APP下载

缓释氮肥与尿素配施对机插杂交籼稻碳氮积累的影响

2021-08-05吕腾飞杨志远郑传刚

作物学报 2021年10期
关键词:碳氮比拔节期杂交稻

吕腾飞 谌 洁 代 邹 马 鹏 杨志远 郑传刚 马 均,*

缓释氮肥与尿素配施对机插杂交籼稻碳氮积累的影响

吕腾飞1,2谌 洁1代 邹2马 鹏1杨志远1郑传刚2马 均1,*

1四川农业大学水稻研究所/ 作物生理生态及栽培四川省重点实验室, 四川成都 611130;2西昌学院农业科学学院, 四川西昌 615000

为探究缓释氮肥与尿素配施对我国西南地区机插杂交籼稻碳氮积累的影响, 2016—2017年, 本研究以杂交籼稻F优498为试验材料, 设置2种机插方式和4种不同的氮肥缓、速配施方法, 调查了杂交稻植株碳氮含量和碳氮代谢关键酶活性的变化。结果表明, 与毯苗机插相比, 在水稻生育中后期, 钵苗机插提高了杂交稻幼穗和剑叶中碳氮代谢关键酶活性, 增加了植株抽穗期和成熟期碳氮积累、拔节期植株碳素含量和C/N、抽穗期和成熟期穗部C/N, 有利于提高杂交稻产量。与缓释肥一次基施相比, 缓释氮肥基施配合尿素穗肥追施(N3), 显著提高了幼穗和剑叶中碳氮代谢关键酶活性、拔节期植株的碳氮比、抽穗期和成熟期植株碳素积累, 有利于进一步提高机插杂交稻产量。另外, 机插杂交籼稻高产群体植株碳氮比在拔节期应控制在1.85~2.12, 抽穗期2.47~2.82, 成熟期3.34~3.53为宜。

杂交籼稻; 钵苗机插; 缓速配施; 碳氮代谢; 碳氮比

中国是最大的水稻(L.)生产国和消费国[1], 目前我国超过60%的国民以稻米为主食[2]。Khush[3]推测到2030年, 我国的水稻产量要在2005年的基础上增产20%, 才能满足日益增长的人口对大米的基本需求。然而, 随着耕地面积的逐渐缩减, 以及农村劳动力大量向第二、三产业转移和老龄化现象的加剧, 我国水稻种植正面临着严峻的考验, Peng[4]指出当前中国水稻种植迫切需要向轻简化、机械化和规模化的方向发展。水稻机插秧技术具有节本、省工和省力的优点[5], 目前生产上大面积应用的机插秧技术是毯苗机插, 但其存在秧龄弹性小、秧苗素质差、移栽植伤重、返青期长和全生育期缩短等缺点[6-8], 严重制约了水稻生产潜力的发挥和对温光资源的利用; 而钵苗机插是一种采用机械将钵育壮秧按一定的株行距无植伤移植到大田的新型机插秧技术, 相比毯苗, 钵苗机插具有秧龄弹性大, 秧苗素质高, 栽后缓苗期短, 分蘖早生快发等优势[9-12], 且在日本和我国东北、江苏、安徽等水稻主产区的多年生产实践, 已初步证明了钵苗机插下水稻具有明显的增产优势[13-15], 这是因为其能够精确实现群体基本苗数, 利用优势分蘖争取高产适宜穗数, 利于培育壮秆大穗, 构建高光效群体, 提高后期干物质生产能力。西南稻区是我国重要的稻米产区之一, 也是典型的多熟制区域, 但由于前作收获期和水资源的限制, 导致水稻移栽秧龄偏大, 且种植品种多为杂交籼稻, 加上西南稻区丘陵山区多、地块小的地形地势特点, 使得该区域杂交稻种植机械化的发展十分缓慢, 而该区域湿度大、日照少和温差小的独特生态特点也严重制约了水稻产量的提高。那么在西南稻区, 钵苗机插是否能够发挥其秧龄弹性大、秧苗素质高的优势, 杂交籼稻在钵苗机插下是否依然能够发挥大穗的增产潜力, 还尚不可知。

在水稻花后籽粒产量形成过程中, 碳氮代谢在植株内的变化直接影响着碳、氮物质的形成、转化及分配, 碳氮代谢是相互偶联相互制约的关系, 不仅碳代谢受氮素水平的调节, 氮代谢途径相关酶与代谢产物同样受碳代谢相关产物的反馈制约[16]。氮肥是实现现代农业增产最有效的措施, 也是作物吸收氮素最主要的来源, 合理的氮肥运筹是调节水稻碳氮平衡和高产的有力保障。缓释肥作为一种新型高效氮肥, 具有养分有效供应期长、环保和省工省肥等优点[17], Deng等[18]研究表明, 施用缓释肥能减少氮素投入, 促进水稻需氮量、供氮量之间的平衡, 进而可以提高稻谷产量; 而陈贤友等[19]研究发现缓释氮肥存在肥效缓慢, 易造成作物前期缺氮, 产量效果不佳[20]; 张敬昇等[21-22]研究表明, 在缓释肥中掺混20%~40%尿素一次基施, 有利于进一步提高人工移栽稻的产量。在钵苗机插下, 缓释氮肥的氮素释放是否符合杂交籼稻的生长需求?氮肥缓、速配施是否更为有效?这都是当前亟待解决的关键问题。因此本研究以在西南稻区取得高产且大面积推广的大穗型杂交籼稻品种F优498为试验材料, 设置不同机插和氮肥缓速配施方式开展研究, 旨在探索在西南稻区, 钵苗机插杂交稻在氮肥缓速配施下的碳氮积累与代谢特征, 为西南稻区水稻机械化种植和氮肥高效利用提供理论依据和技术支撑。

