绿洲灌区免耕一膜两年用玉米密植的水分承载潜力
2021-09-02张展军杨宏伟樊志龙于爱忠胡发龙殷文范虹郭瑶柴强赵财
张展军,杨宏伟,樊志龙,于爱忠,胡发龙,殷文,范虹,郭瑶,柴强,赵财
绿洲灌区免耕一膜两年用玉米密植的水分承载潜力
张展军,杨宏伟,樊志龙,于爱忠,胡发龙,殷文,范虹,郭瑶,柴强,赵财
甘肃农业大学农学院/甘肃省干旱生境作物学重点实验室,兰州 730070
【】针对绿洲灌区资源性缺水严重,传统玉米生产模式地膜用量和耗水量大等问题,探讨通过免耕一膜两年用集成密植技术提高水分利用效率的可行性,以期为构建试区地膜减量玉米高效生产技术提供理论支撑。2017—2019年,在河西绿洲灌区设置耕作措施(传统覆膜CT,一膜两年用NT)和密度(78 000株/hm2,低;103 500株/hm2,中;129 000株/hm2,高)两因素田间试验,研究不同处理的水分利用特征和产量表现,以耗水量的多少、产量的高低和水分利用效率的大小为依据,探索在2种耕作措施下可以承载作物最大密度的土壤水分,即水分承载潜力,明确免耕一膜两年用对玉米密植的水分承载潜力。NT较CT土壤播前含水量和贮水量分别提高11.6%—14.0%和19.4%—26.0%,利于玉米密植。NT与CT相比,中、低密度玉米全生育期总耗水量无显著差异,而高密度玉米全生育期总耗水量增加了4.7%;随玉米密度增加,玉米全生育期总耗水量随之增大,但总棵间蒸发量和蒸散比随之下降;NT和CT条件下,高、中密度较低密度玉米全生育期总耗水量分别增加了10.7%、5.2%和7.4%、4.6%,即从耗水量角度讲,NT支撑玉米高密度的水分承载潜力较CT下降。密度相同时,NT和CT玉米籽粒产量差异不显著;NT条件下高、中密度较低密度产量提高了6.1%—19.0%、10.9—25.0%,CT条件下高、中密度产量较低密度提高了4.8%—5.8%、8.8%—8.9%,中密度利于玉米高产,从产量角度讲,NT较CT支撑高密度的水分承载力未下降。相同密度下,NT和CT玉米水分利用效率无差异;密度对玉米水分利用效率影响显著,NT与CT条件下,中密度较高、低密度水分利用效率分别提高9.8%—10.8%、6.3%—17.8%与5.9%—7.1%、4.3%—4.7%,中密度下水分利用效率最大,从水分利用效率角度讲2种模式都不足以承载高密度。在绿洲灌区,免耕一膜两年用与传统覆膜具有相同的通过增密获得同等籽粒产量和水分利用效率的潜力,但免耕一膜两年用玉米全生育期总耗水量较大;免耕一膜两年用结合103 500株/hm2的密度可作为绿洲灌区地膜减量和玉米高产、水分高效利用技术推广应用。
一膜两年用;玉米;种植密度;耗水量;水分利用效率;水分承载潜力
0 引言
【研究意义】水资源严重匮乏是农业生产的重要制约因素,如何在现有的水分供应条件下发展高效节水型农业尤为重要[1-2],开展以水资源高效利用为前提的节水型农业成为解决农业缺水的迫切之需[3-4]。农作物保持高产需要消耗大量水资源,对土壤水分安全带来严重威胁,水分承载潜力是衡量一个地区农田土壤水分承载作物的最大负荷,是水分所能维持作物健康生长的最大密度,是衡量土壤水分安全供应的重要依据;在干旱与半干旱地区,地膜覆盖是蓄水保墒的主要农艺措施[5],但近年来地膜大量使用已对作物和农田生态环境造成严重威胁[6-7]。因此如何在地膜减量的前提下衡量农田土壤水分承载潜力,对土壤水资源高效利用和农业可持续发展具有重要意义[8-9]。【前人研究进展】种植密度是影响作物产量的关键因子,适度增密是玉米获得较高目标产量的有效途径之一[10],也为玉米栽培技术的创新提供了方向[11]。研究指出,适宜的种植密度受品种特性[12-13]、种植模式[14]、土壤质量[15]、水肥[4,16]等多个因素的影响。其中,水分供给充足时,适当增密使得作物总耗水与蒸腾耗水增加[17]、无效蒸发减少[13]、水分利用效率提高[4]。但供水有限时,密度过大会加剧土壤水分消耗,引起土壤干燥化,导致土壤水分负平衡[18]。因此,合理的作物密度应在水分承载阈值之内。在诸多优化土壤水分条件的农艺措施中,地膜覆盖能够有效地减少表层土壤水分散失,提高水分含量[19],对提高水分承载力有重要作用[20]。但地膜使用成本过高,造成土壤污染严重是目前面临的重大问题之一[6],传统覆膜技术亟需改良。而免耕一膜两年用减少地膜的投入和机械的扰动[21],具有与覆新膜同等的保水效果[3]。因此,明确免耕一膜两年用条件下玉米栽培密度阈值且保证玉米水分高效利用的农艺措施,是提高水分承载潜力亟需解决的问题。【本研究切入点】在绿洲灌区,集成免耕一膜两年用及密植技术的应用研究较少,能否通过优化免耕措施下作物耗水特性使其具有承载密植作物水分承载潜力,进而明确2种耕作措施基于水分承载潜力的耐密阈值还有待研究。【拟解决的关键问题】本研究将免耕一膜两年用与密植同步集成应用于玉米栽培中,分析不同处理玉米水分利用特征和产量差异,从耗水特性、产量表现和农田水分利用效率3个方面揭示免耕一膜两年用玉米密植的水分承载潜力,以期为构建地膜减量和水资源高效利用技术提供理论依据。
