饲用大豆品种耐荫性鉴定指标筛选及综合评价
2021-07-19宋丽君聂晓玉何磊磊郭安国黄俊生傅廷栋周广生
宋丽君 聂晓玉 何磊磊 蒯 婕 杨 华 郭安国 黄俊生 傅廷栋 汪 波,* 周广生
饲用大豆品种耐荫性鉴定指标筛选及综合评价
宋丽君1聂晓玉1何磊磊1蒯 婕1杨 华2郭安国3黄俊生4傅廷栋1汪 波1,*周广生1
1华中农业大学植物科技学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070;2湖北省畜禽育种中心, 湖北武汉 430070;3湖北省农业事业发展中心, 湖北武汉 430064;4建始县畜牧技术推广站, 湖北建始 445300
饲料玉米与大豆间作, 可直接提高饲料的蛋白质产量, 耐荫大豆品种的选用尤为关键。本研究选取不同基因型大豆, 设置大豆和玉米间作、大豆单作, 及大豆苗期、分枝期、开花结荚期遮光等5个处理, 于鼓粒期调查生物量、形态及含氮量等指标, 用各指标耐荫系数衡量各供试品种单项指标耐荫性, 用主成分分析法对各品种耐荫性综合评价, 并利用逐步回归分析法, 筛选出关键生育期遮光处理后的少数几个关键指标, 预测大豆品种耐荫性, 简化筛选方法。结果表明, 饲料大豆与玉米间作模式下, 不同大豆品种的耐荫性存在明显差异; 各大豆品种的耐荫性与大豆开花结荚期遮光处理下的耐荫性呈显著正相关, 可利用开花结荚期遮光处理来简便快速筛选适宜于与玉米间作的饲料大豆品种; 根据开花结荚期遮光处理下的耐荫性综合评价, 将供试品种聚类为3类, 结果与玉米间作大豆的耐荫性高度吻合; 利用建立的回归方程对供试品种耐荫性进行预测, 结果与综合评价值()高度一致。说明利用开花结荚期遮光处理后少数几个单项指标耐荫系数建立的回归方程, 可用于玉米间作大豆模式下耐荫材料的快速评价与筛选。
间作; 饲料大豆; 耐荫性; 综合评价
青贮饲料具有营养丰富、适口性好、消化率高的特点[1], 随着我国畜牧业的发展, 需求量骤增[2]。饲料玉米木质素含量低、干物质产量大, 是我国主要的青贮饲料。但其粗蛋白含量低[3], 需额外添加, 加剧了我国饲料蛋白质供给矛盾[4], 近年我国大豆年进口量达9000万吨左右[5]; 且玉米为耗地作物, 长期种植地力下降明显。玉米间作大豆是我国常见的间作模式, 具有光能利用率、养分利用率、土地当量比高、养地效果明显及经济生态效益显著的优点。同样, 饲料玉米与大豆间作模式, 不仅能增加青贮饲料的粗蛋白含量及饲草产量[6-7], 还可利用大豆的固氮作用, 培肥地力, 减少化肥施用。
饲料玉米与大豆间作模式下, 耐荫大豆品种的选用尤为重要。大豆是喜光作物[8], 在玉米间作大豆系统中, 大豆冠层可利用光能减少[9]。与单作相比, 间作大豆株高增加、主茎长度增加、主茎节数减少、叶片数减少、叶片厚度降低、分枝数减少[10-13], 叶绿素/的比值降低[14], 功能叶中硝酸还原酶(nitrate reductase, NR)的活性和谷氨酰胺合成酶(glutamine synthetase, GS)活性降低[15], 导致生物量降低[10]。在整株生物量减少的基础上, 茎干重占整株干重的比例增加, 荚果干重所占的比例减少[16], 但不同品种反应程度不尽相同。
间作模式下, 大豆形态生理的变化导致大豆生物量降低、茎秆易倒伏, 饲料产量减少[17]。选用耐荫大豆品种可降低因间作导致的不利影响。大豆耐荫性与基因型密切相关, 用单一指标判断耐荫性存在片面性[18]。学者对大豆耐荫性综合鉴定进行了大量研究, 用单个指标的耐荫系数进行主成分分析和隶属函数值分析, 建立了耐荫性综合评价体系[18-20]。前人研究表明, 30%遮光度适用于评价大豆耐荫性[21], 且不同生育时期耐荫性存在差异[22]。
运用玉米间作遮光筛选耐荫大豆材料, 存在过程繁杂、劳动强度大、效率不高等问题; 且前人研究均聚焦于以收获籽粒产量为目的耐荫性综合评价, 基于饲料大豆耐荫性的鉴定与评价尚不多见。基于此, 本研究选取不同基因型大豆品种, 进行玉米–大豆间作和大豆不同生育期遮光试验, 测定大豆鼓粒期生物量、形态及含氮量等指标, 用各指标耐荫系数衡量各材料单项指标耐荫性, 用主成分分析法综合评价各品种的耐荫性, 并利用逐步回归分析法, 筛选出关键生育期遮光处理后的少数几个关键指标, 用于准确评价以收获饲料为目的大豆品种的耐荫性, 简化耐荫饲料大豆品种的筛选方法。
1 材料与方法
1.1 试验材料
2017年对不同大豆材料耐荫性进行初步评价筛选, 2018年和2019年选取8个和12个生育期相近且耐荫性有差异的大豆品种(材料)作为供试材料, 具体见表1; 青贮玉米品种选用雅玉青贮8号。
表1 大豆供试材料
1.2 试验地点和土壤状况
