APP下载

上山遗址区沉积过程与人类活动的关系

2021-06-17王凤曾蒙秀朱丽东朱诚尹敬文杨欢

沉积学报 2021年3期
关键词:孢粉磁化率上山

王凤,曾蒙秀,朱丽东,朱诚,尹敬文,杨欢

1.浙江师范大学地理与环境科学学院,浙江金华 321004

2.南京大学地理与海洋科学学院,南京 210023

0 引言

浙江省位于中国东部暖温带和亚热带过渡区域,受季风控制明显,对环境变化较为敏感。该区域作为中国东部人类活动最重要的场所之一,是人类生存的密集区,孕育了多元的文化和灿烂辉煌的浙江文明,是中华文明的重要发源地之一。而浙江长期积累了丰富的古文化遗存,使其成为研究过去环境变化对人类活动影响的理想地带和重要场所,也为研究我国东部史前人类活动与环境变化之间的关系提供了重要素材。在末次冰期极盛期,气候冷干,海平面下降,进入海退阶段,滨海区以及沿岸的陆架区为陆地环境[1]。贯穿浙江的钱塘江流域形成下切河谷,之后发育河流阶地与漫滩[2],为人类活动提供了相对平坦开阔的空间。进入全新世,海平面快速上升,海平面的波动在很大程度上影响着史前文化兴衰和人类活动进程[3-4]。此外,地貌演化及农业的起源、传播与发展也影响着考古学文化的发展[5-6]。浙江地处我国东部沿海地区,山地所占面积广且地形复杂,是探讨气候变化、海平面波动、地貌演化与人类活动耦合关系的典型区域。而浙江境内发现最早的稻作遗存使其成为稻作农业起源中心之一[7],在中华文明史上占据重要地位,也为人地关系演化史研究提供了丰富的材料。浙江分布着大量的考古遗址,考古遗址地层蕴含着人类活动、考古学文化转型与嬗变和气候环境变化等诸多方面的信息,可以作为古环境、环境考古研究的重要载体,具有重要的研究意义[8]。

从全新世早期的上山文化、跨湖桥文化,到全新世晚期的马桥文化等,浙江境内一直是史前人类活动重要的场所之一[9]。上山文化(约11~8.5 ka)的发现,将浙江境内新石器时代的发生时间延伸至1万年前。上山遗址是上山文化的代表性遗址,也是迄今长江下游地区发现的最早的新石器时代遗址[10]。对上山遗址出土陶片中稻作植硅体的研究表明,驯化特征水稻植硅体在上山文化阶段出现,显示已有早期驯化稻的存在[11]。遗址地层中发现的稻作遗存,奠定了浙江在中国、东亚乃至世界的稻作农业起源地的重要地位[12]。国内外学者对上山遗址开展了大量研究,并取得了丰硕的成果,主要集中在遗址所处的地理环境、植物浮选、陶器类型学等方面[13-15]。这些研究大多基于遗址考古地层学及地理属性等方面,而对上山遗址区沉积物测试指标的详细研究相对较少,将其与人类活动信息的相关论证研究也有待加强。此外,从沉积学角度对上山遗址古地貌演化进行了详细研究[13],分析了遗址区的粒度特征,但粒度参数在各沉积阶段的具体变化、稻作起源地当时的土壤肥力等特征、遗址区的古地理环境等方面有待进一步研究。

沉积物特征分析可揭示沉积动力、搬运条件、沉积环境等信息[16]。不同的粒度参数和特征具有不同的环境意义,从而能揭示古环境的演化过程[16-17]。如黄土的粒度特征有效揭示了其风成成因及亚洲季风强弱的变化,并记录了古土壤的成壤强度[18];河湖相沉积物粒度能很好地指示动力条件变化,并能识别洪水事件[19]。总之,沉积物粒度可以有效揭示沉积相、气候的变化,还保存有人类活动信息[20-21]。孢粉、炭屑是重要的代用指标,在古环境研究中取得了丰硕的成果[22-24]。如长江三角洲孢粉组合记录了该区域更新世以来沉积环境以及古气候条件的变化[25-27];孢粉分析结果也揭示了福建东北沿海地区末次盛冰期的古气候、古环境变化特征和过程[28]。考古遗址剖面地层的孢粉、炭屑记录,则能直接反映人类活动对火灾和植被演化的影响[29]。可见,孢粉和炭屑在反演古植被、古气候以及人类活动中具有重要意义[22-29]。在人类文明发展初期,由于生产力水平和改造自然环境的能力低,环境演变对人类活动、考古学文化兴衰可能起决定性作用[30]。但上山遗址区当时的沉积环境和植被状况如何、环境演化又是如何影响人类活动?仍需要做进一步的研究工作。本文基于SSYZ剖面和SSS探方地层样品的沉积物粒度、磁化率、土壤有机碳、孢粉和炭屑的分析结果,结合考古发掘资料及区域气候环境背景,探讨上山遗址区沉积过程及早期的人地关系、上山文化兴起的环境背景。

