基于动态贝叶斯网络的电源系统可靠性分析与故障诊断
2021-08-04黄洪钟李彦锋
李 享,黄洪钟,黄 鹏,李彦锋
(电子科技大学系统可靠性与安全性研究中心 成都 611731)
电源系统是由配电设备、储能设备、调波设备、开关设备、充电控制设备以及相关电线电路组成的总体[1],为各种电机提供高/低频、交/直流电源,其可靠性直接影响整个电机系统的平稳运行[2]。然而,电源系统结构复杂、设备繁多,如何理清其系统结构,识别主要脆弱点和关键薄弱点,影响并制约着供电任务的平稳实施。传统的静态可靠性分析方法只能应用于固定时刻的系统可靠性分析,在所有电源设备集成为一个动态系统时,其复杂结构、高危高压、动态失效的运行特点,使得该系统可靠性问题需采用动态的分析方式。
动态系统可靠性分析方法是近年的研究热点及难点,DBN从这些方法中脱颖而出。机器学习[3]、数据挖掘[4]等技术的兴起也为DBN的发展和应用提供了更为广阔的空间。目前,DBN的理论成果得到了进一步的发展完善,包括因果推断[5]、不确定性知识表达[6]、模式识别[7]和聚类分析[8]等。DBN也因其在双向推理及故障诊断方面的优势,被广泛应用于复杂系统的动态可靠性分析。文献[9]通过引入 β因子,结合模糊DBN,提出了一种针对数据缺失的多态系统可靠性分析方法。文献[10]基于贝叶斯网络对海上浮式风机进行了可靠性分析,大幅提升了故障诊断的准确率。文献[11]利用隐马尔科夫模型度量证据节点的先验概率,结合DBN,实现了化工设备的任务可靠性预计与评估。
现有的DBN算法主要分为:离散时间贝叶斯网络算法(discrete-time Bayesian network, DTBN)[12]与连续时间贝叶斯网络算法(continues-time Bayesian network, CTBN)[13]。其中,DTBN以离散任务时间的方式,通过定义节点的条件概率表(conditional probability table, CPT)及边缘概率表(marginal probability table, MPT),求解出系统在不同任务时间片的后验概率。其中,文献[14]基于DTBN与改进的GO-FLOW方法,研究分析了多阶段多状态系统的共因失效问题。文献[15]通过引入区间分析理论,对无人机中表决系统的不确定性问题进行了量化处理,并基于DTBN算法对该系统进行了可靠性建模分析。然而,随着系统节点数与时间片数的增加,CPT&MPT的维度呈指数增加[16],导致求取系统可靠度所需的计算量也指数增长。
CTBN可在连续任务时间条件下,建立各个节点的概率密度函数(probability density function,PDF)的解析解,并借此得出任意时刻节点的后验概率,极大地减少了计算时间。文献[17]基于CTBN构建车辆系统的性能函数,并将其应用于该系统的可靠性优化设计。文献[18]通过模糊函数量化了失效数据的参数不确定性,并针对DBN中的动态逻辑门,构建了基于CTBN算法的模糊函数解析解模型。然而,现有的CTBN算法,需要针对不同的分析对象建立特定的分析模型,缺少通用的建模方法[19]。
因此,本文提出一种改进的DBN概率表建模方法,在无需离散任务时间的情况下,实现电源系统的动态可靠性分析与故障诊断。
1 动态贝叶斯网络
1.1 离散时间贝叶斯网络
在DTBN算法中,任务时间被离散为多个时间片段,且节点的条件概率与边缘概率以CPT和MPT的形式给出。以2时间片段的DTBN为例,“与”门的CPT&MPT如图1所示。对于节点A和B,P1和P2分别代表节点在对应时间片中的失效概率,而状态3的概率1 -P1-P2表示该节点在任务时间内未发生失效的概率。而在“与”门的CPT中,P(T=1|A=1,B=1)=1表示节点A和B在第一个时间片中失效时,该“与”门在此时间片内失效的条件概率为1,其他的概率也类似定义。基于图1的CPT,可通过式(1)~式(3)求解出节点T在各个状态的边缘概率。
图1 CTBN中“与”门的CPT&MPT
1.2 连续时间贝叶斯网络
则求解出节点T的PDF为:
但是,正如引言中介绍的,现有的CTBN算法,需要针对不同的分析对象建立特定的解析解模型。并且随着动态逻辑门和节点数的增加,该方法的建模难度也会随之增加。因此,本文提出一种改进的CPT&MPT建模方法。
1.3 概率表建模
以“与”门的CPT&MPT为例,如图2所示,P(A=1)=FA(t)表示节点A在该时间点的失效概率,而P(A=2)=RA(t)=1-FA(t)表示节点A在该时间点的可靠度。通过图2中节点T的CPT,则可由式(6)得出该节点的边缘概率分布。
图2 “与”门的CPT&MPT
可以看出,该CPT与传统CTBN算法中的单位阶跃函数和脉冲函数有相同的功能。且通过算法1,可以计算出任意数量节点的“与”门CPT,且该“与”门的父节点可以服从任意的失效分布类型。
算法 1 由i个节点组成的“与”门的C PT 计算