1 材料与方法

1.1 供试材料与地点

供试品种为中籼迟熟杂交稻组合F优498, 由四川农业大学水稻研究所选育。分别于2016年和2017年在四川省眉山市东坡区悦兴镇金光村(30°12′N, 103°83′E)进行试验, 插秧机和育秧作业机由当地合作社提供, 水稻全生育期气象数据由四川省气象局提供(图1)。前茬为青菜, 土壤质地为沙壤土, 试验田块耕层土壤速效氮、磷和钾含量在2016年分别为124.16、22.89和106.97 mg kg–1, 2017年分别为100.36、31.93和96.81 mg kg–1, 水稻主要生育时期记载见表1。

1.2 试验设计

采用二因素裂区设计, 主区为钵苗机插和毯苗机插2种机插方式, 分别记为M1和M2; 副区为4种氮肥管理模式, N0: 不施氮肥; N1: 100%缓释肥一次基施; N2: 70%的氮素来源于缓释肥, 30%的氮素来源于尿素, 二者均作为基肥施用; N3: 70%的氮素来源于缓释肥并作为基肥施用, 30%的氮素来源于尿素并作为穗肥施用; 总施氮量均为150 kg hm–2, 随机排列, 重复3次。小区长度为6 m, 宽度以插秧机行距而定, 小区间以田埂分隔, 并用塑料薄膜包埋, 单区单灌, 以防肥水串灌。所用的缓释氮肥为树脂包膜缓释肥, 由山东金正大生态工程股份有限公司提供, 100%包膜, 含氮率为46.0%。育秧方式为旱育水管育秧, 播种密度: 钵苗机插35~40 g 盘–1, 毯苗机插70~75 g 盘–1。机插秧栽插密度: 钵苗机插33.0 cm×14.5 cm, 毯苗机插30 cm × 16 cm。氮肥基肥在移栽当天撒施; 蘖肥在移栽后7 d施用; 穗肥在第一苞分化期施用(倒四叶)。磷肥(P2O5) 75 kg hm–2和钾肥(K2O) 150 kg hm–2作为基肥一次性施入。试验所用氮、磷、钾肥分别为尿素(含N 46%)、过磷酸钙(含P2O512%)和氯化钾(含K2O 60%)。试验期间进行合理的田间管理, 整个生育期没有明显的涝害、旱害、病虫和草害。

表1 不同机插方式下杂交稻主要生育时期(月/日)

1.3 样品的采集与处理

1.3.1 全碳和全氮含量测定 于水稻拔节期、抽穗期和成熟期, 每个小区按平均茎蘖数选取长势均匀且无病害的植株3株, 分为茎、叶和穗3部分, 置于烘箱中。在105℃条件下杀青30 min, 然后在80℃下烘至恒重, 称重和粉碎后过60目筛, 然后用K2Cr2O7-浓H2SO4容量法[23]测定各器官的全碳含量, 用全自动凯氏定氮仪(FOSS-8400, FOSS Analytical A/S, Denmark)测定各器官的全氮含量。

1.3.2 净光合速率 2017年于抽穗后7 d的晴天9:30—11:30、光照强度在1200 μmol m–2s–1以上时, 用Li-6400光合仪(美国)测定, 各处理分别选取3株主茎剑叶, 每叶重复测定3次。

1.3.3 碳氮代谢相关酶活性测定 2017年于一次枝梗原基分化期、二次枝梗和颖花原基分化期, 各处理选择5株长势一致的植株, 剥取幼穗; 在抽穗期、抽穗后10 d、抽穗后20 d和抽穗后30 d, 各处理选择生长整齐一致的10片剑叶, 取样后放入冰盒, 然后液氮冷冻1 min、置于-80℃冰箱中保存用于酶活性测定。磷酸蔗糖合成酶(SPS)和蔗糖合成酶(SS)的测定参照Douglas和Tsai-Mei的方法[24-25], 谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)的测定参照Umemoto T的方法[26]。

1.4 数据计算

各器官碳/氮素积累量(C/N accumulation, kg hm–2) = 各时期单位面积各器官(叶片、茎鞘、穗)干物重×各器官(叶片、茎鞘、穗)含碳/氮量; 碳氮比 = 同时期同器官的全碳含量/全氮含量。

1.5 数据处理

采用裂区设计分析法, 用DPS7.05进行统计分析, Microsoft Excel 2013进行图表绘制。根据最小显著差异法(Least significant difference, LSD)检验处理间差异显著性。2年产量结果趋势一致, 因此数据单独陈列后, 分析时采用平均值。

2 结果与分析

2.1 缓释肥与速效氮肥配施对2种机插杂交稻各生育时期各器官全碳积累量的影响

如表2所示, 与毯苗机插相比, 钵苗机插在成熟期叶片的全碳含量平均下降了15.25%, 而拔节期茎鞘、抽穗期茎鞘、叶片、穗部和成熟期穗部的全碳含量均分别提高了15.56%、18.54%、4.75%、13.91%和8.78%。2种机插方式下的全碳含量, 在抽穗期茎鞘的表现为N3显著高于N1, 在成熟期穗部表现为N2显著低于N1和N3。不同生育期各器官的全碳含量, 在钵苗机插下, 拔节期茎叶N2显著高于另外2个施氮处理, 抽穗期叶片和成熟期茎鞘是N2显著低于N3, 而抽穗期穗部则表现为N1显著低于N2和N3; 而在毯苗条件下, 拔节期叶片N2显著高于N3, 抽穗期叶片、穗部和成熟期叶片, 均表现为N3显著高于N1和N2, 且N1和N2在抽穗期叶片和成熟期茎鞘的差异也达到了显著水平, 前者N1>N2, 后者则相反。此外, 成熟期叶片仍以N3最高, 且与N2达到显著水平差异。综上可知, 钵苗机插和缓基速追有利于杂交稻抽穗期各器官以及成熟期穗部全碳的积累。