1 材料与方法

1.1 研究剖面与样品来源

位于浙江省金华市浦江县黄宅镇的上山遗址(119°58′17″E,29°27′22″N,海拔约50 m),地处浦阳江盆地中心、浦阳江北岸二级阶地之上(图1a)。浦阳江盆地是晚中生代区域伸展作用而发育成的断陷盆地[31],后经多次抬升与夷平,盆地内河流阶地与夷平面广泛发育[32]。上山遗址区属于亚热带季风气候,夏热冬温,降水丰富,植被繁茂,以天然阔叶林和针叶林为主[33];境内河网密布,主要河流有浦阳江、壶源江、大陈江等。上山遗址西侧低地经历了河流相到湖沼相的演变过程,且西侧水源在距今1 000年左右消亡[13],而遗址东侧为浦阳江支流—蜈蚣溪(图1a)。一条东西向的人工沟渠将上山遗址区划分为南、北发掘区。其中南区分为东部与西部发掘区,北区分为南部、中部、北部发掘区(图1b)。考古发掘表明,上山遗址区的主体遗存是上山文化遗存;上山文化阶段地层在整个遗址区皆有分布[7],并且叠置于黄棕色土层之上。例如,T1908探方保存有上山文化阶段地层⑤、⑧层,T0511探方出现上山文化阶段地层⑤、⑥、⑦、⑧层,灰坑中的考古学文化地层则有所差异。其中上山文化早期阶段(年代约为11~9.5 ka)地层在南区、北两区皆有分布,中期(年代约为9.3~8.8 ka)地层仅在南区出现,晚期(年代约为8.6~8.4 ka年左右)地层主要出现在北区北部[7]。

SSYZ剖面位于上山遗址区南区,以2 cm为间距,采集了102个样品。根据野外观察并结合考古发掘过程的分析结果,将剖面自下而上分为6层,记为①~⑥层:①砾石层,具有一定磨圆度,未见底;②含砾网纹层,202~142 cm,土壤呈黄棕色,网纹化,见砾石,是砾石层向网纹层的过渡层;③网纹黄棕色土层,142~116 cm,土壤呈黄棕色,网纹化,含较多胶膜和结核;④黄棕色土层,116~72 cm,土壤呈黄色,粘粒增加,土体紧实且呈棱块状,含锈斑;⑤文化层,72~24 cm,土壤呈灰黄色,含黏土或砾块,内含陶片、植物根系和种子,土壤见气孔状结构,略硬,且有一定胶结;⑥耕作层,24~0 cm,土壤呈灰黄色,内含植物根系,见砾块。

图1 上山遗址在中国空间范围内及在DEM图上处于的地理位置(a)与采样点分布图(b)Fig.1 (a)Location of the Shangshan site showing in a large scale of Chinese map and landform map generated by the digital elevation model(DEM);(b)the distribution of the sampling site

在剖面附近的T0511探方北壁(编号SSS),按考古学文化地层不等距采集样品。在野外采样及考古发掘过程中的编号及其地层描述如下:①耕作层,0~11 cm,土壤呈灰色,内含植物根系、结核;②A层,商周文化地层,11~13 cm,土壤呈灰黄色,含砂,内含植物残体、瓷片等;④B层,新石器文化晚期地层,13~24 cm,土壤呈灰褐色,铁锰结核较多,内含瓷片和石片等石器;⑥、⑦层为上山文化地层,24~55 cm,土壤呈灰白色,含砂,内含夹炭陶片。

1.2 实验方法

对上山遗址区SSYZ剖面和SSS探方的沉积物样品分别进行粒度、磁化率、土壤有机碳测定,并对孢粉和炭屑进行了提取、鉴定与统计,所有实验在浙江师范大学地理过程实验室完成。粒度测试仪器为MasterSizer 2000激光粒度分析仪。取约0.5 g样品放入烧杯,加入浓度为10%H2O2加热去除有机质,再加入浓度10%HCI去除碳酸盐,冷却,静置24 h去除上部澄清液。最后加入Na(PO3)6溶液进行超声波振荡10 min后上机测试。

磁化率测试仪器为MS2型磁化率仪。工作频率选择低频(0.47 kHz)和高频(4.7 kHz),分别测得样品低频磁化率和高频磁化率。为保证测试精度,高、低频磁化率重复测试3次,并求出其平均值。最后将各个样品所测的磁化率值除以其密度,分别求得低频质量磁化率(χl)f和高频质量磁化率(χh)f。根据公式χfd=([χlf-χh)f/χlf]×100%计算样品的频率磁化率,以反映样品中超顺磁颗粒的含量[34]。

