基底负偏压对Ti-Si-N涂层组织和性能的影响
2021-07-11舒应军刘双武张虎
舒应军 刘双武 张虎
摘 要:采用多弧离子镀技术在Ti(C, N)金属陶瓷基体上沉积了TiSiN涂层,用X射线衍射仪、扫描电镜、显微硬度仪和划痕仪等实验手段研究了基底偏压对TiSiN涂层的表面形貌、成分、涂层物相和力学性能的影响。结果表明,基底偏压可增加荷能离子的速度,提高荷能离子的能量,并强化离子束对已沉积涂层的溅射作用,减少了涂层表面溶滴的数量,有利于获得致密的涂层材料。随着基底偏压的增加,(200)方向上衍射强度降低,而(111)方向增强,TiSi2的(311)方向的相对衍射强度略有增大。基底偏压的增加也提高了涂层的沉积温度,致使涂层晶粒有所增大。基底负偏压过高容易在晶粒间形成针状孔洞,从而恶化了涂层的力学性能。当基底偏压为-200V时,涂层具有良好的力学性能。
关键词:Ti-Si-N涂层;基底负偏压;多弧离子镀;微观组织;力学性能
中图分类号:TG174.4 文献标识码:A 文章编号:1001-5922(2021)04-0069-04
Abstract:The TiSiN coatings were deposited on the surface of Ti(C, N)-based cermet by multi-arc ion plating method. The effects of substrate bias on the surface morphology, composition, phase and mechanical properties of TiSiN coating were studied by means of X-ray diffraction, scanning electron microscope , microhardness tester and scratch tester. The results show that negative bias voltage can increase the velocity of charged ions, increase the energy of charged ions, and strengthen the sputtering effect of ion beam on the deposited coating, reduce the number of droplets on the coating surface, which is beneficial to obtain dense coating. With the increase of negative bias voltage, the diffraction intensity decreases in the direction of (200), increases in the direction of (111), and increases slightly in the direction of (311) of TiSi2. The increase of negative bias voltage also increases the deposition temperature of coating, resulting in the increase of coating grains. Too high negative bias voltage can easily form needle-like holes in the grains, which will deteriorate the mechanical properties of the coating. When the substrat enegative bias is -200V, the coating has good mechanical properties.
Key words:Ti-Si-N coating; substrate negative bias; multi-arc ion plating; microstructure; mechanical properties
0 前言
由于TiSiN涂層具有硬度高、抗高温氧化性能好、摩擦系数小、弹性模量高、与基体结合力强等特点,得到广泛关注[1-6]。目前的研究主要集中在调整涂层中合金元素的含量[3]、多层复合[1,6-9]、界面调控[10-13]等方面。上述微观效应导致薄膜宏观使役性能的改变,如内应力控制[14-16]、结构致密化[15]、和膜/基结合强度改善等。
文献[6]研究了Ti1-xSixN/CrAlN复合图层中随着Si含量的增加,涂层的硬度由27GPa增加到35GPa,但是涂层的高温热稳定性却有所下降。
文献[14]研究了基体负偏压对涂层内应力和硬度的影响,分析表明,对于低Si含量的涂层,随着负偏压的增大,晶粒度逐渐减小,硬度先升后降,弹性模量的变化不大;对于高Si含量的涂层随着负偏压的增加,晶粒度增大,硬度和弹性模量随着升高。随着负偏压的增加,涂层的应力状态由拉应力变为压应力,其大小随着负偏压的增大而增大,涂层的硬度也随着增大。
