APP下载

大数据时代下软件工程技术的应用

2021-07-05刘园园

电子技术与软件工程 2021年10期
关键词:应用服务软件服务

刘园园

(青岛职业技术学院 山东省青岛市 266555)

1 前言

互联网的普及以及大数据技术应用,使人们的生活发生了翻天覆地的变化。当前,基于大数据背景软件工程技术的发展面临着新的机遇和挑战。所以,软件工程师需要紧跟时代潮流,强化对软件工程技术的优化,以及数据信息处理能力,进而推进软件工程关键性技术的合理应用。

2 大数据技术和软件工程技术

大数据处理技术实际上就是将目前人们用于日常生活以及生产工作中的大量数字信息,收集、整理并进行分类,然后再将其整合存储于不同的信息空间中。如果站在当前大数据分析技术的算法角度进行分析的话,大数据分析技术算法可以详细的分为数据分析算法技术、机器深度学习算法技术、遗传算法分析技术、自然而言语音数据处理算法技术等个方面。大数据分析技术的广泛应用,就是以当前自然科学信息技术应用为主要基础创新发展并不断衍生而来的一种全新的数据分析处理技术。这一新型技术主要目的是充分发挥利用现代科技技术手段的不同技术特性优势,应用传统计算机科学算法,将一个具有相同技术特性的大型数据系统划分成多为一类,然后再开始进行合理的数据分析与理论研究。大数据分析技术在移动互联网软件行业发展中的全面推广和广泛应用,不仅充分突出了其自身应有的技术优势,同时随着新一代技术的不断推广引入,软件系统工程技术也逐步迎来了高速同步发展的关键阶段。大数据信息时代的正式来临,使得当今社会各个领域都已经进入了电子信息化产业发展的关键阶段,再随之加上当今人们对电子工程学的概念知识了解的越来越多,针对电子软件技术和电子工程质量管理的课题研究也越来越多,满足不同技术类型的开发项目对软件技术的不同要求。

3 大数据时代下软件工程关键技术

3.1 软件服务工程技术

软件服务器的开发需要符合我国当下一个社会经济主流服务需求,也是我国社会经济发展的一个主流服务需要。其在技术上主要广泛应用在企业服务开发功能比较明显的应用软件开发之中,主要定义是指以软件工程开发形式,利用计算机系统的可编程应用语言、开发应用程式及操作步骤、数据系统等技术内容,实现一种具备应用服务开发功能、应用服务功能类型软件的技术开发,其服务协作体系如图1所示。软件开发工程系统开发以软件服务器和能力开发为技术核心,以软件虚拟化的特征以及各种分布式的样式为技术基础,对企业用户具体软件应用运行情况实时进行自动调试,保障企业用户自行应用整个软件系统工程开发系统时的科学性、稳定性、安全性。与此同时,服务商的软件应用工程技术平台可实现软件应用与大数据之间的有效整合,提高企业软件工程管理操作能力,对各项软件操作管理流程等信息进行明确。在当前大数据发展时代背景下,服务系统软件工程师的开发技术更加多地倾向于应用局域网内部安全应用,可以有效保护整个局域网内部各个用户系统不会再次受到任何木马病毒恶意软件袭击,极大一定程度上地保障服务软件开发工程师在应用中的安全性。例如,某公司企业应用软件服务企业软件开发工程技术,致力于应用服务与企业应用管理效果上的软件管理系统技术开发,将其广泛应用在我国企业软件整体应用业务管理之中,为了大大提高企业软件应用服务开发工程企业应用服务效率,赋予了企业软件系统私人客户订制服务功能,强化企业软件应用服务开发工程的自定义应用效果。

图1:软件服务协作体系

3.2 众包软件服务工程

在众多应用软件系统工程技术中,大多数软件所具备的主要功能为自动处理大量信息、数据的自动集中性,可以自动生成大量处理数据中的信息,并可以呈现出数据集中性等基本特征。众包软件开发工程技术在目前世界范围各国均已经得到了广泛的普及,是各国的企业重点技术研究发展对象。该核心技术在企业应用开发过程中企业可以利用流式型大数据、密集型大数据以及研究服务为主,实现企业系统化数据服务平台化的构建,其中的核心数据应用服务价值主要在于企业具有很强数据服务创新能力,并以企业群体数据信息共享服务等多种方式,优化自身核心应用价值。该软件信息工程技术相对于比较其他企业软件技术而言,具有明显技术优势,其在量化数据特征实质性的表现上主要具有数据真实性强的特征,忽略了企业软件表现形式上的要点,并不一定具备完全单位化的量化数据特征,重点主要突出在数据集中性上。企业及有关部门企业需不断强化众包服务软件开发相关技术综合应用,提高众包技术开发应用管理水平,在技术上不断进行自主创新,提高自身核心竞争力和实力。