而针对动态贝叶斯网络中的动态逻辑门,以温备份门为例(warm spare, WSP),如图3所示,节点B为节点A的温备份节点。当节点A正常运行时,节点B处于温备份状态,其失效率 λB下降为αλB, α为 备份因子,且 0 ≤α≤1。 当 α=0时,节点B转变为冷备份节点; α =1时,节点B转变为热备份节点。当A失效时,B转变为工作状态,且失效率转变为 λB。则节点B的条件概率可由式(7)~式(10)得出。
图3 温备份门的CPT&MPT
式中,fA(t)、fB(t)分别为节点A和B工作时失效概率的PDF;fαB(t)为节点B在温备份状态下的PDF;tA、tB分别为节点A和B的失效时间。针对电子系统,当节点A和B的失效类型服从指数分布时,即fA(t)=fB(t)=λe-λt,fαB(t)=αλe-αλt,则 节 点B的CPT如表1所示。
表1 温备份节点B的CPT
为验证所提方法的准确性,以图3中的温备份门(节点T)为例,将各节点的CPT&MPT代入算法2中,当 λA=λB=0.00001, α=0.5时,可计算出T节点的可靠度曲线,分别与蒙特卡罗仿真(Monte Carlo simulation, MCS)[18]以及DTBN的计算结果进行了对比,如图4所示。
图4 结果对比分析
算法 2:DBN后验概率求解算法
由图4结果可知,所提方法可在未离散任务时间的情况下,获取与DTBN相同的系统可靠度计算结果。而且,本方法B节点的CPT维度仅为(2×2),即便是与最简单的2时间片段DTBN相比,其建模难度也远小于DTBN的CPT[16]。与MCS的计算结果的对比分析结果也验证了所提方法的准确性。
由表1的CPT可求解出B节点FB(t)的解析解,如式(11)所示,其结果与CTBN[19]一致。并且,通过将构建的CPT&MPT与算法2相结合,即可计算得到观测节点的后验概率,而无需针对不同分析对象建立特定的解析解模型。
2 电源系统的动态贝叶斯网络建立
本文以某电源系统为研究对象,该系统组成结构如图5所示。
图5 电源系统结构框图
该系统通过将民用电转换成高压直流电,给规定容量的主预储能电容器充电。在规定的时间范围内达到指定值,在规定的时序触发下,主、预储能电容通过晶闸管固态开关、平波电感给负载放电,为负载提供合适的能量脉冲,使它们的形状、幅度和时序保持一致。根据该电源系统的结构框图,可建立其DBN如图6所示,事件编号及失效率如表2所示。
表2 事件节点编号及失效率
图6 电源系统的DBN
3 电源系统的可靠性分析与故障诊断
该电源系统的DBN模型中,包括3个WPS门(BM2、CM2、DM),其组成节点的CPT&MPT如图3所示,节点B3、C2、D2的CPT可由表1计算。将各节点的CPT&MPT代入算法2中,即可求解出各个节点的后验概率。各节点状态为2时的边缘概率即为该节点对应事件的可靠度值。通过算法2,可以求解出电源系统顶事件及中间事件在任务时间内(5×105h)的可靠度变化曲线,如图7所示。其中,节点AM为底事件节点,且服从指数分布,所以其可靠度曲线是典型的指数分布曲线。根据表2中的失效率数据,因为与节点EM、CM1、CM2相关联底事件的失效率太低,所以在任务时间内上述3个节点的可靠度没有明显变化。其他的节点(TM、BM1、BM2、DM)则由各种逻辑门组合而成,因可靠度不服从特定分布,所以曲线呈现出图7所示的变化趋势。
图7 电源系统可靠度曲线
基于算法2,可以求解出顶事件TM状态为1时,其他节点i状态为1的后验概率P(i=1|TM=1)(i=AM、BM1、BM2、CM1、CM2、DM、EM)。即电源系统失效时,其他节点失效的条件概率,该条件概率可用作系统失效下部件故障的诊断分析。诊断结果如图8所示,在0.875×105h前,节点AM的后验失效概率最大,此时段若系统失效,则配电单元失效的概率最大。而在(0.875~2.9)×105h之间,则是DM节点(开关失效)的后验失效概率最大。在1.925×105h时刻,BM2(充电模块失效)的后验失效概率超过AM节点,且在2.9×105h之后成为后验失效概率最大的节点。
图8 电源系统故障诊断
4 结 束 语
本文针对DBN中的“与”、“或”、WSP逻辑门,提出了一种改进的DBN概率表建模方法,并应用于电源系统可靠性分析与故障诊断,由前面分析可得出以下结论:
1) 与DTBN相比,本文所提出的概率表建模方法可在无需离散任务时间的条件下建立节点的CPT&MPT,降低建模难度。而且,所构建的CPT&MPT可单独赋值于各节点,减少针对特定系统建模的工作量。
2) 结合文中所提概率表建模方法及边缘概率求解算法,可实现复杂系统任务时间内各个事件的动态可靠性分析,并同时求解出所有观察节点的可靠度曲线。
3) 通过贝叶斯双向推理,可求解出顶事件发生时,各子系统失效的后验概率。基于所求后验概率,可实现系统任务时间内的动态故障诊断,评估各时段内子系统失效的后验概率值,定位出最可能失效的子系统及部件。