有机碳含量测定方法是重铬酸钾—硫酸亚铁滴定法[35]。称取0.5 g研磨过的土壤样品于500 mL三角瓶中,加入5 mL K2Cr2O7溶液于三角瓶中,混合均匀,然后加入5 mL浓H2SO4,在电热板上加热约30 min,冷却后加3~4滴邻菲啰啉指示剂,用0.5 mol/L FeSO4标准溶液滴定至溶液颜色变为砖红色沉淀时,即为滴定终点(要求滴定终点时溶液中H2SO4的浓度为1~1.5 mol/L)。测定每批样品时,以石英砂代替土样作两个空白试验。最后再根据公式计算有机碳的含量。

孢粉前处理采用常规的氢氟酸处理法,部分样品结合了重液浮选法。称取一定量样品放入烧杯中,加入1片石松孢子片(27 637粒/片);先后经过15%的HCl溶液、10%的NaOH溶液、40%的HF溶液、36%的HCl溶液处理并分别洗至中性。部分样品结合ZnBr2配置的重液进行二次浮选。最后使用7μm筛网过筛,保留筛网上部残留物。孢粉鉴定与统计在Zeiss AxioLab A1生物显微镜下完成,主要参考《中国植物花粉形态(第二版)》[36]、《中国第四纪孢粉图鉴》[37]等工具书及实验室制作保存的现代孢粉片。本文乔灌木植物与陆生草本花粉百分比含量计算以陆生植物花粉总和为基数,湿生和水生植物、蕨类则以陆生植物与它们的和作为计算基数。基于孢粉数据,通过CONISS有序聚类分析的方法进行孢粉带划分。炭屑提取随孢粉前处理同时完成,在孢粉鉴定过程中同时以数粒计数法完成了炭屑的分粒径统计。

2.1 上山遗址区地层样品的年代框架及磁化率、有机碳含量变化特征

红土作为中国南方重要的第四纪沉积,已有大量的测年结果。一般认为网纹红土年龄为800~400 ka,均质红土介于400~100 ka[38]。长江中下游地区的黄棕色土一般覆盖在南方红土剖面上部[39],其上覆黄棕色土多形成于100 ka[38]。而于振江等[40]利用古地磁和热释光测年对安徽网纹红土进行研究,结果显示网纹红土年龄介于2 500~450 ka,下蜀土年龄介于450~130 ka。对金衢盆地源东(YD,图2)和浦江(PJ,图2)加积型红土形成时代的研究则表明,网纹红土形成于256.5~95.4 ka,对应于中更新世晚期;均质红土形成始于约129.39 ka,是晚更新世末次间冰期的产物[41]。对上山遗址区上山剖面A的测年研究则表明,剖面下部砾石层形成于173 ka之前,砾石层上部的网纹红土形成于中更新世晚期,其上的下蜀黄土形成于末次冰期[13(]图2)。因此,可以推测SSYZ剖面第④层黄棕色土形成于晚更新世。

图2 地层和年代对比及SSYZ剖面上山文化层的确定。金衢盆地源东剖面(YD)、浦江剖面(PJ)[41]、上山遗址区上山剖面A[13],和格陵兰冰盖GRIP2钻孔冰芯δ18O[42]及来自全球57个站点的底栖有孔虫δ18O综合记录(LR04)[43]的对比Fig.2 Stratigraphic and chronological correlation and the determination of the Shangshan Culture layer in the SSYZ profile based on magnetic susceptibility in archaeological cultural layers of the SSYZ profile and SSS ash pit,and the previous chronology research conducted on Quaternary sediments in the profiles of YD,PJ,Shangshan A from the Jinhua-Quzhou Basin[13,41],and its comparison with the curves of ice core GRIP2δ18O and marine sediments LR04δ18O[42-43]