试验在华中农业大学试验基地(30.52°N, 114.31°E)进行。前茬为油菜, 2018年土壤碱解氮、速效磷、速效钾含量分别为46.2 mg kg-1、15.2 mg kg-1、143.7 mg kg-1; 2019年土壤上述指标分别为48.2 mg kg-1、16.3 mg kg-1、146.5 mg kg-1。
1.3 试验设计
裂区试验设计, 以大豆单作(CK)、大豆和玉米间作(I)、大豆苗期遮光(T1)、大豆分枝期遮光(T2)、大豆开花结荚期遮光(T3) 5个关键生育期全程遮阴处理为主区; 各大豆品种(材料)为副区, 3次重复。小区面积12 m2(2 m×6 m), 种植模式图见图1。玉米、大豆同时播种, 大豆株距10 cm, 玉米株距30 cm。采用3层白色60目尼龙网遮光(遮光约为30%)。肥料用量均为基施600 kg hm-2复合肥(15-15- 15), 其他管理同常规。
1.4 测定项目和方法
1.4.1 形态指标及生物量测定 大豆鼓粒期, 各小区随机选取6株植株, 采用LI-3100C测定株高、茎粗、节间数、分枝数及叶面积指标后, 将植株茎、叶、豆荚分别装纸袋后于105℃下杀青30 min后, 在80℃烘干至恒重, 得各器官干物质重。
1.4.2 各器官含氮量及粗蛋白含量测定 烘干的茎、叶、豆荚粉碎后, 过40目筛后, 用凯氏定氮法[23](Hanon K9860)测定大豆各器官的含氮量, 计算粗蛋白含量。
1.4.3 叶片可溶性糖和可溶性蛋白含量测定 分别用蒽酮比色法[24]、考马斯亮蓝法[24]测定可溶性糖及可溶性蛋白含量。
1.5 耐荫性综合评价方法
1.6 数据分析及作图
运用Microsoft Excel 2016整理数据; 运用R Studio 3.5.1分析数据及作图。
2 结果与分析
2.1 各处理各单项指标的耐荫系数
由表2、表3可知, 与对照相比, 各大豆材料在间作条件下的鼓粒期株高、叶片氮含量均上升(STC>1), 地上部干重、比叶重、单株粗蛋白产量、茎秆含氮量、叶片可溶性糖含量下降(STC<1); 其余性状如叶面积、叶片可溶性蛋白含量等在各材料间的变化规律不一致; 此外, 相同大豆材料各单项指标的变化幅度不同, 用单一指标耐荫系数评价大豆的耐荫性并不准确。
与对照相比, 苗期遮光后, 各大豆材料鼓粒期地上部干重、株高、茎粗、节间数均上升(STC>1), 叶片中可溶性蛋白含量则下降(STC<1), 其余性状在各材料间的规律不一致; 分枝期遮光后, 鼓粒期各性状在各材料间的变化规律不一致; 开花结荚期遮光后, 不同大豆材料鼓粒期豆荚氮含量均上升(STC>1), 地上部干重、茎粗、单株粗蛋白产量、叶片中可溶性糖含量则下降(STC<1), 其余性状在各材料间的变化规律不尽相同。
通过对大豆间作模式下14个形态、生理指标STC相关性分析发现, 各指标间均有不同程度的相关性, 有的相关性达显著或极显著水平, 说明各指标所提供的信息部分重叠(表4)。各单项指标在耐荫性评价中所起的作用亦有差异(表2和表3), 表明耐荫性是一个复杂的综合性状, 直接利用各单项指标不能准确评价大豆耐荫性。因此, 为弥补单项指标的不足, 需利用多个指标进行综合评价。
表2 各处理下大豆材料鼓粒期各单项指标耐荫系数(2018年)
DW: 地上部干重; PH: 株高; SD: 茎粗; IN: 节间数; BN: 分枝数; LA: 单株叶面积; SLW: 比叶重; CPY: 单株粗蛋白产量; CPC: 地上部粗蛋白含量; SNC: 茎秆氮含量; LNC: 叶片氮含量; PNC: 豆荚氮含量; LSP叶片可溶性蛋白含量; LSS: 叶片可溶性糖含量。I: 大豆和玉米间作; T1: 大豆苗期遮光; T2: 大豆分枝期遮光; T3: 大豆开花结荚期遮光。
DW: above-ground dry weight; PH: plant height; SD: stalk diameter; IN: internode number; BN: branches number; LA: leaf area; SLW: specific leaf weight; CPY: crude protein yield per plant; CPC: aboveground crude protein content; SNC: stalk nitrogen content; LNC: leaf nitrogen; PNC: pod nitrogen; LSP: leaf soluble protein content; LSS: leaf soluble sugar content. I: soybean intercropping maize; T1: soybean shading at seedling stage; T2: soybean shading at branching stage; T3: soybean shading at flowering and podding stage.