目前以磁控溅射等方法制备TiSiN涂层的研究较多,但对多弧离子镀制备TiSiN涂层的研究尚缺少系统性。
1 涂层的制备及表征
1.1 TiSiN涂层制备
实验使用多弧离子镀机镀制TiAlN涂层。采用Ti(C, N)金属陶瓷作为基体材料。试样经打磨、抛光、超声清洗后,在真空干燥箱中烘干。实验选择高纯Ti靶和Al靶;所用氮气和氩气为高纯气体。靶极电流分别设为ISi/ITi=60/80、基底温度为350℃,基底负偏压分别在-50V、-100V、-150V、-200V和-250V沉积时间为90min,N2流量为150sccm。
1.2 TiSiN涂层的表征
采用Sirion 200型低温场发射扫描电子显微镜对涂层的表面形貌和磨损形貌进行分析。用Philips公司生产的X Pert MPD型X射线衍射仪对涂层进行物相分析,选用CuKα射线,λ=0.15406nm,步长为0.02。
用MH-5LD硬度计测量TiAlN涂层的维氏硬度,压头所加载荷为0.1kgf,每个试样选取5个点进行测试,取平均值。在WS-2000自动划痕仪上测试TiAlN涂层的结合力。涂层的常温耐磨性试验采用球盘磨损试验。
2 结果及分析
2.1 TiSiN涂层表面形貌
图1为不同基底负偏压工艺条件下制备的TiSiN涂层表面形貌。由图可以看出,涂层表面的颗粒的数量随着负偏压的增大而减少,特别是小颗粒的数量减少的比较明显。当负偏压大于-100V时,涂层表面有部分颗粒脱落的痕迹。当负偏压增大到-250V后,涂层表面有针状气孔产生。在沉积过程中,适当的负偏压可增加荷能离子的速度,提高荷能离子的能量,并强化离子束对已沉积涂层的溅射作用,有利于获得致密的涂层材料。基底负偏压的增大也导致电场强度的增强、排斥力增大,部分小颗粒不能克服电场的排斥作用而无法到达基体表面;同时,后沉积的高能离子对先沉积薄膜的再溅射作用也减少了涂层表面颗粒数量,部分颗粒脱落并形成针状气孔。
不同基体负偏压下制备的涂层中Si的含量见图2。
由图2中可以看出,随着基体负偏压的增加,涂层中Si的含量下降。这是因为负偏压的增加,增强了等离子体对以沉积涂层的“再溅射”作用,使得涂层中Si含量降低。
2.2 涂层截面形貌
图3为不同负偏压下TiSiN涂层的断口形貌。由图可知,涂层与基体的结合紧密,界面处没有裂纹等缺陷产生。随着负偏压的增大,涂层的柱状组织更加致密,当负偏压大于-250V时,柱状晶粒尺寸增大。负偏压的增大可以增强离子对基体的溅射作用,提高基体温度,其作用机理通常用沉积过程中低能离子的轰击效应来解释[15]。Messier[16]等人发现,随着基体负偏压的增大,涂层致密化所需沉积温度降低。基底负偏压对从靶材激发出来的离子具有加速作用,当离子沉积到基体表面时,对基体表面先沉积的涂层具有轰击作用,有利于减少先沉积涂层中的缺陷,提高涂层的质量。
2.3 XRD物相分析
图4为不同基体负偏压下TiSiN涂层X射线衍射图谱。分析表明,涂层中含有TiN和TiSi2相。在-50V偏压时,(200)晶向為主要取向。随着负偏压的增加,(200)方向上衍射强度降低,而(111)方向增强,TiSi2的(311)方向的相对衍射强度略有增大。
2.4 涂层的力学性能
基体负偏压对涂层显微硬度和晶粒度的影响如图5所示,对界面结合强度的影响如图6所示。随着基体负偏压的增加,涂层的硬度随之增加,当负偏压在-200V时,硬度达到最大值,随着负偏压的进一步增加,硬度开始下降。界面结合强度随负偏压的变化规律与显微硬度相一致。利用X射线衍射谱进行晶粒度计算,分析表明,随着负偏压的增加,涂层的平均晶粒尺寸略有增加。负偏压的增大,加强了离子束对基体的溅射作用,由轰击效应引起的晶格畸变、缺陷增多,易得到更加致密的涂层材料,其力学性能得到改善[17]。同时,负偏压的增加也提高了涂层的沉积温度,致使涂层晶粒有所增大。负偏压过高容易在晶粒间形成针状孔洞,从而恶化了涂层的力学性能。
3 结论
(1)适当的基体负偏压可增加荷能离子的速度,提高荷能离子的能量,并强化离子束对已沉积涂层的溅射作用,减少了涂层表面溶滴的数量,有利于获得致密的涂层材料。
(2) 随着基体负偏压的增加,(200)方向上衍射强度降低,而(111)方向增强,TiSi2的(311)方向的相对衍射强度略有增大。
(3)基体负偏压的增加也提高了涂层的沉积温度,致使涂层晶粒有所增大。负偏压过高容易在晶粒间形成针状孔洞,从而恶化了涂层的力学性能。当基底偏压为-200V时,涂层具有良好的力学性能。
参考文献
[1] Q. Wan, B. Yang, M.Y. Chen, et al.Effect of bilayer period on microstructure and mechanical properties of TiSiN/TiN coatings[J].Materialia,2018,3:260-264.