区域地质史和地质构造现象、地貌形态、沉积物沉积特征分析,并结合生物化石、孢粉、测年等资料表明,金衢盆地在中更新世之后的沉积物没有网纹构造[44]。因此,推测SSYZ剖面厚87 cm、皆呈网纹化的第②层和③层(图2),应该是中更新世及之前的产物。到了晚更新世,金衢盆地内以洪积、冲积相为主的山门街组组成的T2级堆积阶地,内叠在以洪积相为主的杨梅岭组或以洪积相为主的之江群之上[44]。上山遗址处于二级阶地之上,底部存在砾石层(图2),而金衢盆地的沉积环境在全新世初期已经与现代面貌较为接近且在早更新世以冲积相为主的汤溪组地层中存在大量砾石[44]。可见,上山遗址SSYZ剖面沉积演化过程与整个金衢盆地的较为一致,从而有助于整个剖面的地层年代框架建立。山门街组或杨梅岭组的碳化木14C测年结果为29.6±0.8 ka[44],因此,推测SSYZ剖面第④层包含了29.6±0.8 ka的沉积物。此外,黄土—古土壤剖面的低频磁化率常被用于地层对比[45-47],将SSYZ剖面低频磁化率与冰芯[42]、海洋沉积物有孔虫[43]的δ18O曲线进行对比(图2),并结合区域地质史、地貌形态的分析及金衢盆地盖层特征[44],可得出SSYZ剖面第②层和③层为130~80 ka的沉积物,而第④层为80~11 ka的沉积物。另外,由于上山文化阶段地层在遗址南、北发掘区皆有分布,且SSYZ剖面与遗址南区西部T0511探方较为接近[7],在SSYZ剖面年代确定中也参考该探方的考古发掘材料。同时,综合SSYZ剖面和SSS探方样品的磁化率变化特征(图2),得出了SSYZ剖面含有的是上山文化早期的地层。

从图3可知,SSYZ剖面低频磁化率和频率磁化率的变化趋势基本一致,可选择χlf替代讨论[48]。将SSYZ剖面样品磁化率与土壤有机碳含量进行对比分析,发现二者的变化也较为一致。第一阶段的χlf变化于(7~18)×10-8m3/kg之间,平均值为10.5×10-8m3/kg;χfd的变化范围为0.1%~2%,平均值为0.7%。这一阶段χlf与χfd处于整个剖面的较低值,但两者均呈上升趋势,其中χfd波动明显。第二阶段χlf的变化范围为(15~48)×10-8m3/kg,平均值为20×10-8m3/kg;χfd的变化范围为1%~6%,平均值为2.1%。这一阶段χlf与χfd在整个剖面中达到较高值并呈上升趋势。第三阶段χlf的变化范围为(45~100)×10-8m3/kg,平均值为72×10-8m3/kg;χfd的变化范围为6%~11%,平均值为8.1%。这一阶段χlf与χfd在整个剖面中达到最大峰值,波动剧烈,振幅大;并且土壤有机碳含量较高,整体呈现波动上升趋势,与磁化率的变化基本一致。已有研究表明,黄棕色土磁化率值较低,均值为64.05×10-8m3/kg[49]。在水热条件较好的网纹发育时期,形成的铁磁性矿物少,因而磁化率值更低[50],而本阶段的磁化率较之前明显处于更高值。此外,在强化学风化作用下有机碳保存率低,使其对磁化率的稀释作用减弱,而整个剖面中土壤有机碳含量呈阶段增加的趋势。磁化率与土壤有机碳含量的平均值皆为剖面最高值且与岩性较为吻合,可能与人类活动有关。第四阶段χlf的变化范围为(41~61)×10-8m3/kg,平均值为55×10-8m3/kg;χfd的变化范围为3.9%~6.4%,平均值为5.5%,二者均处于整个剖面中的较高值。

图3 SSYZ剖面环境代用指标的变化Fig.3 The environmental indicator variations for the SSYZ profile along depth

2.2 SSYZ剖面孢粉、炭屑变化特征

根据剖面孢粉组合特征和CONISS聚类分析结果,划分的孢粉带与剖面地层较为一致,也呈现出四个变化阶段(图4)。第一阶段的乔灌木花粉百分比含量波动幅度大,平均52.4%,以松科(41.1%,平均值,下同)为主;陆生草本花粉百分比含量波动也较明显,平均47.6%,其中小粒径禾本科占比25.7%;湿生草本花粉百分比含量最低,均值为0.6%。这一阶段孢粉浓度与炭屑浓度变化较一致,是整个剖面中波动最为明显的阶段,出现较多峰值,其中炭屑浓度的平均值处于整个剖面中的最高值。第二阶段的乔灌木花粉较上一阶段略有下降(41.4%),仍以松科为主(26.7%);陆生草本花粉增加,平均为58.6%,其中小粒径禾本科占比11%,其他类型陆生草本花粉也明显增加;湿生草本花粉百分比含量平均值上升到5.4%,且波动幅度大;孢粉浓度与炭屑浓度变化基本一致,但二者的平均值分别增加和减小,且皆呈先增加后减少的趋势,波动较为明显。第三阶段的乔灌木花粉含量平均为43.9%,低于陆生草本花粉含量(平均为56.1%),仍以松科为主并且其花粉含量上升(35%);小粒径禾本科花粉在陆生草本中占优势且含量明显增加(20.9%),但波动较小;湿生草本花粉波动增加到7.3%,且波动幅度大。在这一阶段中,孢粉浓度是整个剖面的最低值,波动较小;而炭屑浓度处于整个剖面中的次低值,但出现一个明显的峰值。第四阶段的乔灌木花粉平均含量为30%,其中松科花粉占22.3%,与现代植被较为吻合;陆生草本花粉明显增加(70%),仍以小粒径禾本科(39.4%)为主;湿生草本百分比含量明显减小,均值为2.7%;孢粉浓度是剖面的最高值,但炭屑浓度是剖面的最低值。