表3 各处理下大豆材料鼓粒期各单项指标耐荫系数(2019年)
缩写同表2。Abbreviations are the same as those given in Table 2.
表4 玉米间作大豆模式下各大豆材料鼓粒期各指标相关矩阵(2018/2019)
缩写同表2。*,**分别表示在0.05和0.01水平显著。表格左下角为2018年各指标的相关系数, 右上角为2019年的相关系数。
Abbreviations are the same as those given in Table 2.*and**indicate significant differences at the 0.05 and 0.01 probability levels, respectively. The lower left corner of the table is the correlation coefficient of each indicator in 2018, and the upper right corner is the correlation coefficient in 2019.
2.2 主成分分析
对大豆间作模式下14个单项指标耐荫系数主成分分析。2018年前4个综合指标累计贡献率达0.88 (表5)。这将原来14个单项指标转换为4个新的独立的综合指标, 这4个代表了原始指标88%的信息。第1主成分主要包括株高、分枝数、比叶重、地上部粗蛋白含量、叶片氮含量及叶片可溶性糖含量; 第2主成分主要包括地上部干重、茎粗、叶面积、单株粗蛋白产量; 第3主成分主要包括节间数、豆荚含氮量、叶片可溶性蛋白含; 第4主成分主要包括茎秆含氮量。
表5 玉米间作大豆模式下各综合指标的系数及贡献率
缩写同表2。Abbreviations are the same as those given in Table 2.
2019年前4个综合评价指标累计贡献率达0.74 (表5)。第1主成分主要包括地上部干重、茎粗、分枝数、叶面积、单株粗蛋白产量、豆荚氮含量、叶片可溶性糖含量; 第2主成分主要包括节间数、地上部粗蛋白含量、叶片氮含量; 第3主成分主要包括株高、比叶重、茎秆含氮量; 第4主成分主要包括叶片可溶性蛋白含量。
2.3 耐荫性综合评价
2.3.2 权重确定 2018年4个综合指标权重分别为0.37、0.34、0.20、0.10; 2019年4个综合指标的权重分别为0.44、0.30、0.15、0.10 (表6)。
2.3.3 综合评价及分类 根据耐荫性综合评价值值对各参试材料的耐荫能力进行排序(表6)。2018年试验品种中, C08的值最大, 为0.852, 表明间作下其耐荫性最强; C02的值最小, 为0.228, 表明间作下其耐荫性最弱。2019年的试验品种中, D09的值最大, 为0.828, 表明间作下其耐荫性最强; D02的值最小, 为0.188, 表明间作下其耐荫性最弱。
根据间作下耐荫性综合评价值将2018年的大豆材料聚成3类(图2), 属于第I类(强耐荫)的材料有徐豆14、石豆8号、天隆1号; 属于第II类(中度耐荫)的材料有中豆41、石豆1号、冀豆17、中豆43; 属于第III类(不耐荫)的材料有石豆3号。2019年的大豆材料(图2)中, 属于第I类(强耐荫)的材料有E8、中二124、E1; 属于第II类(中度耐荫)的材料有翠丰、天隆2号、H5223、H6209; 属于第III类(不耐荫) 的材料有E6、黔豆10号、E4、E5、黔豆11号。
表6 玉米间作大豆模式下各大豆品种的综合指标值、权重、u(Xj)和D值
2.4 玉米间作大豆模式的耐荫性与各遮光处理下的耐荫性间的联系
同样, 运用以上方法计算各生育时期遮光处理条件下大豆材料的耐荫性综合评价值(表7)发现, 不同生育期遮光处理所得的各大豆品种耐荫性综合评价值存在差异。苗期遮光处理下, C03、D09的值最大, 分别为0.784、0.743; 分枝期遮光处理下, C05、D09的值最大, 分别为0.831、0.712; 开花结荚期遮光处理下, C08、D09的值最大, 分别为0.779、0.855, 说明不同大豆品种各生育期的耐荫性差异明显。
将各大豆材料的间作耐荫性D值与各生育期遮光的值进行相关分析发现, 2018年, 玉米间作大豆条件下的值与苗期遮光处理、开花结荚期遮光处理下的值均呈显著正相关; 2019年, 玉米间作大豆条件下的值与开花结荚期遮光处理下的值呈显著正相关(表8)。由此, 利用开花结荚期遮光处理条件下的大豆耐荫性综合评价值可较好地反映玉米间作大豆条件下的大豆耐荫性综合评价值。
表7 各处理下各参试材料的耐荫性综合评价值
处理同表2。Treatments are the same as those given in Table 2.