2.2 缓释肥与速效氮肥配施对2种机插杂交稻各生育时期各器官碳氮比的影响

如表3所示, 与毯苗机插相比, 钵苗机插拔节期的茎鞘和叶片, 碳氮比平均分别提高了0.68和0.13, 抽穗期穗部碳氮比提高了0.17, 成熟期茎鞘和穗部分别提高了0.49和0.16; 而抽穗期茎鞘和叶片的碳氮比分别下降0.36和0.04。各生育时期各器官碳氮比在同一处理下呈现出茎鞘>穗部>叶片的趋势,而两种机插方式下, 不同生育时期各器官的碳氮比对氮肥运筹的响应不一致。钵苗机插下, 各器官的碳氮比, 抽穗期各器官及成熟期穗部均N2显著高于N1和N3, 拔节期茎鞘和成熟期叶片N2和N3显著高于N1, 成熟期茎鞘N1和N2显著高于N3, 而拔节期叶片N3显著高于N2。毯苗机插下, 各器官的碳氮比, 抽穗期茎鞘和成熟期叶片是N2>N1>N3, 抽穗期穗部是N2>N3>N1, 拔节期茎鞘是N2显著高于N3, 成熟期茎鞘是N3显著高于N1。综上可知, 钵苗机插有利于提高杂交稻拔节期茎叶、抽穗期穗部和成熟期茎鞘和叶片的碳氮比, 但会降低杂交稻抽穗期茎叶的碳氮比; 而在钵苗机插下, 与缓释肥一次基施相比, 缓基速追可以提高拔节期和抽穗茎叶以及成熟期叶片的碳氮比, 但会降低抽穗期穗部的碳氮比。

表2 不同生育时期各器官全碳积累量

M1: 钵苗机插; M2: 毯苗机插; N0: 不施氮肥; N1: 缓释肥, 全做基肥; N2: 70%缓释肥+30%尿素, 均作为基肥施用; N3: 70%缓释肥做基肥+30%尿素做穗肥; M: 机插方式; N: 氮肥运筹; M×N机插方式和氮肥运筹二者之间的互作效应; 不同小写字母表示差异达到0.05显著水平;*和**分别代表值达到0.05和0.01显著水平,ns表示差异无统计学意义。

M1: the potted machine-transplanting; M2: the blanket machine-transplanting; N0: zero nitrogen control; N1: slow-release nitrogen fertilizer (SRNF) 150 kg hm–2as base; N2: SRNF 105 kg hm–2+ Urea (U) 45 kg hm–2as base; N3: SRNF 105 kg hm–2as base + U 45 kg hm–2at jointing stage; M: machine-transplanting method; N: nitrogen treatment. M×N indicate the interaction of machine-transplanting methods and nitrogen treatments; The values within a column followed by different lowercase letters show significant differences at the 0.05 probability level;*and**indicate that the-value is significant at the 0.05 and 0.01 probability levels, respectively.nsindicate no statistically significant.

缩写同表2; 不同小写字母表示差异达到0.05显著水平;*和**分别代表值达到0.05和0.01显著水平,ns表示差异无统计学意义。

Abbreviations are the same as those given in Table 2; The values within a column followed by different lowercase letters show significant differences at the 0.05 probability level;*and**indicate that the-value is significant at the 0.05 and 0.01 probability levels, respectively.nsindicates no statistically significant.

2.3 缓释肥与速效氮肥配施对2种机插杂交稻全碳积累量和碳氮比的影响

如表4所示, 与毯苗机插相比, 钵苗机插在拔节期、抽穗期和成熟期的植株平均全碳积累量分别显著提高0.12~0.15、0.61~0.64和0.25~0.29 t hm–2, 抽穗期和成熟期的氮素积累量也分别显著提高了3.65%~21.98%和2.12%~8.84%, 而拔节期碳氮比则提高了0.32。2种机插方式下, 植株在拔节期的全碳和全氮积累量均是N2显著高于N1和N3, 在抽穗期的全碳积累量表现为N3显著高于N1和N2, 而成熟期的全碳积累量和抽穗期及成熟期的全氮积累量均表现为N3>N1>N2。2种机插方式下的植株碳氮比, 在拔节期以N1最低, 抽穗期N2最高, 且它们与另外2个施氮处理的差异均达到显著水平; 成熟期的植株碳氮比, 钵苗下仍是N2显著高于另外2个施氮处理, 而毯苗条件下, N2显著高于N3处理。此外, 与毯苗机插相比, 钵苗机插的产量在2016年和2017年分别提高了10.30%和7.20%;就氮肥处理而言; 与N1相比, N2处理的产量在2年分别下降了3.03%和3.51%, N3处理则分别提高了4.32%和4.86%。这说明钵苗机插和缓基速追有利于提高杂交稻抽穗期和成熟期地上部全碳/氮积累量、拔节期植株碳氮比和稻谷产量。

