of hypertension during chronic cold stress[J]. Autonomic and Autacoid Pharmacology, 2005, 25(4): 171-177.
[19] 汪骁轩,高静雯,魏殿华,等. 强冷应激对阿勒泰及杂交种羔羊脂质代谢相关基因mRNA表达量及脂肪沉积的影响[J]. 中国畜牧杂志,2020,56(3):51-56.
Wang Xiaoxuan, Gao Jingwen, Wei Dianhua, et al. Effects of strong cold stress on mRNA expression of lipid metabolism related genes and fat changes in Altay and Hybrid Sheep[J]. Chinese Journal of Animal Science, 2020, 56(3): 51-56. (in Chinese with English abstract)
[20] Kylili A, Fokaides P A, Christou P, et al. Infrared thermography (IRT) applications for building diagnostics: A review[J]. Applied Energy, 2014, 134: 531-549.
[21] Balaras C A, Argiriou A A. Infrared thermography for building diagnostics[J]. Energy & Buildings, 2002, 34(2): 171-183.
[22] Lu X, Memari A. Application of infrared thermography for in-situ determination of building envelope thermal properties[J]. Journal of Building Engineering, 2019, 26: 100885.
[23] 赵婉莹,许立新,王朝元,等. 不同地面形式自然通风奶牛舍冬季温室气体和氨气排放量[J]. 中国农业大学学报,2020,25(1):142-151.
Zhao Wanying, Xu Lixin, Wang Chaoyuan, et al. Greenhouse gas and ammonia emissions of naturally ventilated cowsheds with different floor types in winter[J]. Journal of China Agricultural University, 2020, 25(1): 142-151. (in Chinese with English abstract)
[24] 于桐,陈昭辉,任方杰,等. 寒冷地区冬季牛舍通风参数及应用效果研究[J]. 中国畜牧杂志,2020,56(6):142-149.
Yu Tong, Chen Zhaohui, Ren Fangjie, et al. Study on the ventilation parameters and application effect of beef cattle barn in winter of cold Area[J]. Chinese Journal of Animal Science, 2020, 56(6): 142-149. (in Chinese with English abstract)
[25] Carabano M J, Logar B, Bormann J, et al. Modeling heat stress under different environmental conditions[J]. Journal of Dairy Science, 2016, 99(5): 3798-3814.
[26] Rathwa S D, Vasava A A, Pathan M M, et al. Effect of season on physiological, biochemical, hormonal, and oxidative stress parameters of indigenous sheep[J]. Veterinary World, 2017, 10(6): 650-654.
[27] 熊浩哲,陈昭辉,徐一洺,等. 张掖地区围栏育肥牛场防风墙后不同风速对肉牛场环境及肉牛生产性能的影响[J]. 中国畜牧杂志,2019,55(5):107-111.
Xiong Haozhe, Chen Zhaohui, Xu Yiming, et al. Effect of windbreak wall in finishing farm on performance of beef cattle in Zhangye district[J]. Chinese Journal of Animal Science, 2019, 55(5): 107-111. (in Chinese with English abstract)
[28] 张士军. 低温环境风速对绵羊养分代谢及血清生理生化指标的影响[D]. 杨凌:西北农林科技大学,2019.
Zhang Shijun. Effect of Windy Velocity on Nutrient Metabolism and Serum Physiological and Biochemical Indexes of Sheep[D]. Yangling: Northwest A&F University, 2019. (in Chinese with English abstract)
[29] Tucker C B, Rogers A R, Verkerk G A, et al. Effects of shelter and body condition on the behaviour and physiology of dairy cattle in winter[J]. Applied Animal Behaviour Science, 2007, 105(1/3): 1-13.
[30] Mekis É, Vincent L A, Shephard M W, et al. Observed trends in severe weather conditions based on humidex, wind chill, and heavy rainfall events in Canada for 1953–2012[J]. Atmosphere-Ocean, 2015, 53(4): 383-397.
[31] Shitzer A, De Dear R. Inconsistencies in the “new” windchill chart at low wind speeds[J]. Journal of Applied Meteorology and Climatology, 2006, 45(5): 787-790.
[32] Tölü C, Savaş T. Dairy goat usage of flooring types varied by material, slope and slat width[J]. Applied Animal Behaviour Science, 2019, 215: 37-44.
[33] Færevik G, Andersen I L, Bøe K E. Preferences of sheep for different types of pen flooring[J]. Applied Animal Behaviour Science, 2005, 90(3/4): 265-276.
[34] Bøe K E, Andersen I L, Buisson L, et al. Flooring preferences in dairy goats at moderate and low ambient temperature[J]. Applied Animal Behaviour Science, 2007, 108(1/2): 45-57.