本研究获得的SSYZ剖面孢粉和炭屑数据蕴含了丰富的信息,记录了上山遗址及邻近区域末次间冰期以来的植被演化过程和气候环境事件。基于年代框架、沉积物理化特征、环境代用指标变化趋势及其与深海沉积物、冰芯记录等的对比(图2~4),推测发育于130~11 ka期间的SSYZ剖面第②层、③层和④层沉积物中,除剖面上部的耕作层外,第②层与③层孢粉和炭屑浓度处于整个剖面的最高值阶段,尤其是炭屑的浓度非常高;乔灌木、陆生草本、松科及禾本科花粉的含量出现了剖面中的最高值且波动剧烈。这一定程度上反映了该时期研究区气候条件整体较好,适合植物的生长发育,且林下堆积形成的大量枯枝落叶层使容易发生火灾。而在第④层,孢粉和炭屑浓度较之前显著降低,且变化均不明显;乔灌木、陆生草本、松科及禾本科花粉的含量降低,但变化幅度更小;此外,湿生草本的花粉含量明显增加。这在一定程度上反映了该时期研究区的气候条件较差,更不利于植物的生长发育,且遗址区受到局地的河流或其他集水区的影响加大。但是整体来看,在上山文化产生之前的较短时段,上山遗址区的气候条件较好,植被覆盖率较高,古火等环境事件发生的频率降低。以上孢粉和炭屑记录,与末次间冰期—末次冰期的气候变化对应良好。SSYZ剖面72 cm以上的沉积物是在全新世发育的,其中在考古学文化阶段的孢粉浓度较黄棕色土沉积阶段呈增加趋势,炭屑浓度微弱增加并指示了一次明显的古火事件。这一定程度上反映了当时气候好转,植物资源较丰富,植被覆盖率较高。现代耕作层的孢粉组合反映了植被类型为亚热带常绿阔叶林及农耕活动的增加,与现生植被及当地的农业活动较为吻合。

图4 SSYZ剖面孢粉多指标对比图Fig.4 The variation of pollen and charcoal percentages with depth in the SSYZ profile

2.3 SSYZ剖面粒度特征

表1是SSYZ剖面不同层位沉积物样品的粒度参数均值。整体而言,平均粒径(Mz)较粗,在5~7.5ϕ之间,均值为7ϕ(表1)。剖面中粉砂粒级(4~63μm)占优势,在所有样品中的含量均高于50%,在53%~76%之间,各层含量均值变化于59.04%~66.51%。粘粒(<4μm)组分含量较高,在整个剖面中含量变化于14%~36%之间,各层均值变化范围在18.65%~29.77%之间。各组分中砂(>63μm)含量最少,在0~30%之间,各层均值介于2.44%~22.31%。剖面样品粒度分选系数(σ)值变化于1.5~3,各层均值为1.79%~2.53%,对应于McManus划分方案中分选较差或分选很差等级[51]。

SSYZ剖面不同层位沉积物样品的典型粒度频率曲线显示(图5),第一类(第②层,图5a)以单峰正偏、带有粗尾为主要类型。众数峰出现于8~31μm之间。自众数粒径向粗、细粒两端减少,向细粒端减少的速度慢于向粗粒端减少的速度。其中向细粒变化过程中,在0.5~2μm之间出现明显拐点,富含<1μm的次生粘粒组分,并且粘粒峰较明显,细尾较长,表明经历了次生风化成壤作用。样品在粗粒端250~500μm出现高值,动力条件较为复杂;第二类(第③、④层,图5b)粒度分布基本为尖窄单峰,带细尾型,众数粒径在8~31μm之间,曲线自众数粒径向粗端变化陡直下降,粒度体积百分比随之快速递减,1μm处有明显拐点;第三类(第⑤、⑥层,图5c)峰态为尖窄型和宽缓型,众数粒径至细粒端间曲线波动明显,在4~8μm之间、0.5~2μm之间存在明显突起。而众数粒径至粗粒端间曲线平滑陡直,颗粒体积百分含量变化较快,曲线自62.5μm向粗粒端继续平直延伸,在250~500μm之间存在粗尾,粗尾端较为突出,表明有粗颗粒混入。三类样品在细粒端都有明显拐点,说明剖面含有一定量的次生黏土,与当时沉积环境和气候、植物生长背景(图4)相关。