2.4 缓释肥与速效氮肥配施对2种机插稻幼穗分化期碳氮代谢关键酶活性的影响

如图2所示, 相比一次枝梗原基分化期, 各处理二次枝梗和颖花原基分化期幼穗中GOGAT活性明显提高, 而SPS和SS活性则明显减弱。与毯苗机插相比, 钵苗机插一、二次枝梗原基分化期幼穗中GOGAT、GS、SPS和SS活性均有不同程度提升。就施氮处理而言, 2种机插方式下, 一次枝梗原基分化期幼穗中GOGAT、GS、SPS、SS活性和二次枝梗和颖花原基分化期幼穗中GOGAT、GS活性, 均表现为N3>N1>N2,且相互间差异显著; 而二次枝梗和颖花原基分化期幼穗中SPS和SS活性表现为, N3显著高于N1和N2处理。这说明钵苗机插和缓基速追可以提高杂交稻幼穗分化期幼穗中碳氮代谢关键酶活性。

PBPD: 一次枝梗原基分化期; SBSPD: 二次枝梗和颖花原基分化期。其他缩写同表2。不同小写字母表示差异达到0.05显著水平。

PBPD: primary branch primordium differentiation stage; SBSPD: secondary branch and spikelet primordium differentiation stage. Other abbreviations are the same as those given in Table 2. The values within a column followed by different lowercase letters indicate statistically significant differences at the 0.05 probability level.

2.5 缓释肥与速效氮肥配施对2种机插稻抽穗后剑叶碳氮代谢关键酶活性的影响

如图3所示, 随着时间推移, 抽穗后各处理剑叶GOGAT和GS活性逐渐减弱, SPS和SS活性则呈先增后降的趋势。比较2种机插方式可以看出, 钵苗机插相较于毯苗机插各时期剑叶中GOGAT、GS、SPS和SS活性均有不同程度提升。就施氮处理而言, 2种机插下, 各时期剑叶GOGAT、GS、SPS和SS活性, 均表现为N3>N1>N2的趋势, 且相互间的差异达到显著水平。注意, 钵苗机插下抽穗后20 d剑叶中GOGAT、SPS和SS活性表现为N2显著低于N1和N3处理, 毯苗条件下抽穗后10 d的SPS和抽穗后20 d的SS活性表现为N3显著高于N1和N2处理除外。这说明钵苗机插和缓基速追可以提高杂交稻抽穗后剑叶中碳氮代谢关键酶活性。

其他缩写同表2。不同小写字母表示差异达到0.05显著水平。

Other abbreviations are the same as those given in Table 2. The values within a column followed by different lowercase letters show significant differences at the 0.05 probability level.

3 讨论

水稻籽粒产量, 不仅取决于光合产物的生产和转运, 还与植株碳氮代谢密切相关[27-28]。植株内碳/氮素积累量是反应碳/氮含量高低的最直观表现, 同时它们受到植株生长期、器官、栽植方式以及环境条件等多因素的影响[29-30]。本研究表明, 与毯苗机插相比, 钵苗机插在拔节期、抽穗期和成熟期的植株全碳积累量2年平均分别提高了10.21%、13.88%和3.77%, 此差异主要来自抽穗前的茎鞘和抽穗后的穗部含碳量, 而成熟期茎鞘和叶片的碳素积累量, 钵苗机插则显著降低。刘利等[29]研究表明, 不同机械化播栽方式碳素积累能力存在一定的差异, 林瑞余等[30]研究进一步指出, 水稻不同器官积累碳素的能力与各器官的功能存在一定的关联, 这也说明了钵苗机插抽穗前的茎鞘和抽穗后的穗部功能比毯苗机插强大。胡雅杰等[31]研究表明, 钵苗机插植株氮素积累在抽穗期和成熟期均显著高于毯苗机插, 这与本研究的结果一致。原因在于钵苗机插移栽时几乎无植伤, 返青期短, 根系发达, 分蘖发生早而快, 易形成壮蘖大蘖, 吸氮能力强。就施肥方式而言, 与100%缓释肥一次基施相比(N1), 70%缓释肥做基肥+30%尿素做穗肥的缓基速追的施肥方式(N3, 缓基速追), 显著提高了抽穗期各器官的全碳积累量, 同时, 植株在成熟期的碳素积累量、抽穗期和成熟期的氮素积累量在钵苗机插下分别提高了2.01%、2.36%和1.77%, 在毯苗机插下分别提高了4.39%、14.59%和5.36%。综上可知, 钵苗机插和缓基速追有利于杂交稻对碳素和碳素的吸收和积累。

碳氮比可以作为反映植株碳氮代谢强弱的重要指标, 对调节植株生长具有重要作用[32]。适宜的碳氮比有利于氮素的运转和产量的形成[33], 但不同生育时期不同器官的碳氮比变异较大[32]。本研究表明, 在拔节期和成熟期, 钵苗机插杂交稻茎鞘及叶片的碳氮比显著高于毯苗, 而抽穗期杂交稻叶片碳氮比则显著低于毯苗。就施肥方式而言, 机插杂交稻的植株碳氮比, 拔节期N1显著低于N3, 抽穗期和成熟期N2显著高于N1和N3; 而且钵苗机插下N3处理相较于N1处理, 拔节期茎叶、抽穗期茎鞘和成熟期叶片的碳氮比显著提高, 而成熟期茎鞘则反之。结合产量数据可知, 机插杂交稻高产群体植株碳氮比在拔节期应控制在1.85~2.12, 抽穗期和成熟期不应过高, 抽穗期不宜超过3.0, 处于2.47~2.82最佳, 成熟期控制在3.34~3.53为宜。同时也说明, 钵苗机插和缓基速追方式下, 植株各生育时期整体及各器官碳、氮吸收比例更为协调, 有利于水稻光合物质的生产和转运, 为机插杂交稻高产打下了良好的物质基础。