表8 玉米间作大豆模式的耐荫性与各遮光处理下的耐荫性D值相关性分析(2018/2019)
*,**分别表示在0.05和0.01水平显著。表格左下角为2018年各指标的相关系数, 右上角为2019年的相关系数。处理同表2。
*and**indicate significant differences at the 0.05 and 0.01 probability levels, respectively. The lower left corner of the table is the correlation coefficient of each indicator in 2018, and the upper right corner is the correlation coefficient in 2019. Treatments are the same as those given in Table 2.
2.5 开花结荚期耐荫性评价指标筛选
为明确开花结荚期遮光处理下各测定指标与间作条件下大豆品种耐荫性间的关系, 筛选可靠有效耐荫性鉴定指标, 建立可用于玉米间作大豆条件下耐荫性评价模型, 简化指标, 玉米间作大豆条件下耐荫性综合评价值(值)作因变量, 开花结荚期遮光处理下各单项指标的耐荫系数作自变量, 进行逐步回归分析[25], 得回归方程:
2018=1.547-1.191PH+1.129SD-1.178IN+0.291BN+ 0.234LNC (2=0.986,=9.7E-3)
2019=-0.2+0.604LNC (2=0.501,=6E-5)
在14个单项指标中, 2018年的PH、SD、IN、BN、LNC这5个指标对大豆耐荫性有显著影响, 2019年的LNC这1个指标对大豆耐荫性有显著影响, 间作耐荫性强的大豆品种在T3处理下LNC较高(表9)。分别用2018年及2019年回归方程对2年的20个大豆材料进行预测, 其预测值与玉米间作大豆的综合评价值值高度相关(值分别为0.590、0.772), 均达极显著水平。说明用该方程对玉米间作大豆条件下大豆耐荫性进行预测效果好。
3 讨论
试验指标的相对值比绝对值更能准确反映出植物抗逆能力的大小[26], 大豆耐荫性是植株多系统的综合生理反应, 受基因型差异和环境影响, 仅对某一个指标进行研究有一定的局限性[18]。评价大豆耐荫性, 应综合多个指标进行分析判断。对于综合评价, 在作物抗逆性方面多有应用[27-29], 在玉米、马铃薯、大豆等作物耐荫性方面也有较多的研究[18,30-31]。前人关于大豆耐荫性的研究聚焦于以收获籽粒产量为目的耐荫性综合评价, 本文侧重点是以收获饲料产量为目的耐荫性综合评价。
间作条件下, 大豆植株形态发生、氮代谢及分配发生变化[10-13,15]。前人构建以收获大豆籽粒产量的耐荫性综合评价模型时, 考虑了大豆植株形态及产量构成等指标[18-19]。本研究从植株形态、粗蛋白含量方面对间作饲料大豆耐荫性进行综合分析, 利用主成分分析法将各处理的14个单项指标转换了独立的综合指标, 进一步得到间作下不同大豆材料的耐荫性综合评价值。通过间作下大豆耐荫性综合评价值聚类形成的耐荫性分类。
大豆的耐荫性与品种基因型密切相关[18], 同时, 不同生育时期遮光对大豆生长产生不同的影响, 耐荫性存在差异[30]。本试验设置间作遮光和不同生育时期遮光, 是为了将大豆各生育时期的耐荫性与间作耐荫性相联系, 确定可反映间作遮光的遮光时期。通过相关性分析发现, 大豆间作耐荫性综合评价值与开花结荚期处理下的耐荫性综合评价值2年均呈显著正相关。通过花期遮光处理下大豆耐荫性综合评价值聚类形成的耐荫性分类, 与通过间作下大豆耐荫性综合评价值聚类形成的耐荫性分类基本一致, 且不同材料的耐荫性评价与前人的报道基本一致[19,21,32]。本试验2年选用不同的材料, 但结果基本一致, 进一步说明大豆开花结荚期遮光处理下的耐荫性可以反映间作条件下大豆的耐荫性。
表9 聚类结果中不同耐荫类型各性状的表现特征
缩写同表2。Abbreviations are the same as those given in Table 2.