1 材料与方法
1.1 试验区概况
试验于2017年4月至2019年10月,在甘肃农业大学绿洲农业综合试验站进行(37°30′N,103°5′E,海拔1 506 m)。该区灌溉水资源有限,多年平均降水量为156 mm,且主要集中在7—9月份,年蒸发量>2 000 mm。玉米作为该试验区主栽作物,采用覆膜种植,主要以传统翻耕为主。2018与2019年玉米全生育期降水量分别为244.4 mm与171.3 mm,如图1所示。
图1 2018—2019年研究区降水和气温变化
1.2 试验设计
本试验为裂区设计,主区为2种耕作措施:传统覆膜(CT),即传统覆膜在玉米收获后回收残膜进行深翻耕,到春季播种时再进行旋耕耙磨后覆盖新膜;一膜两年用(NT),即在玉米收获后免耕,保持地膜完整度高于70%。副区为3个种植密度,即当地常规密度78 000株/hm2(低密度M1)、103 500株/hm2(中密度M2)、129 000株/hm2(高密度M3),共6个处理,重复3次,小区面积为42 m2(7 m×6 m)。2018年,4月21日播种,9月28日收获;2019年,4月19日播种,9月29日收获。供试玉米品种为“先玉335”,采用人工穴播机穴播。2017年进行预备试验,在地膜玉米收获后,保留地膜70%的完整度,为2018年一膜两年用做准备;2018年试验中传统覆膜处理玉米收获后,免耕留膜,为2019年免耕一膜两年用。
氮肥为尿素,施N 360 kg·hm-2,按基肥﹕大喇叭口期追肥﹕灌浆期追肥=3﹕5﹕2分施,施磷肥(磷酸二铵)180 kg P2O5·hm-2,全作基肥一次施入。基肥一膜两年用同传统覆膜一起采用穴播枪施肥,追肥时采用膜下滴灌水肥一体化技术。玉米生育期内总灌水量为405 mm,冬储灌为120 mm,灌溉及施肥制度与当地高产田保持一致。
1.3 测定指标和方法
采用烘干法测0—30 cm土层含水量,30—60 cm、60—90 cm、90—120 cm 3个土层用水分中子仪(NMM503DR,CA,USA)测定,每个土层测3次,3次重复的平均值作为每个处理的土壤含水量。
贮水量SWS=θ×h×r×10。式中,SWS为土壤贮水量(mm),θ为土壤含水量(%),h为土层深度(cm),r为土壤容重(g·cm-3),10为单位换算系数。
耗水量采用水分平衡公式计算=+[22]。式中,为时段作物耗水量;为阶段的降水量;为阶段灌水量;为时段末与时段初的土壤贮水量之差,mm。由于本试验区水资源匮乏,土层深度1.2 m,试验区地下水在30 m以下,节水灌溉量较少,因而忽略了渗漏量和地下上升水的影响。
棵间蒸发量采用微型蒸渗仪(Micro-lysimeter,MLS)测定[23],每次取土时将其垂直压入作物行间土壤内,使其顶面与地面齐平,取原状土,然后用尼龙网布封底,另用PVC管做成外套,固定行间,使其表面与附近土壤持平。于玉米出苗期每3 d测定1次,微型蒸发器中土样每减少1 g相当于蒸发水分0.1051 mm,降雨、灌水后立即换土。
耗水结构(E/ET)用棵间蒸发量(E)与总耗水量(ET)之比量化。
产量测定在玉米成熟后,以小区为单位收获,用种子水分仪测定籽粒含水量,计算产量时籽粒含水量为14%。
水分利用效率WUE=GY/ET。式中,WUE为水分利用效率(kg·hm-2·mm-1),GY为籽粒产量(kg·hm-2),ET为生育期总耗水量(mm)。
1.4 统计分析
本试验数据采用Microsoft Excel 2010和SPSS 21.0统计软件进行整理与统计分析,处理间的显著性检验采用LSD最小显著差异法(α=0.05)、互作效应分析。
2 结果
2.1 不同处理下玉米农田土壤含水量和贮水量的差异
一膜两年用(NT)较传统覆膜(CT)显著提高了玉米播前土壤含水量和贮水量,种植密度、耕作措施×种植密度互作效应对二者影响不显著(表1)。2年中玉米播前土壤含水量和贮水量NT较CT分别增加11.6%—14.0%和19.4%—26.0%。说明免耕一膜两年用有效抑制土地休闲期水分无效蒸发,储蓄播前土壤水分,具有提供玉米密植水分承载潜力的水分供给优势。
一膜两年用较传统覆膜显著提高了玉米收获后的土壤含水量和贮水量,种植密度对收获后土壤含水量和贮水量影响显著,但耕作措施与种植密度的互作效应不显著(表1)。低密度下玉米收获期土壤含水量和贮水量NT较CT显著增加14.8%和12.7%,中密度下NT较CT显著增加12.3%和10.4%,高密度下NT较CT增加6.3%和7.6%。相同耕作措施下,玉米收获后土壤含水量低密度较中、高密度增加8.7%、14.2%,中密度较高密度增加5.1%;贮水量低密度较中、高密度增加10.2%、15.1%,中密度较高密度增加4.4%。