水稻幼穗分化的优劣是水稻能否形成大穗的基础, 水稻幼穗分化期碳氮营养失衡会导致穗部发育不良[34-36], 而适宜的碳氮平衡有利于颖花现存数的增加[37]; 且在水稻籽粒形成过程中, 植株体内碳氮代谢情况直接影响着光合物质的形成和转运[38]。碳代谢和氮代谢是水稻体内最基本的两大代谢过程, 是相互偶联相互制约的关系[39-40], 因此调节碳氮代谢平衡, 对水稻生长发育和产量形成具有重要意义。谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)是氮素同化过程中的关键酶[41], 高等植物体内95%以上的无机氮是通过GS/GOGAT循环途径进行同化的[42-43]。蔗糖磷酸合成酶(SPS)和蔗糖合成酶(SS)分别是催化蔗糖合成和蔗糖磷酸降解的关键酶, 它们影响着植物体内光合同化物的存在形式和转运情况[42-43]。本研究表明, 与毯苗机插相比, 钵苗机插在幼穗分化期穗部以及抽穗后0~30 d剑叶中的GOGAT、GS、SPS和SS活性均有不同程度提升, 这说明钵苗机插杂交稻对抽穗前后碳氮养分的吸收和平衡碳氮代谢关系的能力优于毯苗。同时, 穗分化前期, 幼穗中氮代谢活动增强, 碳代谢能力减弱, 这说明在穗分化前期, 植株需要更多的氮素促进枝梗和颖花的分化, 而氮肥缓基速追的施肥方式不仅能进一步增强幼穗中的氮代谢能力, 同时也为植株补充了急需的氮素营养, 为机插杂交稻进一步高产提供了保障。杜君等[44]研究表明, 相比一次性缓释肥基施, 60%缓释肥为基肥+40%尿素为穗肥的处理可有效提高齐穗期、乳熟期和蜡熟期的GS和GOGAT活性, 这与本试验得到的与缓释肥一次基施相比, 幼穗分化期穗部、抽穗后0~30 d剑叶中的GOGAT、GS、SPS和SS活性, 在70%缓释肥为基肥+30%尿素为穗肥处理下均显著提高的结果基本一致。阮新民等[45]通过研究不同供氮水平下碳氮代谢物含量的变化情况, 发现适量增加氮素营养可增强水稻抽穗期的氮代谢能力, 提高稻谷产量和氮素利用效率。综上可知, 缓基速追的施肥方式下, 穗肥施入土壤后, 其提供的养分刚好与杂交稻幼穗分化期对氮素的需求一致, 解决了单独施用缓释氮肥在水稻幼穗分化期氮素营养不足的问题, 同时一定的穗肥补充, 增强了植株抽穗前后的碳氮代谢能力, 促进了植株对碳氮的吸收和同化能力, 对机插杂交稻产量和氮素利用率的提高至关重要。

4 结论

与毯苗机插相比, 钵苗机插杂交稻在碳氮吸收与积累方面更具优势, 碳氮代谢更加协调。钵苗机插杂交稻高产碳氮比应调控如下: 拔节期在1.85~2.12之间, 抽穗期不宜超过3.0, 处于2.47~ 2.82最佳, 成熟期控制在3.34~3.53为宜。而且, 在钵苗机插下, 采用70%缓释肥做基肥+30%尿素做穗肥的缓基速追的施肥方式, 能进一步提高抽穗期和成熟期的碳氮积累量, 以及幼穗分化期穗部以及抽穗后0~30 d剑叶中的GOGAT、GS、SPS和SS活性, 进而为钵苗机插杂交稻高产高效积累更大的优势。

[1] Zhang J Z, He C X, Chen L, Cao S X. Improving food security in China by taking advantage of marginal and degraded lands., 2018, 171: 1020–1030.

[2] Wu W, Nie L X, Liao Y C, Shah F, Cui K H, Wang Q, Lian Y, Huang J L. Toward yield improvement of early-season rice: other options under double rice-cropping system in central China., 2013, 45: 75–86.

[3] Khush G. What it will take to feed 5.0 billion rice consumers in 2030., 2005, 59: 1–6.

[4] Peng S B. Dilemma and way-out of hybrid rice during the transition period in China., 2016, 42: 313–319.

[5] Huang M, Chen J N, Cao F B, Zou Y B. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice., 2018, 221: 333–338.

[6] 张洪程, 赵品恒, 孙菊英, 吴桂成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012, 28(2): 39–44.

Zhang H C, Zhao P H, Sun J Y, Wu G C, Xu J, Duan-Mu Y X, Dai Q G, Huo Z Y, Xu K, Wei H Y. Population characteristics of super high yield formation of mechanical transplantedhybrid rice., 2012, 28(2): 39–44 (in Chinese with English abstract).

[7] 胡雅杰, 邢志鹏, 龚金龙, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 刘国林, 陆秀军, 刘国涛, 朱嘉炜. 适宜机插株行距提高不同穗型粳稻产量. 农业工程学报, 2013, 29(14): 33–44.

Hu Y J, Xing Z P, Gong J L, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Sha A Q, Zhou Y Y, Liu G L, Lu X J, Liu G T, Zhu J W. Suitable spacing in and between rows of plants by machinery improves yield of different panicle typerices., 2013, 29(14): 33–44 (in Chinese with English abstract).