从图6可知,沉积物样品概率累积曲线分为3类,第一类(图6a)为四段式与三段式混合而成,表明部分样品中含有推移组分,其中四段式以2ϕ、4ϕ、10.5ϕ为截点,将概率累积曲线分为<2ϕ、2~4ϕ、4~10.5ϕ、<10.5ϕ四段;推移组分含量在1~10%之间,跳跃组分含量在10%~60%之间,悬移组分为30%~60%。三段式粗端截点为5ϕ(31μm),细截点为10.5ϕ(0.7μm),不含推移组分。第二类(图6b)概率累积曲线为三段式,粗截点为4~5ϕ(62~31μm),细截点为10.5ϕ,不含推移组分,跃移组分含量极少,粉砂与黏土含量大于95%。第三类(图6c)为三段式和五段式混合而成,其中部分样品含有推移组分,含量1%~10%之间不等,跳跃组分占70%~80%,悬移组分较少。

表1 SSYZ剖面不同层位样品粒度参数均值Table 1 The mean value of grain size parameters along different layers of the SSYZ profile

图5 SSYZ剖面典型样品频率曲线Fig.5 The particle size frequency curves of typical samples from different layers in the SSYZ profile

图6 SSYZ剖面典型样品概率累积曲线Fig.6 Particle size probability accumulation curves of typical samples from different layers in the SSYZ profile

2.4 上山遗址区环境演变过程

粒度是沉积物颗粒最基本的物理特征,主要受搬运介质、搬运方式、沉积环境等因素控制[16-22,52-53]。在河流流速快、水量大的条件下,搬运物质一般以粗粒为主;反之,以细粒为主[53]。由于上山遗址处于浦阳江北岸二级阶地上,临近河流(图1),遗址区内沉积物在沉积过程中可能受河流影响,从而一定程度上能反映河流地貌与水动力条件的变化(图7)。事实上,SSYZ剖面不同层位主要粒级及粒度参数的纵向变化较明显(图7)。从整体上看,粘粒含量的纵向变化与粉砂含量的变化较为一致,自上而下波动剧烈,粘粒含量增加时粉砂含量也上升。而在第③层时粘粒含量与粉砂含量呈反相变化,即粘粒含量增加时,粉砂含量反而降低。砂含量的变化较为稳定,但在第⑤、⑥层时波动明显。

图7 SSYZ剖面粒度纵向变化图Fig.7 The variations of grainsize with depth in the SSYZ profile

根据野外观察及SSYZ剖面沉积物各代用指标分析结果,将上山遗址区及邻近区域环境演变过程分为3个时期:

约130~11 ka:包 括 沉 积 的 第 一 阶 段(202~142 cm,第②层)与第二阶段(142~72 cm,第③层和第④层)。其中第一阶段(年代推断为130~80 ka)Mz均值为7ϕ,平均粒径较粗,粉砂为第一优势粒级,平均含量为64.31%;粘粒含量的平均值为30.53%,砂含量的平均值为5.17%,沉积物以砂质粉砂为主。此阶段粒度粗细波动明显(图7),且野外观察发现SSYZ剖面下部为砾石层,砾石磨圆度较好。σ值变化范围为1.7~3.7,平均值为2.11,分选较差;Sk介于-27~6,多为正偏态;Kg值变化于0.8~1.4间,属于尖锐峰态。该阶段为砾石层到网纹层的过渡层,搬运动能较强,且粗颗粒物质含量丰富,反映沉积动力较强。部分样品粒度频率曲线在粗粒端出现高值(图5),分选差,也可能是由于水动力增强,更多的近源物质输入造成的。概率累积曲线中部分样品含推移组分,且粗颗粒物质含量丰富(图6),亦显示了沉积动力较强的环境。这一沉积阶段的粒度参数与曹娥江下游XYC孔河漫滩沉积的粒度特征较为一致[54],此阶段极有可能为河漫滩沉积。孢粉组合反映了当时森林植被较发育,但树种较少,优势种明显,植被覆盖率较高,林下及周边生长了大量以禾本科为主的陆生草本(图4),反映气候条件较好。而湿生草本含量低,可能反映了水动力较强及砾石多,使湿生草本生长环境差。在这一阶段炭屑浓度曲线变化起伏较大,出现较多的高峰值,表明该阶段区域火灾事件发生的频率较高(图4)。