Spatio-temporal distribution of thermal parameters in sheep house with slatted floor in winter
Zhao Shoupei1, Li Xuemei1, Sun Xinsheng2, Che Dalu1, Zhang Huiwen3, Wang Xinfang4, Gao Yuhong1※, Cheng Sucai5
(1.,,071001,;2.,,071001,; 3.,067000,;4.,050035,5.,065000,)
The slatted floor was widely used in a sheep house for cold winter at present. The objective of this study was to investigate the spatial and temporal distribution of thermal parameters in a closed sheep house with a slatted floor in winter in a cold region. Two sheep houses with slatted floors (House A and B) with the same structure were selected in the north-south direction. The manure outlet of House A was not blocked, where that of House B was blocked. The temperature and humidity in the upper space of two slatted floors were continuously and dynamically measured in time and space (horizontal and vertical). A two-month test was carried out to measure the key environmental parameters. An infrared thermal imaging device was used to systematically analyze the temperature in the lower space of the slatted floor. The results showed that: 1) There was no difference in the average daily Temperature (Ta) or Relative Humidity (RH) between two houses (>0.05), with the Ta of -3.07 ℃ and the RH of 38.08% in House A. However, there was an increasing trend in the Ta at the fecal outlet of House B, compared with House A, revealing an average Ta of -2.76 ℃ and a maximum Ta difference of 1.05 ℃ between two houses. 2) the Ta at 1.5 m above floor (1.5) was higher than that at floor (0) (<0.01) in the vertical distribution. Specifically, the difference was 1.71 ℃ in House A, and decreased to 1.35 ℃ in House B. The average0in House B increased by 0.49 ℃, compared with House A. In addition, the lowest0in House A was -7.40 ℃, and the0was lower than -3 ℃ for 16.0 h every day. 3) In the horizontal direction, the Ta on the south side in both houses was higher than that on the north side. s lower than -3 ℃ for 16.0 h every day. 4) From horizontal, the south-side Ta in both houses was higher than the north-side. Particularly at the slatted floor, the difference between north- and south-side Ta reached to 0.59 ℃ in House A and 0.39 ℃ in House B. Moreover, the horizontal difference of Ta was obvious in the east-west direction, showing the west-side Ta was the lowest. Particularly on the west-north side, the horizontal temperature Ta difference reached 2.11 ℃in House A, whereas, the difference decreased to 0.92 ℃ in House B. Consequently, the Ta at the outlet on the north-west side was the lowest in both houses, where the0and1.5in House B increased by 1.33 and 0.47°C, respectively, compared with House A. 5) In infrared thermography of enclosure under the slatted floor, the Ta difference was 2.1 ℃ between the slatted floor and ditch bottom in House A, while the difference in House B dropped to 0.7 ℃. Moreover, the side wall Ta of the ditch in two houses was the lowest among all structures under floor, with -9.3 ℃ in House A and -7.2 ℃ in House B. 6) The wind chill temperature (WCT) in House B was higher than that in House A (<0.05). The wind speed at the fecal outlet of house A was higher (<0.05) than that of House B, reaching 0.682 m/s. The fecal outlet was sealed in a slatted-floor house, further increased the indoor Ta, while decreased both horizontal and vertical Ta difference. The finding can provide strong support to the airtightness and heat preservation at the fecal outlet when the slatted floor was used in the sheep house.
temperature; humidity; wind speed; sheep house; slatted floor
10.11975/j.issn.1002-6819.2021.10.019
S815.9
A
1002-6819(2021)-10-0159-07
赵寿培,李雪梅,孙新胜,等. 冬季漏缝地板羊舍温热参数的时空分布规律[J]. 农业工程学报,2021,37(10):159-165.doi:10.11975/j.issn.1002-6819.2021.10.019 http://www.tcsae.org
Zhao Shoupei, Li Xuemei, Sun Xinsheng, et al. Spatio-temporal distribution of thermal parameters in sheep house with slatted floor in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 159-165. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.019 http://www.tcsae.org
2020-11-18
2021-02-20
河北省重点研发计划项目“规模化羊场的应激(冷、热)评价及绿色防控关键技术研究与示范”(20326612D);河北省现代农业产业技术体系羊产业创新团队建设专项(HBCT2018140205);河北省高等学校科学技术研究项目(ZD2021323)
赵寿培,研究方向为动物营养与环境工程。Email:1406932357@qq.com
高玉红,博士,教授,研究方向为畜禽环境控制和环境工程。Email:gyhsxs0209@126.com
中国农业工程学会会员:高玉红(中国农业工程学会畜牧工程分会理事:10127)