2.2 不同耕作措施和种植密度下玉米总耗水量
免耕一膜两年用较传统覆膜未增加玉米总耗水量,玉米总耗水量随种植密度的增加而升高,耕作措施和种植密度二者互作效应不显著(表1)。中、低密度下总耗水量在NT和CT条件下差异不显著,而高密度下总耗水量NT较CT显著增加4.7%。CT条件下,玉米总耗水量高、中密度较低密度分别增大7.4%和4.6%;NT条件下,总耗水量高、中密度较低密度分别增大10.7%、5.2%,高密度较中密度显著增加5.2%。说明免耕一膜两年用较传统覆膜处理,高密度玉米耗水较大,对土壤水分安全造成威胁,不具有支撑高密度的水分承载力。
表1 不同耕作措施及种植密度下玉米的耗水特性
CTM1、CTM2、CTM3代表传统覆膜的低、中、高密度;NTM1、NTM2、NTM3代表一膜两年用的低、中、高密度。表中的含水量和贮水量均为0—120 cm土层。NS、**分别表示无显著差异及在0.01水平上差异显著。同一列数字后的不同小写字母表示在0.05水平上差异显著
CTM1, CTM2, CTM3represent the low, medium, and high density of conventional plastic film mulching; NM1, NM2, NM3represent the low, medium, and high density of no-tillage with plastic film mulching for 2-year. The soil water content and soil water storage is 0-120 cm soil layer in the table. NS, ** mean non-significant or significant at<0.01, respectively. Different lowercase letters in a column represent significant differences at 0.05 level
2.3 不同耕作措施和种植密度下日棵间蒸发变化
耕作措施对玉米各生育阶段棵间蒸发量影响显著,同一耕作措施下玉米各生育阶段日棵间蒸发量低密度高于高、中密度(图2)。玉米播种至拔节期,高、中、低密度下NT较CT棵间蒸发量增加17.0%、15.6%、15.7%。拔节期后,高、中、低密度下NT较CT棵间蒸发量降低5.9%、5.4%、4.8%。在玉米生长初期幼苗较小,一膜两年用保水效果低于新膜,但随着生育进程的推进植株生长较快,耕作措施对日棵间蒸发影响不显著。
耕作措施对总棵间蒸发量影响不显著,随种植密度增加总棵间蒸发量逐渐减小,二者对总棵间蒸发量的互作效应不显著(图3)。高、中、低密度下,玉米全生育期棵间蒸发量在NT和CT条件下差异不显著;耕作措施相同时,总棵间蒸发量高、中密度较低密度分别显著降低12.5%、8.8%,高密度和中密度之间没有显著差异。可见,免耕一膜两年用具有同传统覆膜相同的支撑密植作物的水分条件。
2.4 不同耕作措施和种植密度下总蒸散比变化
耕作措施对总蒸散比影响不显著,总蒸散比随种植密度的增加而下降,耕作措施和种植密度二者对其互作效应不显著(图4)。高、中、低密度下,总蒸散NT较CT并无显著差异;同一耕作措施下,高、中密度较低密度蒸散比显著降低19.9%、12.9%,高密度与中密度差异不显著。说明免耕一膜两年用较传统覆膜具有同等支撑密植作物生产的有效水分优势。
2.5 不同耕作措施和种植密度下玉米的籽粒产量
耕作措施对玉米籽粒产量影响不显著,随着种植密度增加籽粒产量增加,耕作措施和种植密度对籽粒产量互作效应不显著(图5)。NT和CT条件下,玉米籽粒产量在高、中、低密度下差异显著;CT条件下,高、中密度较低密度玉米籽粒产量显著增加4.8%—5.8%、8.8%—8.9%;NT条件下,高、中密度较低密度玉米籽粒产量显著增加6.1%—19.0%、10.9%—25.0%,但2019年中密度较高密度籽粒产量显著提高4.5%。说明中密度玉米栽培具有较高增产潜力,且免耕一膜两年用较传统覆膜承载密植的水分承载潜力并未下降。
图2 不同耕作措施和种植密度处理下玉米全生育期日棵间蒸发动态
不同小写字母表示处理间差异显著(P<0.05)。下同
图4 不同耕作措施及种植密度下玉米总蒸散比
2.6 不同耕作措施和种植密度下水分利用效率的变化
耕作措施对水分利用效率影响不显著,而种植密度对水分利用效率影响显著,耕作措施和种植密度二者互作效应不显著(图6)。高、中、低密度下,水分利用效率在NT和CT条件下差异不显著;CT条件下,中密度较高、低密度水分利用效率提高5.9%—7.1%、4.3%—4.7%,NT条件下,中密度较高、低密度水分利用效率提高9.8%—10.8%、6.3%—17.8%。可见,2种耕作措施下,中密度处理具有较高水分利用效率,且一膜两年用与传统覆膜支撑高密植作物的水分承载潜力下降。