3.3 密集型数据科研技术

在储存技术上和理论储存发展过程中需要强调发挥大数据库在储存研究技术上的应用价值性,以统一的技术理论研究方法体系作为对大数据储存研究主要理论支撑。在该软件技术开发与实际应用集成过程中,对其基于传统工业软件开发工程中一、二、三维规范式数据进行海量理论与实践数据综合分析,提高其短时间内的海量数据分析储存与海量信息处理计算能力。在经过反复研究试验分析对比之后,研究工作人员决定改变传统数据思维分析模式,首先继续致力于"第四范式"数据结构分析研究,针对密集型分析数据结构分析思维方式,传统的分析数据变化周期、信息处理流程分析方法已经基本无法有效适用,在分析模型设计效果上仍然存在一定滞后性。研究工作人员以公司原本的大数据、信息、模型三个研究成果为理论基础,对其中大数据服务、信息技术服务等因素进行综合推演,逐渐重新构建并提出第四代规范式服务模型,对其数据服务运营能力、服务产品价值等因素进行了全面性的优化。总而言之,密集型数据科研技术对于我国软件工程的发展有着重要的推动作用。

3.4 云存储技术

相比于单一的数据存储业务模式及其云数据存储密切地结合了各个业务单元,在此前提下可以用来实时存储不同业务类型的用户数据,有多种数据存储形式,如图2所示。因此我们可以清楚得知,云数据存储技术不仅具备较强的数据协同处理性能,密切相关结合了各种多样化的网络信息数据存储。面对当今大数据的发展背景,云数据存储更加十分适合用来实时保存海量数据信息,进而方便了实时性的海量数据采集存储以及海量信息数据传输。从整个企业大数据的发展角度来讲,云计算存储技术应当成为构成其中的基本核心与关键,借助此类存储方式可用来快速存储实时性的海量数据。

图2:云存储技术类型

4 软件工程技术的应用

4.1 信息通信方面

一方面利用信息电子通信技术有助于促使企业将不断流失的企业客源管理损失大幅度大大降低;另一方面也使企业在这个客源分析管理软件中可以发现其所具有的在行业内的发展战略价值以及企业运转管理过程中仍然存在的巨大商业价值潜力,这些对于帮助企业制定立足于未来和在行业内的发展战略具有至关重要的战略意义。例如,通信服务行业在日常运营管理过程中一般都是需要通过应用终端到各种计算机通信软件或者记录仪来监测一些有关通信用户的具体经营信息和利用实时数据计费,通过对这些有关用户数据信息库中保存的相关资料进行加以分析,一定程度上也就可以帮助扩大通讯企业经营规模,取得更好的社会经济效益,创造生产出更高的经济社会效益。

4.2 企业信息解决问题方面

通过实时应用各种企业计算机信息管理软件,不同业务行业和各领域客户可以选择性地实现多种企业系统化的管理功能,比如在风险分析和收益评估业务过程中首先就需要自动获得企业客户的个人信息相关资料,实时自动记录整个企业管理人员的信息流动以及动态等相关问题。首先也就是数据抽样。简单来讲从创新产品研发生产的信息系统优化过程中经由筛选出来的具有国际代表性的创新产品就应当成信息采集者的样本。其次就是数据开发,主要针对复杂数据的优化处理方式开展一系列的开发优化数据处理方式,涉及开发到数据导入、选择及数据合并等多个开发流程。然后也就是手动修改,这一操作流程的具体操作处理前提主要是对于产品数据库的信息需要进行系统优化。模型分析流程的广泛存在将使得预测结果分析变得更加精确可靠,同时这一点还是解决企业如何选定解决方案预测能否正常顺利通过的首要技术前提。最后就是成绩评定,评定的主要作用之一是需要通过和不同模型之间的数据比较,让专业技术人员对模型数据信息加以分析进行整合,保证数据信息的质量准确性。

5 结语

综上所述,随着全球大数据应用时代的来临,软件基础工程技术和操作的推广和广泛应用已经成为了不断推动我国社会经济发展和科技进步的重要技术元素。现代大型企业组织应该在不断加大企业计算机学和网络信息技术实际应用示范研究推广力度的必要同时,充分认识大数据技术理念在现代企业持续发展经营过程中实际应用的特殊重要性,根据现代企业持续发展的实际需求认真做好企业软件技术系统开发和产品更新的准备工作,促进现代企业数据分析信息处理工作效率和数据运行环境稳定性的全面提高,为实现企业的长期健康可持续发展经营奠定坚实的技术基础。

猜你喜欢

应用服务软件服务
全球卫星互联网应用服务及我国的发展策略
禅宗软件
服务在身边 健康每一天
软件对对碰
国家不动产统一登记信息平台构建与应用服务
服务在身边 健康每一天
服务在身边 健康每一天
全国征集卫星应用服务解决方案
应用服务型人才培养体系下的嵌入式操作系统教学改革探索
谈软件的破解与保护