[8] 胡雅杰, 邢志鹏, 龚金龙, 刘国涛, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 沙安勤, 周有炎, 罗学超, 刘国林. 钵苗机插水稻群体动态特征及高产形成机制的探讨. 中国农业科学, 2014, 47: 865–879.

Hu Y J, Xing Z P, Gong J L, Liu G T, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Sha A Q, Zhou Y Y, Luo X C, Liu G L. Study on population characteristics and formation mechanisms for high yield of pot-seedling mechanical transplanting rice., 2014, 47: 865–879 (in Chinese with English abstract).

[9] 杨松, 贾一磊, 王进友, 罗来君, 高雯雯. 钵苗机插杂交籼稻的优势及其精确定量栽培技术研究. 大麦与谷类科学, 2019, 36(6): 16–21.

Yang S, Jia Y L, Wang J Y, Luo L J, Gao W W. Research on the advantages and precise quantitative cultivation technologies of thehybrid rice whose seedlings are potted and mechanically transplanted., 2019, 36(6): 16–21 (in Chinese with English abstract).

[10] Cheng S H, Zhuang J Y, Fan Y Y, Jing H D, Li Y C. Progress in research and development on hybrid rice: a super-domesticate in China., 2007, 100: 959–966.

[11] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47: 1273–1289.

Zhang H C, Gong J L, Research status and development discussion on high-yielding agronomy of mechanized planting rice in china., 2014, 47: 1273–1289 (in Chinese with English abstract).

[12] 李应洪, 王海月, 吕腾飞, 张绍文, 蒋明金, 何巧林, 孙永健, 马均. 不同秧龄下机插方式与密度对杂交稻光合生产及产量的影响. 中国农业科学, 2017, 31: 265–277.

Li Y H, Wang H Y, Lyu T F, Zhang S W, Jiang M J, He Q L, Sun Y J, Ma J. Effects of mechanically-transplanted modes and density on photosynthetic production and yield in hybrid rice at different seedling-ages., 2017, 31: 265–277 (in Chinese with English abstract).

[13] 吴文革, 张健美, 周永进, 陈刚, 许有尊, 李胜群, 严文学, 高尚勤. 江淮水稻钵苗机插生育特性与高产栽培关键技术研究. 中国稻米, 2015, 21(4): 118–124.

Wu W G, Zhang J M, Zhou Y J, Chen G, Xu Y Z, Li S Q, Yan W X, Gao S Q. Study on growth and development characteristics and high-yielding cultivation techniques of rice with nutrition bowl mechanical transplanting in Jianghuai area., 2015, 21(4): 118–124 (in Chinese with English abstract).

[14] 张军, 王兴龙, 石广跃, 米长生, 郭保卫, 李必忠, 方书亮, 陆海空, 刘忠红, 张永进, 庚跃东. 不同机栽方式下杂交稻产量及其形成特征比较. 农业工程学报, 2015, 31(10): 84–91.

Zhang J, Wang X L, Shi G Y, Mi C S, Guo B W, Li B Z, Fang S L, Lu H K, Liu Z H, Zhang Y J, Geng Y D. Yield and its formation of hybrid rice under different mechanical transplanted methods., 2015, 31(10): 84–91 (in Chinese with English abstract).

[15] 胡雅杰, 曹伟伟, 钱海军, 邢志鹏, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 高辉, 沙安勤, 周有炎, 刘国林. 钵苗机插密度对不同穗型水稻品种产量、株型和抗倒伏能力的影响. 作物学报, 2015, 41: 743–757.

Hu Y J, Cao W W, Qian H J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Gao H, Sha A Q, Zhou Y Y, Liu G L. Effect of planting density of mechanically transplanted pot seedlings on yield, plant type and lodging resistance in rice with different panicle types., 2015, 41: 743–757 (in Chinese with English abstract).

[16] 江立庚, 曹卫星. 水稻高效利用氮素的生理机制及有效途径. 中国水稻科学, 2002, 16: 261–264.

Jiang L G, Cao W X. Physiological mechanism and approaches for efficient nitrogen utilization in rice., 2002, 16: 261–264 (in Chinese with English abstract).

[17] 魏海燕, 李宏亮, 程金秋, 张洪程, 戴其根, 霍中洋, 许轲, 郭保卫, 胡雅杰, 崔培媛. 缓释肥类型与运筹对不同穗型水稻产量的影响. 作物学报, 2017, 43: 730–740.

Wei H Y, Li H L, Cheng J Q, Zhang H C, Dai Q G, Huo Z Y, Xu K, Guo B W, Hu Y J, Cui P Y. Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicle., 2017, 43: 730–740 (in Chinese with English abstract).

[18] Deng F, Wang L, Ren W J, Mei X F. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea., 2014, 169: 30–38.

[19] 陈贤友, 吴良欢, 李金先, 应金耀. 新型控释肥对水稻产量与氮肥利用率的影响探讨. 土壤通报, 2010, 41(1): 133–137.

Chen X Y, Wu L H, Li J X, Ying J Y. Effects of new controlled release fertilizers on rice yield and nitrogen use efficiency., 2010, 41(1): 133–137 (in Chinese with English abstract).

[20] 李敏, 郭熙盛, 叶舒娅, 刘枫, 袁嫚嫚, 黄义德. 硫膜和树脂膜控释尿素对水稻产量、光合特性及氮肥利用率的影响. 植物营养与肥料学报, 2013, 19: 808–815.

Li M, Guo X S, Ye S Y, Liu F, Yuan M M, Huang Y D. Effects of sulfur- and polymer-coated controlled release urea on yield, photosynthetic characteristics and nitrogen fertilizer efficiency of rice., 2013, 19: 808–815 (in Chinese with English abstract).