3 讨论
3.1 免耕一膜两年用及密植与耗水特性的关系
免耕提高了玉米生育时期土壤含水量和贮水量,改善了播前土壤水分环境,提高土壤保水能力,满足玉米生长前期对水分的需求[24-25]。同时研究表明,一膜两年覆盖有效提高播前土壤含水量[21],本研究与其结果一致。以上研究得出免耕一膜两年用较传统覆膜显著提高播前土壤含水量和贮水量11.6%—14.0%和19.4%—26.0%,由于前茬作物收获后土地休闲期间免耕一膜两年用减少了地表裸露,降低土壤水分无效蒸发,保墒蓄水,提高耕层土壤的含水量[3,26],具有提高水分承载潜力的水分供给优势。
图6 不同耕作措施及种植密度下水分利用效率
免耕有效降低作物生育期的总耗水量,对协调系统的降耗有显著的效果[27-28],有研究指出一膜两年用降低玉米拔节前的耗水量,具有与传统覆膜相当的保水效果[3,29]。本研究表明中、低密度下一膜两年用较传统覆膜未增加作物总耗水量,说明一膜两年用具有与传统覆膜相同的支撑密植作物水分承载潜力的效应。密度是影响作物生育期总耗水的关键因素之一,玉米全生育期耗水量与密度成正比[4,30]。本研究中,相同耕作措施下耗水量随密度增加而显著升高,其原因可能是种植密度增加导致作物群体增大,提高植物的蒸腾作用,导致作物的耗水量增加[4]。
降低棵间蒸发有效防止土壤无效水分散失,提高水分利用效率[31-32]。研究表明免耕减少作物生育前期棵间蒸发,增大作物生育后期蒸散比[33]。本研究中玉米拔节期前,一膜两年用日棵间蒸发量高于传统覆膜,拔节期后日棵间蒸发量低于传统覆膜,一膜两年用同传统覆膜具有支撑密植作物生产的水分优势,是因为在生育前期作物生长缓慢,新膜的覆盖程度大于旧膜,减少了土壤水分的无效蒸散,但随着生育进程推进植株生长较快,耕作措施对棵间蒸发影响不显著,一膜两年用均衡作物生育前期和生育后期棵间蒸发量。有研究指出,增加种植密度可以减少作物的棵间蒸发[4,13]。本研究中随着种植密度的增加,棵间蒸发和蒸散比呈下降趋势,其原因可能是作物蒸散比与叶面积指数呈负相关关系,增加作物种植密度可以调控叶面积指数,减少无效蒸散[34]。
3.2 免耕一膜两年用及密植对籽粒产量的影响
相关研究指出在有限灌水条件下,一膜两年用玉米产量与传统覆膜相当[21]。本研究中在种植密度一致时,一膜两年用具有同传统覆膜相当的密植增产潜力,可见一膜两年处理在环境保护,作物生长等方面适用。种植密度的调控可以改善作物水分利用效率,提高作物产量[35]。研究表明在适宜密度范围内作物产量随着密度增加而增加[4,36],超出此密度阈值会导致玉米单株的生长空间减小,进而玉米群体内个体之间对光资源和水资源等生态因子需求加剧,个体之间竞争剧烈,造成玉米产量降低[37]。王巧梅等[4]研究结果指出,玉米密度在99 000株/hm2达到最大的增产潜力,再增加种植密度时产量将不能显著增加。本研究中传统覆膜下,玉米籽粒产量中密度显著高于低密度,中密度与高密度的籽粒产量差异不显著;在2019年一膜两年用处理下,中密度下的籽粒产量显著高于高密度和低密度,主要原因可能是一膜两年用高密度作物在生育前期群体生长速率较快,耗水较大,导致土壤水分亏缺,影响玉米生育后期地上部生长发育,导致干物质向籽粒转移减少,引起产量降低。由此得出中密栽培增产潜力更大,且一膜两年用较传统覆膜未降低高密作物的水分承载力。
3.3 免耕一膜两年用及密植对水分利用效率的影响
地膜覆盖能够通过提高作物产量进而提高作物水分利用效率[38],一膜两年用具有与传统覆膜相当的水分利用效率[3]。有研究指出,高密度作物提高了水分利用效率[39],但也有研究表明,相比较高密度,中密度下作物水分利用效率达到最大[4]。本研究中一膜两年用具有与传统覆膜相同的水分利用效果,在相同耕作措施下中密度的水分利用效率最高。由此可以得出中密度可以有效地提高水分利用效率,且免耕一膜两年用与传统覆膜支撑高密作物的水分承载潜力下降。
4 结论
绿洲灌区免耕一膜两年用较传统覆膜未降低作物密植的水分承载潜力。与传统覆膜相比,一膜两年用显著提高了玉米播前土壤含水量和贮水量,提供了作物密植的水分条件。一膜两年用较传统覆膜未增加玉米全生育期耗水量、总的蒸散量和蒸散比;在相同耕作措施下,作物总耗水量随种植密度增加而升高;作物总棵间蒸发量、蒸散比随密度增加而降低。在耕作措施下籽粒产量差异不显著,中密度(103 500株/hm2)具有更大增产潜力;水分利用效率在耕作措施下没有差异,中密度下水分利用效率达到最高。在水资源紧缺的绿洲灌区,免耕一膜两年用和中密度可作为绿洲灌区地膜减量和玉米高产、水资源高效利用的一项措施。
[1] 杨飞, 李爱宁, 周翠萍, 黄家英. 兼业程度、农业水资源短缺感知与农户节水技术采用行为—基于陕西省农户的调查数据. 节水灌溉, 2019(5): 113-116.