[2]M.Bartosik,R.Hahn,Z.L.Zhang,et al. Fracture toughness of Ti-Si-N thin films[J].International Journal of Refractory Metals and Hard Materials,2018,72:78-82.
[3]Q. Wan,B. Yang,H.D. Liu,et al. Microstructure and adhesion of MeN/TiSiN (Me = Ti, Cr, Zr, Mo, NbxAl1?x) multilayered coatings deposited by cathodic arc ion plating[J]. Applied Surface Science, 2019, 497.
[4]Xuming Zha,Fengbiao Chen,Feng Jiang,et al. Correlation of the fatigue impact resistance of bilayer and nanolayered PVD coatings with their cutting performance in machining Ti6Al4V[J]. Ceramics International, 2019, 45(12): 14704-14717.
[5]Wanglin Chen,Te Hu,Chengyong Wang,et al.The effect of microstructure on corrosion behavior of a novel AlCrTiSiN ceramic coating[J].Ceramics International, 2020, 46(8): 12584-12592.
[6]Chun Hu,Hui T. Wang,Li Chen,et al. Structural, mechanical and thermal properties of Ti1-xSixN/CrAlN (x = 0, 0.13 and 0.22) multilayers[J]. Journal of Alloys and Compounds, 2019, 800: 355-362.
[7]Desheng Wang,Ming Hu,Xiaoming Gao,et al.Tailoring of the interface morphology of WS2/CrN bilayered thin film for enhanced tribological property[J]. Vacuum, 2018, 156: 157-164.
[8]Guang Xian,Ji Xiong,Haibo Zhao,et al. Evaluation of the structure and properties of the hard TiAlN-(TiAlN/CrAlSiN)-TiAlN multiple coatings deposited on different substrate materials[J]. International Journal of Refractory Metals and Hard Materials, 2019, 85.
[9]W. Li, P. Liu, Z.H. Xue, et al.Microstructure, mechanical properties and strengthening mechanism of TiSiCN nanocomposite films synthesized by reactive magnetron sputtering[J].Sci. Rep., 2017, 7 :2140(1-10).
[10]Wanglin Chen,An Yan,Xianna Meng,et al. Microstructural change and phase transformation in each individual layer of a nano-multilayered AlCrTiSiN high-entropy alloy nitride coating upon annealing[J]. Applied Surface Science, 2018, 462: 1017-1028.
[11]Wei Li,Ping Liu,Pengcan Chen,et al.Microstructure and a coherent-interface strengthening mechanism of NbSiN nanocomposite film[J].Thin Solid Films,2017,636:1-7.
[12]Wei Li,Ke Zhang,Ping Liu,et al. Microstructural characterization and strengthening mechanism of AlN/Y nanocomposite and nanomultilayered films[J]. Journal of Alloys and Compounds, 2018, 732: 414-421.
[13]Alexander S. Chang,Lincoln J. Lauhon.Lauhon. Atom probe tomography of nanoscale architectures in functional materials for electronic and photonic applications[J]. Current Opinion in Solid State and Materials Science,2018.
[14] B. Warcholinski,T. A. Kuznetsova,A. Gilewicz,et al. Structural and Mechanical Properties of Zr-Si-N Coatings Deposited by Arc Evaporation at Different Substrate Bias Voltages[J]. Journal of Materials Engineering and Performance,2018, 27(8): 3940-3950.
[15] Yang Deng,Wanglin Chen,Bingxin Li,et al. Physical vapor deposition technology for coated cutting tools: A review[J]. Ceramics International,2020,46(11): 18373-18390.
[16] Kvasov, N. T.,Uglov, V. V.,Safronov, I. V.,et al. The Interface Influence in TiN/SiN (x) Multilayer Nanocomposite Under Irradiation[J].Russian physics journal,2018,60(9):1600-1610.