[21] 张敬昇, 李冰, 王昌全, 罗晶, 古珺, 龙思帆, 何杰, 向毫, 尹斌. 控释掺混尿素对稻麦产量及氮素利用率的影响. 中国水稻科学, 2017, 31: 288–298.

Zhang J S, Li B, Wang C Q, Luo J, Gu J, Long S F, He J, Xiang H, Yin B. Effects of controlled release blend bulk urea on the yield and nitrogen use efficiency of wheat and rice., 2017, 31: 288–298 (in Chinese with English abstract).

[22] 孙克刚, 杜君, 孙克振, 和爱玲, 张运红. 控释尿素与化肥配施对水稻产量及氮素利用率的影响. 磷肥与复肥, 2015, 30(10): 48–50.

Sun K G, Du J, Sun K Z, He A L, Zhang Y H. Effect of combined application controlled release urea and chemical fertilizer on yield of rice and utilization rate of nitrogen., 2015, 30(10): 48–50 (in Chinese with English abstract).

[23] 李酉开. 土壤农业化学常规分析方法. 北京: 科学出版社, 1983. pp 79, 272.

Li Y K. Conventional Analytical Methods for Soil Agricultural Chemistry. Beijing: Science Press, 1983. pp 79, 272 (in Chinese).

[24] Douglas C D, Tsung M K, Frederick C F. Enzymes of sucrouse and hexose metabolism indevelopment kernels of two inbreds of maize., 1988, 86: 1013–1019.

[25] Mei T, Lee Q, Setter T L. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch., 1985, 79: 852–855.

[26] Umemoto T, Nakamura Y, Ishikura M. Effect of grain location of the panicle of actives involve in starch synthesis in rice endosperm., 1994, 36: 843–847.

[27] Kumar R, Sarawgi A K, Ramos C, Amarante S T, Ismail A M, Wade L J. Partitioning of dry matter during drought stress in rainfed lowland rice., 2006, 96: 455–465.

[28] Lu Y H, Watanabe A, Kimura M. Input and distribution of photosynthesized carbon in a flooded soil., 2002, 16: 321–328.

[29] 刘利, 雷小龙, 黄光忠, 刘代银, 任万军. 机械化播栽对杂交稻氮素积累分配及碳氮比的影响. 植物营养与肥料学报, 2014, 20: 831–844

Liu L, Lei X L, Huang G Z, Liu D Y, Ren W J. Influences of mechanical sowing and transplanting on nitrogen accumulation, distribution and C/N of hybrid rice cultivars., 2014, 20: 831–844 (in Chinese with English abstract).

[30] 林瑞余, 蔡碧琼, 柯庆明, 蔡向阳, 林文雄. 不同水稻品种产量形成过程的固碳特性研究. 中国农业科学, 2006, 39: 2441–2448.

Lin R Y, Cai B Q, Ke Q M, Cai X Y, Lin W X. Characteristics of carbon fixation in different rice cultivars during yield formation process., 2006, 39: 2441–2448 (in Chinese with English abstract).

[31] 胡雅杰, 吴培, 朱明, 邢志鹏, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 张洪程. 钵苗机插水稻氮素吸收与利用特征. 中国水稻科学, 2018, 32: 257–264.

Hu Y J, Wu P, Zhu M, Xing Z P, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Zhang H C. Characteristics of nitrogen uptake and utilization of mechanically-transplanted pot-tray-nursed rice seedlings., 2018, 32: 257–264 (in Chinese with English abstract)

[32] 薛利红, 杨林章, 范小晖. 基于碳氮代谢的水稻氮含量及碳氮比光谱估测. 作物学报, 2006, 32: 430–435.

Xue L H, Yang L Z, Fan X H. Estimation of nitrogen content and C/N in rice leaves and plant with canopy reflectance spectra., 2006, 32: 430–435 (in Chinese with English abstract).

[33] 阮新民, 施伏芝, 罗志祥. 施氮对高产杂交水稻生育后期叶碳氮比与氮素吸收利用的影响. 中国土壤与肥料, 2011, 2: 35–38.

Ruan X M, Shi F Z, Luo Z X. Effects of nitrogen application on the leaf of C/N and nitrogen uptake and utilization at later deve­lopmental stages in different high yield hybrid rice varieties., 2011, 2: 35–38 (in Chinese with English abstract).

[34] Kobayasi K, Horie T. The effect of plant nitrogen condition during reproductive stage on the differentiation of spikelets and rachis-branches in rice., 1994, 63: 193–199.

[35] Kobayasi K, Yamane K, Imaki T. Effect of non-structural carbohydrates on spikelets differentiation in rice., 2001, 4: 9–14.

[36] Ansari T H, Yamamoto Y, Yoshida T, Miyazaki A, Wang Y L. Cultivar differences in the number of differentiated spikelets and percentage of degenerated spikelets as determinats of the spikelet number per panicle in relation to dry matter production and nitrogen absorption., 2003, 49: 433–444.

[37] 邱泽生, 刘捷平, 黄勤妮, 丁以珊, 张承谦, 王沅. 冬小麦的小花发育与碳氮代谢的关系. 作物学报, 1980, 6: 139–146.

Qiu Z S, Liu J P, Huang Q N, Ding Y S, Zhang C Q, Wang Y. The relation between floret development and carbon-nitrogen metabolism in winter wheat., 1980, 6: 139–146 (in Chinese with English abstract).

[38] 孙永健, 孙园园, 严奉君, 杨志远, 徐徽, 李玥, 王海月, 马均. 氮肥后移对不同氮效率水稻花后碳氮代谢的影响. 作物学报, 2017, 43: 407–419.