YANG F, LI A N, ZHOU C P, HUANG J Y. Part-time employment, agricultural water shortage perception and water-saving technology adoption behavior of farmers—Based on the survey data of farmers in Shaanxi province. Water Saving Irrigation, 2019(5): 113-116. (in Chinese)
[2] 伍维模, 董合林, 王萍, 陈康谓, 危常洲. 水分与氮素对南疆膜下滴灌棉花水分利用效率与蒸腾速率的影响. 西北农业学报, 2006, 15(1): 11-15.
WU W M, DONG H L, WANG P, CHEN K W, WEI C Z. The effects of water and nitrogen on water use efficiency and transpiration rate in mulched-cotton by drip irrigation in South-Xinjiang. Acta Agriculturae Boreali-Occidentalis Sinica, 2006, 15(1): 11-15. (in Chinese)
[3] 张乃旭, 赵财, 赵良霞, 蔡莉娟, 王一帆, 柴强. 绿洲灌区一膜覆两年玉米的节水潜力. 作物学报, 2018, 44(6): 876-885.
ZHANG N X, ZHAO C, ZHAO L X, CAI L J, WANG Y F, CHAI Q. Water-saving potential for biennial mulched corn with same plastic film in oasis irrigation area. Acta Agronomica Sinica, 2018, 44(6): 876-885. (in Chinese)
[4] 王巧梅, 樊志龙, 赵彦华, 殷文, 柴强. 绿洲灌区不同密度玉米群体的耗水特性研究. 作物学报, 2017, 43(9): 1347-1356.
WANG Q M, FAN Z L, ZHAO Y H, YIN W, CHAI Q. Effect of planting density on water consumption characteristics of maize in oasis irrigation area. Acta Agronomica Sinica, 2017, 43(9): 1347-1356. (in Chinese)
[5] 孙仕军, 朱振闯, 陈志君, 杨丹, 张旭东. 不同颜色地膜和种植密度对春玉米田间地温、耗水及产量的影响. 中国农业科学, 2019, 52(19): 3323-3336.
SUN S J, ZHU Z C, CHEN Z J, YANG D, ZHANG X D. Effects of different colored plastic film mulching and planting density on soil temperature, evapotranspiration and yield of spring maize. Scientia Agricultura Sinica, 2019, 52(19): 3323-3336. (in Chinese)
[6] 樊志龙, 赵财, 刘畅, 于爱忠, 殷文, 胡发龙, 柴强. 一膜两年用少耕轮作对水氮减投小麦产量形成的促进效应. 中国农业科学, 2018, 51(19): 3651-3662.
FAN Z L, ZHAO C, LIU C, YU A Z, YIN W, HU F L, CHAI Q. Enhanced effect of two years plastic film mulching with reduced tillage on grain yield formation of wheat rotation under reduced irrigation and N application. Scientia Agricultura Sinica, 2018, 51(19): 3651-3662. (in Chinese)
[7] 严昌荣, 梅旭荣, 何文清, 郑盛华. 农用地膜残留污染的现状与防治. 农业工程学报, 2006, 22(11): 269-272.
YAN C R, MEI X R, HE W Q, ZHENG S H. Present situation of residue pollution of mulching plastic film and controlling measures. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(11): 269-272. (in Chinese)
[8] 郭忠升, 邵明安. 土壤水分植被承载力研究成果在实践中的应用. 自然资源学报, 2009, 24(12): 2187-2193.
GUO Z S, SHAO M A. Use of the theory of soil water carrying capacity for vegetation in practice. Journal of Natural Resources, 2009, 24(12): 2187-2193. (in Chinese)
[9] 谢军红, 柴强, 李玲玲, 张仁陟, 牛伊宁, 罗珠珠, 蔡立群. 黄土高原半干旱区不同覆膜连作玉米产量的水分承载时限研究. 中国农业科学, 2015, 48(8): 1558-1568.
XIE J H, CHAI Q, LI L L, ZHANG R Z, NIU Y N, LUO Z Z, CAI L Q. The time loading limitation of continuous cropping maize yield under different plastic film mulching modes in semi-arid region of Loess Plateau of China. Scientia Agricultura Sinica, 2015, 48(8): 1558-1568. (in Chinese)
[10] 陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36(7): 1153-1160.
CHEN C Y, HOU Y H, SUN R, ZHU P, DONG Z Q, ZHAO M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agronomica Sinica, 2010, 36(7): 1153-1160. (in Chinese)
[11] 周婷婷, 李军, 司政邦. 种植密度与品种类型对渭北旱地春玉米产量和光能利用的影响. 西北农林科技大学学报(自然科学版), 2015, 43(11): 54-62.