本研究通过逐步回归建立了玉米间作条件下大豆耐荫性评价模型。2年的回归方程包含的指标有所差异, 但都包含LNC这个指标, 只用这1个指标对2年的20个大豆材料的耐荫性综合评价值进行预测, 所得结果与综合评价值的相关系数为0.590, 达极显著水平, 说明LNC这个指标较为稳定, 可用于快速鉴定间作大豆材料的耐荫性; 用PH、SD、IN、BN、LNC这5个指标对2年的20个大豆材料的耐荫性综合评价值进行预测, 所得结果与实际值的相关系数为0.772, 达极显著水平, 相关系数增大, 因此在条件允许的情况下, 测定这5个指标更可靠。
本研究发现, 大豆开花结荚期遮光处理下的耐荫性可以反映间作条件下大豆的耐荫性, 可能是因为间作条件下, 大豆开花结荚期受到玉米的荫蔽程度更大, 同时大豆开花结荚期大豆生长速率最快, 开花结荚期遮光更能模拟间作下大豆的生长环境。另一方面, 苗期遮光和分枝期遮光处理下, 大豆遮光解除后, 大豆有一定的补偿生长[33], 与间作大豆的生长环境有较大的区别, 因此其耐荫性不能较好地反映间作条件下大豆的耐荫性。大豆开花结荚期, 全株叶片平均含氮量是评价的关键指标。弱光条件下, 植物根系吸收养分的能力下降[34], 植株地上部整体含氮量下降。在植株整体含氮量下降的情况下, 氮素向茎秆、豆荚中分配减少, 维持叶片中的氮素含量, 是为了增加叶片中的叶绿素含量, 缓和弱光条件下光合速率的降低, 增加干物质累积。
4 结论
通过对大豆各时期耐荫性进行综合评价发现, 饲料大豆玉米间作模式下, 不同大豆品种的耐荫性存在明显差异; 各大豆品种的耐荫性与大豆开花结荚期遮光处理下的耐荫性呈显著正相关, 故可利用开花结荚期遮光处理来简便快速筛选适宜于与玉米间作的饲料大豆品种。根据开花结荚期遮光处理下的耐荫性综合评价, 将供试品种聚类为3类, 其聚类结果与玉米间作大豆的耐荫性高度吻合; 利用建立的回归方程对供试品种进行预测, 结果与综合评价值(D)高度一致, 说明利用花结荚期遮光处理后少数几个单项指标耐荫系数建立的回归方程, 可用于玉米间作大豆模式下耐荫材料的快速评价与筛选。叶片含氮量是显著影响大豆开花结荚期遮光处理下耐荫性评价的单项指标, 用这个指标建立的回归方程可快速预测间作大豆材料的耐荫性。
[1] 郭旭生, 丁武蓉, 玉柱. 青贮饲料发酵品质评定体系及其新进展. 中国草地学报, 2008, (4): 100–106.
Guo X S, Ding W R, Yu Z. The evaluation system of silage fermentation quality and its new development., 2008, (4): 100–106 (in Chinese).
[2] 包攀峰, 吕江南, 王加跃, 刘佳杰, 马兰. 青贮饲料收获机械的发展现状与对策. 粮食与饲料工业, 2018, (1): 42–45.
Bao P F, Lyu J N, Wang J Y, Liu J J, Ma L. Research progress and suggestion on harvesting machine for silage fodder., 2018, (1): 42–45 (in Chinese with English abstract).
[3] 张吉旺, 胡昌浩, 王空军, 董树亭, 刘鹏. 不同类型玉米品种饲用营养价值比较. 作物学报, 2003, 29: 951–954.
Zhang J W, Hu C H, Wang K J, Dong S T, Liu P. Forage nutritive value of different type maize cultivars., 2003, 29: 951–954 (in Chinese with English abstract).
[4] 阮征, 米书梅, 印遇龙. 我国大宗非粮型饲料蛋白资源现状及高效利用. 饲料工业, 2015, 36(5): 51–55.
Ruan Z, Mi S M, Yin Y L. Protein resource use efficiency for non-grain-based feed and related techniques., 2015, 36(5): 51–55 (in Chinese with English abstract).