第二阶段(下部年代在80 ka之前,上部的年代在80~11 ka)不见砾级组分,以黏土质粉砂为主,粉砂含量和粘粒含量的平均值分别为66.02%和31.48%,Mz的平均值为7.22ϕ。砂含量较上一阶段减少,且砂含量变化较稳定,平均含量为2.49%。总之,这一沉积阶段较上一阶段粗粒组分减少,粘粒和粉砂组分含量增加(图7),粒径变细。σ值变化范围为1.5~2.2,平均值为1.8,颗粒分选程度优于其它层。Sk介于-3~6,多为正偏态;Kg值在0.8~1.3间变化,属于中等峰态。整体而言,各粒度参数曲线波动较小,质地较均一。粒度频率曲线众数粒径至细粒端间波动明显,众数粒径至粗粒端间曲线平滑陡直,颗粒体积百分含量变化较快(图5)。概率累积曲线三段式明显(图6),以跃移质为主,不含推移质组分。该阶段的样品岩性为网纹黄棕色土层和黄棕色土层,与上述粒度特征相吻合。黄棕色土通常叠置于红土的顶层,其性状与下蜀黄土相近,已有研究将长江中下游地区的下蜀黄土和红土统称为下蜀土[39],即南方第四纪红土中包含黄棕色土层。对浙江金华地区网纹红土稀土元素的分析认为,网纹红土具有典型的风成特性[55]。通过石英颗粒形态与表面微结构测试,表明第四纪期间南方地区存在以粉尘沉积为母质发育而来的红土[56]。此外,通过对加积型红土与下蜀黄土的化学元素、石英颗粒等理化指标的研究,认为加积型红土风成特性明显,但其风化成土作用比下蜀黄土更加强烈[57]。黄棕色土层富含10~50μm组分(图5b),这一组分易浮动、分散,在北方黄土研究中通常被称为“风尘基本粒组”[18]。因此,其粒度特征与北方黄土的粒度特征具有较好的可比性。该阶段孢粉浓度降低并呈下降趋势,其平均值处于整个剖面的最低值,乔灌木花粉含量较上一阶段明显减少,而陆生草本花粉含量的平均值明显增加。其中小粒径禾本科花粉的平均含量处于整个剖面中的最低值(图4),反映了其他类型的陆生草本明显增加且其含量上升。与上一阶段相比,炭屑浓度存在先升高后降低的趋势(图4),特别是在后期整体上变化起伏较小,火灾事件较少发生。以上孢粉和炭屑特征与此阶段处于风成沉积环境较为吻合。

约11 ka~近现代:沉积的第三阶段(72~24 cm,第⑤层),为文化层。粒度各组分含量波动明显,粘粒减少,砂含量明显增加(图7)。粉砂含量和粘粒含量的平均值分别为64.17%、28.42%,而砂含量的平均值为7.42%。Mz的平均值为6.9ϕ,平均粒径较粗。σ变化范围为1.6~2.5,分选较差;Sk的平均值为0.74,多为正偏态;Kg值在0.8~1.5间变化,属于中等峰态。粒度频率曲线在粗端有拖尾(图5),以正偏居多,概率累积曲线为三段式与五段式混合(图6),分选差。这一阶段人类活动对剖面粒度产生较大影响,不能较好地揭示环境演变,但从侧面反映了自然沉积过程中存在人类活动的干扰。此外,低频、频率磁化率达到剖面的峰值(图3),主要是由于人类生产、生活影响磁性物质的循环和存在形式[58]。这一阶段孢粉浓度较黄棕色土发育时有所增加(图4),植被覆盖度有所上升。与剖面其他时期的炭屑浓度相比,除出现一个峰值外其整体上变化波动较小(图4),这个峰值的出现可能是自然火,也可能与人类用火有关。

近现代:第四阶段(24~0 cm,第⑥层),为现代耕作层。各粒度参数受人为活动影响显著,发生较大变化且粒度纵向变化波动明显(图3,7)。Mz的平均值为5.77ϕ,黏粒与粉砂含量减少,平均值分别为18.65%、59.40%;而砂含量达到剖面最高值,平均值为22.31%。σ变化范围为1.8~2.8,分选差;Sk介于-3.5~4.7,多为正偏态;Kg值在1~1.2间变化,属于中等峰态。这一时期的孢粉组合反映的植被状况发生了较大改变,植被类型为现生的亚热带常绿阔叶林。