ZHOU T T, LI J, SI Z B. Effects of planting density and variety on growth and RUE of spring maize in Weibei highland. Journal of Northwest A & F University(Natural Science Edition), 2015, 43(11): 54-62. (in Chinese)
[12] TOLLENAAR M, LEE E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 2002, 75(2/3): 161-169.
[13] 王小林, 张岁岐, 王淑庆. 不同密度下品种间作对玉米水分平衡的影响. 中国生态农业学报, 2013, 21(2): 171-178.
WANG X L, ZHANG S Q, WANG S Q. Effects of cultivars intercropping on maize water balance under different planting densities.Chinese Journal of Eco-Agriculture, 2013, 21(2): 171-178. (in Chinese)
[14] LIU C A, JIN S L, ZHOU L M, JIA Y, LI F M, XIONG Y C, LI X G. Effects of plastic film mulch and tillage on maize productivity and soil parameters. European Journal of Agronomy, 2009, 31(4): 241-249.
[15] KUCHARIK C J. Contribution of planting date trends to increased maize yields in the Central United States. Agronomy Journal, 2008, 100(2): 328-336.
[16] 张平良, 郭天文, 刘晓伟, 李书田, 曾骏, 谭雪莲, 董博. 密度和施氮量互作对全膜双垄沟播玉米产量、氮素和水分利用效率的影响. 植物营养与肥料学报, 2019, 25(4): 579-590.
ZHANG P L, GUO T W, LIU X W, LI S T, ZENG J, TAN X L, DONG B. Effect of plant density and nitrogen application rate on yield, nitrogen and water use efficiencies of spring maize under whole plastic-film mulching and double-furrow sowing. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 579-590. (in Chinese)
[17] 张冬梅, 张伟, 陈琼, 黄学芳, 姜春霞, 韩彦龙, 刘恩科, 池宝亮. 种植密度对旱地玉米植株性状及耗水特性的影响. 玉米科学, 2014, 22(4): 102-108.
ZHANG D M, ZHANG W, CHEN Q, HUANG X F, JIANG C X, HAN Y L, LIU E K, CHI B L. Effects of planting density on plant traits and water consumption characteristics of dryland maize. Journal of Maize Sciences, 2014, 22(4): 102-108. (in Chinese)
[18] 樊廷录, 李永平, 李尚中, 刘世新, 王淑英, 马明生. 旱作地膜玉米密植增产用水效应及土壤水分时空变化. 中国农业科学, 2016, 49(19): 3721-3732.
FAN T L, LI Y P, LI S Z, LIU S X, WANG S Y, MA M S. Grain yield and water use efficiency and soil water changes of dryland corn with film mulching and close planting. Scientia Agricultura Sinica, 2016, 49(19): 3721-3732. (in Chinese)
[19] 翟治芬, 赵元忠, 景明, 张建华, 卢艳敏. 秸秆和地膜覆盖下春玉米农田腾发特征研究. 中国生态农业学报, 2010, 18(1): 62-66.
ZHAI Z F, ZHAO Y Z, JING M, ZHANG J H, LU Y M. Evapotranspiration characteristics of spring maize under film and straw mulch.Chinese Journal of Eco-Agriculture, 2010, 18(1): 62-66. (in Chinese)
[20] WANG Y P, LI X G, ZHU J, FAN C Y, KONG X J, TURNER N C, SIDDIQUE K H M, LI F M. Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agricultural and Forest Meteorology, 2016, 220: 160-169.
[21] 赵财, 陈桂平, 柴强, 殷文, 刘畅. 不同灌水水平下一膜两年覆盖的玉米农田土壤水分和经济效益分析. 干旱地区农业研究, 2017, 35(3): 1-6.
ZHAO C, CHEN G P, CHAI Q, YIN W, LIU C. Soil moisture and economic benefits of maize field by 2 years plastic film mulching under different irrigation levels.Agricultural Research in the Arid Areas, 2017, 35(3): 1-6. (in Chinese)
[22] CHAI Q, GAN Y T, TURNER N C, ZHANG R Z, YANG C, NIU Y N, SIDDIQUE K H M. Water-saving innovations in Chinese agriculture. Advances in Agronomy, 2014, 126: 149-201.
[23] 孙宏勇, 刘昌明, 张永强, 张喜英. 微型蒸发器测定土面蒸发的试验研究. 水利学报, 2004, 35(8): 114-118.
SUN H Y, LIU C M, ZHANG Y Q, ZHANG X Y. Study on soil evaporation by using micro-lysimeter.Journal of Hydraulic Engineering, 2004, 35(8): 114-118. (in Chinese)
[24] 赵亚丽, 薛志伟, 郭海斌, 穆心愿, 李潮海. 耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用效率的影响. 中国农业科学, 2014, 47(17): 3359-3371.
ZHAO Y L, XUE Z W, GUO H B, MU X Y, LI C H. Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system. Scientia Agricultura Sinica, 2014, 47(17): 3359-3371. (in Chinese)
[25] 刁生鹏, 高日平, 高宇, 任永峰, 赵沛义, 袁伟, 高学峰. 内蒙古黄土高原秸秆还田对玉米农田土壤水热状况及产量的影响. 作物杂志, 2019, 35(6): 83-89.