[5] 中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2019. pp 352–352.
China Bureau of Statistics. China Statistical Yearbook. Beijing: China Statistics Press, 2019. pp 352–352 (in Chinese).
[6] Htet M N S, Soomro R N, Bo H J. Effect of different planting of maize (L.) and soybean (L.) intercropping in resource consumption on fodder yield and silage quality., 2017, 8: 666–679.
[7] Aggarwal G, Sidhu A. Effect of irrigation and nitrogen on maize-cowpea fodder intercropping at Ludhiana, India: Advantages and intercrop competition., 1988, 18: 177–184.
[8] 董钻. 大豆产量生理. 北京: 中国农业出版社, 2000. pp 55–56.
Dong Z. Physiology of Soybean Yield. Beijing: China Agriculture Press, 2000. pp 55–56 (in Chinese).
[9] 李初英, 孙祖东, 陈怀珠, 杨守臻. 不同遮光胁迫对大豆产量性状及产量的影响. 大豆科学, 2006, 25: 294–298.
Li C Y, Sun Z D, Chen H Z, Yang S Z. Effects of different shading stress on yield characters and yield of soybean., 2006, 25: 294–298 (in Chinese with English abstract).
[10] 于晓波, 张明荣, 吴海英, 杨文钰. 净套作下不同耐荫性大豆品种农艺性状及产量分布的研究. 大豆科学, 2012, 31: 757–761.
Yu X B, Zhang M R, Wu H Y, Yang W Y. Agronomic characters and yield distribution of different shade tolerance soybean under monoculture and relay strip Intercropping systems., 2012, 31: 757–761 (in Chinese with English abstract).
[11] 梁镇林. 耐阴与不耐阴大豆茎叶性状的变异及差异比较研究. 大豆科学, 2000, 19: 35–41.
Liang Z L. A comparative study on the variation and difference of stem and leaf characters between shade tolerant and shade intolerant soybean., 2000, 19: 35–41 (in Chinese with English abstract).
[12] Green-Tracewicz E, Page E, Swanton C. Shade avoidance in soybean reduces branching and increases plant-to-plant variability in biomass and yield per plant., 2017, 59: 43–49.
[13] 罗玲, 于晓波, 万燕, 蒋涛, 杜俊波, 邹俊林, 杨文钰, 刘卫国. 套作大豆苗期倒伏与茎秆内源赤霉素代谢的关系. 中国农业科学, 2015, 48: 47–56.
Luo L, Yu X B, Wan Y, Jiang T, Du J B, Zou J L, Yang W Y, Liu W G. The relationship between lodging and stem endogenous gibberellins metabolism pathway of relay intercropping soybean at seedling stage., 2015, 48: 47–56 (in Chinese with English abstract).
[14] 程亚娇, 范元芳, 谌俊旭, 王仲林, 谭婷婷, 李佳凤, 李盛蓝, 杨峰, 杨文钰. 光照强度对大豆叶片光合特性及同化物的影响. 作物学报, 2018, 44: 1867–1874.
Cheng Y J, Fan Y F, Chen J X, Wang Z L, Tan T T, Li J F, Li S L, Yang F, Yang W Y. Effects of light intensity on photosynthetic characteristics and assimilates of soybean leaf., 2018, 44: 1867–1874 (in Chinese with English abstract).
[15] 宋艳霞, 杨文钰, 李卓玺, 雍太明, 刘岚. 套作遮阴对大豆不同品种苗期氮代谢的影响. 中国油料作物学报, 2010, 32: 64–68.
Song Y X, Yang W Y, Li Z X, Yong T M, Liu L. Effects of maize-soybean relay cropping shade on nitrogen metabolism of soybean seedlings., 2010, 32: 64–68 (in Chinese with English abstract).
[16] 程亚娇, 谌俊旭, 王仲林, 范元芳, 陈思宇, 李泽林, 刘沁林, 李中川, 杨峰, 杨文钰. 光强和光质对大豆幼苗形态及光合特性的影响. 中国农业科学, 2018, 51: 2655–2663.
Cheng Y J, Chen X J, Wang Z L, Fan Y F, Chen S Y, Li Z L, Liu X L, Li Z C, Yang F, Yang W Y. Effects of light intensity and light quality on morphology and photosynthetic characteristics of soybean seedlings., 2018, 51: 2655–2663 (in Chinese with English abstract).
[17] Liu W, Deng Y, Hussain S, Zou J, Yuan J, Luo L, Yang C, Yuan X, Yang W. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [(L.) Merr.]., 2016, 196: 261–267.