Sun Y J, Sun Y Y, Yan F J, Yang Z Y, Xu H, Li Y, Wang H Y, Ma J. Effects of postponing nitrogen topdressing on post-anthesis carbon and nitrogen metabolism in rice cultivars with different nitrogen use efficiencies., 2017, 43: 407–419 (in Chinese with English abstract).

[39] Krapp A, Saliba-Colombani V, Daniel-Vedele F. Analysis of C and N metabolisms and of C/N interactions using quantitative genetics., 2005, 83: 251–263.

[40] 田纪春, 陈建省, 王延训, 张永祥. 氮素追肥后移对小麦籽粒产量和旗叶光合特性的影响. 中国农业科学, 2001, 34: 101–103.

Tian J C, Chen J S, Wang Y X, Zhang Y X. Effects of delayed-nitrogen application on grain yield and photosynthetic characteristics in flag leaves of wheat cultivars., 2001, 34: 101–103 (in Chinese with English abstract).

[41] 许光利, 刘佳, 梁成刚, 汪燕, 丁春邦, 李天. 灌浆结实期弱光对水稻籽粒氮代谢酶及蛋白质含量的影响. 浙江大学学报(农业与生命科学版), 2016, 42(1): 53–62.

Xu G L, Liu J, Liang C G, Wang Y, Ding C B, Li T.Changes of nitrogen metabolism enzyme activities and protein content in response to low light during the seed filling stage in rice.(Agric Life Sci Edn), 2016, 42(1): 53–62 (in Chinese with English abstract).

[42] Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T , Valot B, Davanture M, Laforgue T T, Quilleré I, Coque M, Gallais A, Moro G M, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production., 2006, 18: 3252–3274.

[43] Hirel B. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize., 2001, 125: 1258–1270.

[44] 杜君, 孙克刚, 雷利君, 和爱玲, 张运红, 孙克振. 控释尿素与普通尿素配施对水稻氮代谢关键酶活性及产质量的影响. 河南农业科学, 2016, 45(3): 67–72.

Du J, Sun K G, Lei L J, He A L, Zhang Y H, Sun K Z. Effects of combined application of controlled release urea and common urea on activities of key enzymes related with nitrogen metabolism, yield and quality of rice., 2016, 45(3): 67–72 (in Chinese with English abstract).

[45] 阮新民, 施伏芝, 从夕汉, 罗志祥. 氮高效利用水稻碳氮代谢物含量的变化特征. 作物杂志, 2015, (6): 76–83.

Ruan X M, Shi F Z, Cong X H, Luo Z X. Characteristics of carbon and nitrogen metabolites of rice genotype with high nitrogen use efficiency., 2015, (6): 76–83 (in Chinese with English abstract).

Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice

LYU Teng-Fei1,2, SHEN Jie1, DAI Zou2, MA Peng1, YANG Zhi-Yuan1, ZHENG Chuan-Gang2, and MA Jun1,*

1Rice Research Institute, Sichuan Agricultural University / Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China;2College of Agricultural Science and Technology, Xichang University, Xichang 615000, Sichuan, China

To explore the effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation of machine-transplantedhybrid rice in southwestern China. A split-plot design experiments were carried out in 2016 and 2017 repeatedly, with two machine-transplanting methods as main plot, and four nitrogen treatments as subplot using F you 498 as the experimental variety. The contents of carbon (C) and nitrogen (N), and their related key enzyme activities were investigated. Results showed that,compared with the blanket-seedling rice, potted-seedling increased key enzyme activities of C and N metabolism of young panicles and flag leaves, C and N accumulation at heading and maturity stage, C accumulation and C/N at jointing stage, C/N of panicle at heading and maturity stage, resulting in the yield improvement of F you 498. Compared with 100% slow release N fertilizer (SRNF) as base, 70% SRNF as base + 30% urea as panicle (SBUP) significantly improved key enzyme activities of C and N metabolism, C/N at jointing stage, C accumulation at heading and maturity stage, leading to a further yield growth in machine-transplanting method. Meanwhile, this study suggested that C/N of the high-yield groups of machine-transplanting hybrid rice should be controlled 1.85–2.12, 2.47–2.82, and 3.34–3.53 at jointing, heading and maturity stages, respectively.

hybrid indica rice; potted-seedling machine-transplantation; slow and rapid nitrogen fertilizer combined application; carbon and nitrogen metabolism; C/N

10.3724/SP.J.1006.2021.02059

本研究由国家重点研发计划项目(2017YFD0301701, 2017YFD0301706, 2018YFD0301202)资助。

This study was supported by the National Key Research and Development Program of China (2017YFD0301701, 2017YFD0301706, 2018YFD0301202).

马均, E-mail: majunp2002@163.com

E-mail: 1018914967@qq.com

2020-08-22;

2021-01-13;

2021-02-19.

URL: https://kns.cnki.net/kcms/detail/11.1809.S.20210219.1615.011.html

猜你喜欢

碳氮比拔节期杂交稻
夜间增温对小麦干物质积累、转运、分配及产量的影响
不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点
四川水稻分蘖-拔节期低温连阴雨时空特征
杂交稻对产量和氮素利用率影响的荟萃分析
2021年山西省小麦返青拔节期主要病虫发生趋势预报
两个杂交稻新品种米质达国标一等
麦田欢歌
高大环柄菇菌株的鉴定及生物学特性
不同动物粪便炭化特性比较
不同碳氮比对垃圾填埋单元中氮循环细菌数量的影响