DIAO S P, GAO R P, GAO Y, REN Y F, ZHAO P Y, YUAN W, GAO X F. Effects of straw returning on soil hydrothermal and yield of maize in Loess Plateau of Inner Mongolia.Crops, 2019, 35(6): 83-89. (in Chinese)
[26] 彭文英. 免耕措施对土壤水分及利用效率的影响. 土壤通报, 2007(2): 379-383.
PENG W Y. Effect of no-tillage on soil water regime and water use efficiency. Chinese Journal of Soil Science, 2007(2): 379-383. (in Chinese)
[27] 胡发龙, 柴强, 甘延太, 殷文, 赵财, 冯福学. 少免耕及秸秆还田小麦间作玉米的碳排放与水分利用特征. 中国农业科学, 2016, 49(1): 120-131.
HU F L, CHAI Q, GAN Y T, YIN W, ZHAO C, FENG F X. Characteristics of soil carbon emission and water utilization in wheat/ maize intercropping with minimal/zero tillage and straw retention. Scientia Agricultura Sinica, 2016, 49(1): 120-131. (in Chinese)
[28] 殷文, 陈桂平, 柴强, 赵财, 冯福学, 于爱忠, 胡发龙, 郭瑶. 前茬小麦秸秆处理方式对河西走廊地膜覆盖玉米农田土壤水热特性的影响. 中国农业科学, 2016, 49(15): 2898-2908.
YIN W, CHEN G P, CHAI Q, ZHAO C, FENG F X, YU A Z, HU F L, GUO Y. Responses of soil water and temperature to previous wheat straw treatments in plastic film mulching maize field at Hexi corridor. Scientia Agricultura Sinica, 2016, 49(15): 2898-2908. (in Chinese)
[29] 蔡莉娟, 赵财, 冯福学, 于爱忠, 刘畅, 柴强. 一膜覆二年和灌水量对玉米间作豌豆水分利用效率的影响. 甘肃农业大学学报, 2018, 53(1): 29-34, 41.
CAI L J, ZHAO C, FENG F X, YU A Z, LIU C, CHAI Q. Effects of plastic film mulching for two years and irrigation amount on water use efficiency of maize-pea intercropping system.Journal of Gansu Agricultural University, 2018, 53(1): 29-34, 41. (in Chinese)
[30] 刘泉汝, 郎坤, 赵丹丹, 沈加印, 李全起, 韩惠芳. 秸秆覆盖和种植密度对夏玉米水分利用的影响. 排灌机械工程学报, 2013, 31(12): 1089-1094.
LIU Q R, LANG K, ZHAO D D, SHEN J Y, LI Q Q, HAN H F. Effects of straw mulching and plant density on water utilization of summer maize. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(12): 1089-1094. (in Chinese)
[31] 王新兵, 侯海鹏, 周宝元, 孙雪芳, 马玮, 赵明. 条带深松对不同密度玉米群体根系空间分布的调节效应. 作物学报, 2014, 40(12): 2136-2148.
WANG X B, HOU H P, ZHOU B Y, SUN X F, MA W, ZHAO M. Effect of strip subsoiling on population root spatial distribution of maize under different planting densities. Acta Agronomica Sinica, 2014, 40(12): 2136-2148. (in Chinese)
[32] 滕园园, 赵财, 柴强, 胡发龙, 冯福学. 氮肥后移对玉米间作豌豆耗水特性的调控效应. 作物学报, 2016, 42(3): 446-455.
TENG Y Y, ZHAO C, CHAI Q, HU F L, FENG F X. Effects of postponing nitrogen topdressing on water use characteristics of maize-pea intercropping system.Acta Agronomica Sinica, 2016, 42(3): 446-455. (in Chinese)
[33] 张海林, 陈阜, 秦耀东, 朱文珊. 覆盖免耕夏玉米耗水特性的研究. 农业工程学报, 2002, 18(2): 36-40.
ZHANG H L, CHEN F, QIN Y D, ZHU W S. Water consumption characteristics for summer corn under no-tillage with mulch.Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(2): 36-40. (in Chinese)
[34] 王健, 蔡焕杰, 康燕霞, 陈凤. 夏玉米棵间土面蒸发与蒸发蒸腾比例研究. 农业工程学报, 2007, 23(4): 17-22.
WANG J, CAI H J, KANG Y X, CHEN F. Ratio of soil evaporation to the evapotranspiration for summer maize field.Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(4): 17-22. (in Chinese)
[35] HAUGGAARD-NIELSEN H, ANDERSEN M K, JORNSGAARD B, JENSEN E S. Density and relative frequency effects on competitive interactions and resource use in pea–barley intercrops. Field Crops Research, 2006, 95(2/3): 256-267.
[36] 李豪圣, 宋健民, 刘爱峰, 程敦公, 王西芝, 杜长林, 赵振东, 刘建军. 播期和种植密度对超高产小麦‘济麦22’产量及其构成因素的影响. 中国农学通报, 2011, 27(5): 243-248.
LI H S, SONG J M, LIU A F, CHENG D G, WANG X Z, DU C L, ZHAO Z D, LIU J J. Effect of sowing time and planting density on yield and components of ‘Jimai22’ with super-high yield.Chinese Agricultural Science Bulletin, 2011, 27(5): 243-248. (in Chinese)
[37] SANGOI L, GRACIETTI M A, RAMPAZZO C, BIANCHETTI P. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research, 2002, 79(1): 39-51.