[18] 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47: 2927–2939.
Li C H, Yao X D, Ju B W, Zhu M Y, Wang H Y, Zhang H J, Ao X, Yu C M, Xie F T, Song S H. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes., 2014, 47: 2927–2939 (in Chinese with English abstract).
[19] 赵银月, 詹和明, 代希茜, 单丹丹, 王铁军. 云南间作大豆耐荫性综合评价及鉴定指标筛选. 中国油料作物学报, 2019, 41: 81–91.
Zhao Y Y, Zhan H M, Dai X X, Shan D D, Wang T J. Comprehensive evaluation and screening identification index of shade tolerance of intercroppong soybean., 2019, 41: 81–91 (in Chinese with English abstract).
[20] 武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015, 48: 2497–2507.
Wu X L, Liang H Y, Yang F, Liu W G, She Y H, Yang W Y. Comprehensive evaluation and screening identification index of shade tolerance at seedling in soybean., 2015, 48: 2497–2507 (in Chinese with English abstract).
[21] 孙祖东, 张志鹏, 蔡昭艳, 曾维英, 赖振光, 陈怀珠, 杨守臻, 唐向民, 苏燕竹, 盖钧镒. 大豆耐荫性评价体系的建立与中国南方大豆资源耐荫性变异. 中国农业科学, 2017, 50: 792–801.
Sun Z D, Zhang Z P, Cai Z Y, Zeng W Y, Lai Z G, Chen H Z, Yang S Z, Tang X M, Su Y Z, Gai J Y. Establishment of an evaluation system of shade tolerance in soybean and its variation in southern china germplasm population., 2017, 50: 792–801 (in Chinese with English abstract).
[22] Wang Y, Yang W, Zhang X, Yang T W, Liu W, Su B. Effects of shading at different growth stages on different traits and yield of soybean., 2013, 39: 1871–1879.
[23] 戴宏林, 吴小骏. 用凯氏定氮法测定植物干样品中的氮含量. 扬州大学学报(农业与生命科学版), 1995, 16(3): 70.
Dai H L, Wu X J. Determination of nitrogen content in plant dry samples by Kjeldahl method.(Agric Life Sci Edn), 1995, 16(3): 70 (in Chinese with English abstract).
[24] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 184–185, 195–196.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 184–185, 195–196 (in Chinese).
[25] 肖筱南. 小样本多元逐步回归的最优筛选分析. 统计与信息论坛, 2002, 17(1): 22–24.
Xiao X N. The optimal screening analysis of small sample multiple stepwise regression., 2002, 17(1): 22–24 (in Chinese).
[26] 谢季坚, 刘承平. 模糊数学方法及其应用. 武汉: 华中科技大学出版社, 2013. pp 99–183.
Xie J J, Liu C P. Fuzzy Mathematics Method and Its Application. Wuhan: Huazhong University of Science and Technology Press, 2013. pp 99–183 (in Chinese).
[27] 吴文超, 曲延英, 高文伟, 吴鹏昊, 陈全家. 不同棉花品种对盐、旱胁迫的光合响应及抗逆性评价. 新疆农业科学, 2016, 53: 1569–1579.
Wu W C, Qu Y Y, Gao W W, Wu P H, Chen Q J. Photosynthetic response and stress resistance evaluation of different cotton varieties to salt and drought stress., 2016, 53: 1569–1579 (in Chinese with English abstract).
[28] 李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44: 988–999.
Li L, Mao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources., 2018, 44: 988–999 (in Chinese with English abstract).
[29] 周广生, 梅方竹, 周竹青, 朱旭彤. 小麦不同品种耐湿性生理指标综合评价及其预测. 中国农业科学, 2003, 36: 1378–1382.
Zhou G S, Mei F Z, Zhou Z Q, Zhu X T. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties., 2003, 36: 1378–1382 (in Chinese with English abstract).
[30] 晏庆九, 霍仕平, 张芳魁, 张兴瑞, 张健, 向振凡, 徐志江, 冯云超. 人工模拟阴湿环境对玉米自交系生长发育特性的影响. 作物学报, 2013, 39: 2253–2261.
Yan Q J, Huo S P, Zhang F K, Zhang X R, Zhang J, Xiang Z F, Xu Z J, Feng Y C. Effects of artificial shaded-humid environment on growth characteristics in different maize inbred lines., 2013, 39: 2253–2261 (in Chinese with English abstract).
[31] 刘勋, 张娇, 沈昱辰, 谢德斌, 李宏利, 李春明, 易小平, 赵勇, 唐道彬, 吕长文, 王季春. 基于光合系统参数建立马铃薯耐荫性综合评价体系. 植物学报, 2019, 54: 360–370.
