带阻尼项的g-Navier-Stokes方程的全局吸引子
2021-07-06刘文婧姜金平熊坤翠
刘文婧 姜金平 熊坤翠
摘 要:考虑带非线性阻尼项cuβu的g-Navier-Stokes方程解的长时间行为,通过验证完备度量空间X上的一个连续半群{S(t)}t≥0存在有界吸收集BX和{S(t)}t≥0的渐近紧性,得出全局吸引子存在。
关键词:非线性阻尼;g-Navier-Stokes方程;全局吸引子;吸收集;渐近紧
中图分类号:O175.29
文献标志码:A
4 结论
本文验证了带非线性阻尼项cuβu的g-Navier-Stokes方程存在全局吸引子,进一步完善了2Dg-Navier-Stokes系统理论,有利于该系统指数吸引子的研究,同时期待本文的方法和结论能对3Dg-Navier-Stokes系统的研究有帮助。
参考文献:
[1] ROH J. G-Navier-Stokes equations[D]. Sao Paulo: PH D Thesis, University of Minnesota, 2001.
[2] ROH J. Dynamics of the g-Navier-Stokes equations[J]. Journal of Differential Equations, 2005, 211(2):452-484.
[3] KWAK M, KWEAN H, ROH J. The dimension of attractor of the 2D g-Navier-Stokes equations[J]. Journal of Mathematical Analysis and Applications, 2006, 315(2):436-461.
[4] ROH J. Convergence of the g-navier-stokes equations[J]. Journal of Differential Equations, 2009, 211(2):452-484.
[5] JIANG J P, HOU Y R. Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains[J]. Applied Mathematics and Mechanics, 2010,31(6):697-708.
[6] JIANG J P, HOU Y R. The global attractor of g-Navier-Stokes equations with linear dampness on R2[J]. Applied Mathematics and Computation, 2009, 215(3):1068-1076.
[7] JIANG J P, HOU Y R,WANG X X. Pullback attractor of 2D nonautonomous g-Navier-Stokes equations with linear dampness[J]. Applied Mathematics and Mechanics, 2011,32(2):151-166.
[8] JIANG J P, WANG X X. Global attractor of 2D autonomous g-Navier-Stokes equations[J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(3):385-394.
[9] 姜金平, 王小霞, 侯延仁. 一類含线性阻尼的非线性自治g-Navier-Stokes系统解的渐近光滑效应[J]. 西北大学学报(自然科学版), 2017,47(4):471-475.
[10]MA Q F, WANG S, ZHONG C K. Necessary and sufficient conditions for the existence of global attractors for semigroups and applications[J]. Indiana University Mathematics Journal, 2002, 51(6): 1541-1570.
[11]郭柏灵. 无穷维动力系统[M]. 北京: 国防工业出版社, 2000.
[12]TEMAM R. Infinite-dimensional dynamical systems in mechanics and physics volume[M]. New York: Spring-verlag, 1988.
[13]JAMES C. Infinite-dimensional dynamical systems[M]. Cambridge: Cambridge University Press,2001.
[14]SELL G R, YOU Y C. Dynamics of evolutionary equations[M].New York: Applied Mathematical Sciences, 2002.
[15]马红铝. 无穷维动力系统全局吸引子问题的研究[D]. 南京: 南京大学, 2018.
[16]SONG X L, HOU Y R. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping[J]. Discrete & Continuous Dynamical Systems, 2011, 31(1):239-252.
(责任编辑:于慧梅)
The Global Attractor of g-Navier-Stokes Equations with Dampness
LIU Wenjing, JIANG Jinping*, XIONG Kuncui
(College of Mathematics and Computer Science, Yan an University, Yan an 716000, China)
Abstract:
The long time behaviors of g-Navier-Stokes equations with dampness were investigated. The bounded absorbing set of a continuous semigroup S{t}t≥0in a complete metric space X is verified and the asymptotic compactness of the semigroup S{t}t≥0was proved,hence the existence of the global attractor for the equations was proved.
Key words:
nolinear dampness; g-Navier-Stokes equations; global attractor; bounded absorbing set; asymptotic compact
收稿日期:2020-09-25
基金项目:陕西省自然科学基础研究计划资助项目(2018JM1042)
作者简介:刘文婧(1994—),女,在读硕士,研究方向:无穷维动力系统,E-mail:1357850443@qq.com.
通讯作者:姜金平,E-mail:yadxjjp@163.com.