[38] 董孔军, 杨天育, 何继红, 任瑞玉, 张磊. 西北旱作区不同地膜覆盖种植方式对谷子生长发育的影响. 干旱地区农业研究, 2013, 31(1): 36-40.
DONG K J, YANG T Y, HE J H, REN R Y, ZHANG L. Effects of different film mulching and planting patterns on growth and development of millet in dry-farming area of northwest China. Agricultural Research in the Arid Areas, 2013, 31(1): 36-40. (in Chinese)
[39] 李儒, 崔荣美, 贾志宽, 韩清芳, 路文涛, 侯贤清. 不同沟垄覆盖方式对冬小麦土壤水分及水分利用效率的影响. 中国农业科学, 2011, 44(16): 3312-3322.
LI R, CUI R M, JIA Z K, HAN Q F, LU W T, HOU X Q. Effects of different furrow-ridge mulching ways on soil moisture and water use efficiency of winter wheat. Scientia Agricultura Sinica, 2011, 44(16): 3312-3322. (in Chinese)
Water-carrying Potential of No-tillage with plastic film mulching for 2-Year coupled with Maize High-density Planting in Oasis Irrigation Area
ZHANG ZhanJun, YANG HongWei, Fan ZhiLong, Yu AiZhong, HU FaLong, YIN Wen, FAN Hong, GUO Yao, CHAI Qiang, ZHAO Cai
College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070
【】In view of the serious water resources shortage in the arid oasis irrigation region, and the large amount of plastic film and water consumption in the traditional maize production mode, this study investigated the feasibility of no-tillage with plastic film mulching for 2-year coupled with high-density planting to improve water use efficiency, so as to provide the theoretical base for the high-efficient maize production technology under plastic film reduction condition in this area.【】A field experiment was conducted in Hexi Corridor oasis irrigation region in 2017-2019 under 2 different tillage patterns, including conventional plastic film mulching (CT) and no-tillage with plastic film mulching for 2-year (NT), and 3 planting densities, including low density (78000 plants/hm2), medium density (103500 plants/hm2), and high density (129000 plants/hm2). Water use characteristics and maize yield performance under various treatments were investigated to explore the soil moisturethat could carrythemaximumdensityof crops under the two cultivation measures, that is, the water-carrying potential. Based on the amount of water consumption, the level of yield and the size of water use efficiency, the water-carrying potential of no-tillage with plastic film mulching for 2-year to high-density planting were clarified.】Compared with CT, NT increased soil water content and soil water storage before sowing by 11.6%-14.0% and 19.4%-26.0%, respectively, implying a beneficial effect on maize high-density planting. There was no significant difference of total water consumption in the whole growth period of maize between NT and CT under medium and low planting densities, while NT increased total water consumption by 4.7% compared with CT under high planting density. The total water consumption of maize increased with increasing of planting density, but total evaporation and E/ET decreased. Compared with low planting density, the high and medium planting densities increased the total water consumption of maize by 10.7% and 5.2% under NT, and by 7.4% and 4.6% under CT, respectively, which indicated that no-tillage with plastic film mulching for 2-year reduced the water-carrying potential for high density planting of maize, compared with conventional tillage. There was no significant difference in maize grain yield between NT and CT with the same planting density level. Compared with low planting density, the high and medium planting densities increased grain yield by 6.1%-19.0% and 10.9%-25.0% under NT, and by 4.8%-5.8% and 8.8%-8.9% under CT, respectively. In terms of grain yield performance, no-tillage with plastic film mulching for 2-year did not reduce the water-carrying potential for high-density planting of maize, compared with conventional tillage. There was no significant difference in water use efficiency between NT and CT with the same planting density level. Compared with high and low planting density levels, the medium planting density increased the water use efficiency by 9.8%-10.8% and 6.3%-17.8% under NT, and by 5.9%-7.1% and 4.3%-4.7% under CT, respectively. The water use efficiency of medium planting density was the highest among those treatments. Considering the water use efficiency difference, neither NT nor CT was suitable to support high-density planting of maize.【】No-tillage with plastic film mulching for 2-year had the same potential as conventional tillage for improving grain yield and water use efficiency by increasing planting density in the arid oasis irrigation region. Whereas, the total water consumption of maize under no-tillage with two-year plastic film mulching was higher than that under CT. Consequently, No-tillage with plastic film mulching for 2-year in combination with planting density at 103 500 plants/hm2could be used as a practical technology to reduce plastic film input, improve grain yield and enhance water use efficiency of maize in oasis irrigation region.
no-tillage with plastic film mulching for 2-year; maize; planting density; water consumption; water use efficiency; water- carrying potential
10.3864/j.issn.0578-1752.2021.16.004
2020-11-19;
2021-01-05
甘肃省科技计划项目(20JR5RA037)、中央引导地方科技发展专项资金
张展军,E-mail:zzjlucky2020@163.com。通信作者柴强,E-mail:chaiq@gsau.edu.cn。通信作者赵财,E-mail:zhaoc@gsau.edu.cn
(责任编辑 杨鑫浩)