Liu X, Zhang J, Shen Y C, Xie D B, Li H L, Li C M, Yi X P, Zhao Y, Tang D B, Lyu C W, Wang J C. A comprehensive evaluation system of potato shade tolerance was established based on photosynthetic system parameters., 2019, 54: 360–370 (in Chinese with English abstract).
[32] 黄妙华. 玉米大豆间作品种筛选及田间配置研究. 南京农业大学硕士学位论文, 江苏南京, 2015.
Huang M H. Study on Seed Selection and Field Allocation of Maize and Soybean Intercropping. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015 (in Chinese with English abstract).
[33] 王竹, 杨文钰, 吴其林. 玉/豆套作荫蔽对大豆光合特性与产量的影响. 作物学报, 2007, 33: 1502–1507.
Wang Z, Yang W Y, Wu Q L. Effects of shading in maize/soybean relay-cropping system on the photosynthetic characteristics and yield of soybean., 2007, 33: 1502–1507 (in Chinese with English abstract).
[34] 王亚江, 魏海燕, 颜希亭, 葛梦婕, 孟天瑶, 张洪程, 戴其根, 霍中洋, 许轲, 费新茹. 光、氮及其互作对超级粳稻产量和氮、磷、钾吸收的影响. 作物学报, 2014, 40: 1235–1244.
Wang Y J, Wei H Y, Yan X T, Ge M J, Meng T Y, Zhang H C, Huo Z Y, Xu K, Fei X R. Effects of light, nitrogen and their interaction on grain yield and nitrogen, phosphorus and potassium absorption insuper rice., 2014, 40: 1235–1244 (in Chinese with English abstract).
Screening and comprehensive evaluation of shade tolerance of forage soybean varieties
SONG Li-Jun1, NIE Xiao-Yu1, HE Lei-Lei1, KUAI Jie1, YANG Hua2, GUO An-Guo3, HUANG Jun-Sheng4, FU Ting-Dong1, WANG Bo1,*, and ZHOU Guang-Sheng1
1College of Plant Science and Technology of Huazhong Agricultural University / Key Laboratory of Crop Physiology, Ecology and Cultivation in the middle reaches of Yangtze River, Ministry of Agriculture and Rural Areas, Wuhan 430070, Hubei, China;2Animal Breeding Center of Hubei Province, Wuhan 430070, Hubei, China;3Agricultural Development Center of Hubei Province, Wuhan 430064, Hubei, China;4Animal Husbandry Technology Extension Station of Jianshi County, Jianshi 445300, Hubei, China
Maize intercropped with soybean can significantly increase the protein yield of feed, and the selection of shade tolerant soybean varieties is particularly important. In this study, five treatments including soybean intercropped with maize, monocropping, shading at seedling stage, shading at branching stage, shading at flowering and podding stage were conducted. The biomass, morphology, and nitrogen content were investigated at filling stage among the treatments. The shade tolerance coefficient (STC) of each index was used to measure the shade tolerance of each tested variety. A few key indexes at key growth stages under shading were screened out by stepwise regression analysis to predict the shade tolerance of soybean varieties, which could be used to simplify the screening protocol. The results showed that there were significant differences of shade tolerance between soybean varieties under intercropping. Shade tolerance of shading at flowering and podding stages was positive correlation to shade tolerance of intercropping. Thus, the treatment of shading at flowering and podding stages could be used to screen out feed soybean varieties suitable for intercropping with maize. According to the comprehensive evaluation of shade tolerance under shading at flowering and podding stages, the varieties used in this study were clustered into three groups, and the results were highly consistent with the shade tolerance of intercropped with maize. The regression equation was used to predict the shade tolerance of the tested varieties, and the results of which were highly consistent with the comprehensive evaluation values (-values). These results suggested that the regression equation established by STC of a few indexes at flowering and podding stages could be used for rapid evaluation and screening of shade tolerant materials under intercropped with maize.
intercropping; feed soybean; shade tolerance; comprehensive evaluation
10.3724/SP.J.1006.2021.04149
本研究由国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000900), 湖北省技术创新专项重大项目(2017ABA064)和中央高校基本科研业务费项目(2662017JC005)资助。
This study was supported by the National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops” (2018YFD1000900), the Technological Innovation Major Project of the Science and Technology Department of Hubei Province (2017ABA064), and the Fundamental Research Funds for the Central Universities (2662017JC005).
汪波, E-mail: wangbo@mail.hzau.edu.cn
E-mail: 2911128276@qq.com
2020-07-07;
2021-01-21;
2021-02-20.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20210220.1406.006.html