基于上述讨论,发现SSYZ剖面粒度变化规律是粗—细—粗,在约130~11 ka期间,即上山文化产生前经历了河漫滩沉积—风成沉积的演化过程,孢粉和炭屑浓度呈现先增加后减少的趋势,陆生草本花粉平均含量增加且其波动幅度减少,植被覆盖条件整体较好但呈恶化趋势;自11 ka至今,与现今的气候环境较为吻合,人类活动增强,对区域植被的影响加强。特别是在上山文化早期阶段之后,大量的以草本植物为主的先锋植物出现且乔灌木有所减少,遗址区附近的积水区出现较多的湿生植物,可能与人类对植物资源的使用相关。

地理环境对古文明的产生和演化具有重要影响。文明孕育与水系息息相关,因此有“大河文明”这一概念[59]。而刘秀铭等[60]认为,“大河文明”确切地说应该是“黄土文明”。母质条件是古文明孕育的必要因素,“黄土文明”的母质条件是疏松的、质地均一的粉砂沉积物。上山遗址所在的浦阳江盆地是白垩纪晚期形成的沉积断陷盆地,主要堆积了更新世以来的沉积物[31-32,44],由于粉砂含量适宜(图7),土壤透气性好,保水保肥,便于耕作。而遗址两侧存在古河道[7(]图1),为生活和灌溉提供所需的水源,并且调节遗址区的局地气候。上山遗址区河流与黄土并存的自然环境,为早期文明的诞生奠定了重要基础。基于SSYZ剖面环境代用指标的测定结果(图3~7),综合考古发掘资料和中国东部地区的地质记录,接下来初步探讨遗址区沉积环境演化和人类活动的可能关系。

上山文化产生前,遗址区表现出水动力条件强—受河水动力控制减弱—风力控制的变化过程,使沉积环境逐渐适宜人类生存。在早更新世末期盆地内出现河流,随着河流侵蚀作用加强,盆地内形成基座阶地。之后在中更新世到晚更新世末期期间盆地经历了几次抬升运动,河流阶地广泛发育,加之气候冷暖交替,盆地内以洪积、冲积相为主的T2级堆积阶地,内叠在洪积相之上[31-32,44]。之后随着冬季风加强,粉尘开始堆积,沉积物的理化特征发生了明显的改变[38-41,50,55-57,61],为人类活动奠定了母质基础及更为安全稳定的环境。研究表明,黄棕色土层发育时期,沉积作用增强,风化作用减弱,分选性较好[61]。而SSYZ剖面沉积物中<2μm次生黏土含量增加,在9.6%~22.14%之间变化,平均值为17.78%,变异系数为0.15。这与后期次生成壤作用相关,表明水热条件趋于良好,成壤作用较强。此外,粉砂含量的平均值为65.01%,以粉砂为优势粒级的土壤适合耕种。同时,沉积物粒度变异系数为0.056,表明黄棕色土质地均一,耕作性能和生产性能良好。因此,黄棕色土适合作物生长与耕作,为稻作农业的起源和发展奠定良好的土壤环境。孢粉浓度及乔灌木花粉含量的变化也反映了研究区过去的植被覆盖条件较好,为后续的人类活动积累了较好的生态条件以及食物来源,也对土壤具有较好的改造作用;并反映了区域气候在间冰期—冰期条件下变化,突变性不明显,遗址区及临近区域的气候条件与较大空间范围内的气候变化过程较为一致。

到了全新世,气候开始增温、增湿。在早期海平面快速上升的背景下,虽然上山遗址位于浙江中西部丘陵山地,使受到海平面波动的直接影响较浙江东部更小,但不可避免地存在间接影响。在河流下切形成的二级阶地[13]基础上,由于海平面上升导致侵蚀基准面上升,使河流水面的比降减小,进而有利于粉尘堆积、地势加积抬高;摆脱洪水控制后,遗存的河漫滩为后续的人类活动提供了平坦开阔的空间。在上山文化阶段,陶器的烧制和原始的农业生产,揭示了先民有相对稳定的定居环境。这一阶段砂含量增多(图7),磁化率和有机碳含量达到剖面较高值(图3),与人类活动密切相关。当时先民的主要生业模式为采集和渔猎,但原始的稻作农业也成为重要的食物来源。如在考古发掘中发现,夹炭陶片中有大量的稻壳印痕,在陶胎中还发现了稻叶、稻秸杆以及稻米的遗存[7,11-12,62],遗址出土的夹炭陶片、炭化稻米遗存等,表明了水稻种植业在上山文化时期的重要地位[7,11-12,62]。此外,上山文化早期的陶器以夹炭陶为主(表2),可能与水稻的驯化程度及人类制陶工艺相关。石磨棒、石磨盘的组合(表2),可能是作为稻谷等食物的脱壳、碾磨工具,也反映了当时稻作农业的地位。

在10.93~9 ka期间,夏季风强,气候暖湿[63],长三角地区当时的植被是以落叶栎属、松属、常绿栎属等为主的针—阔混交林[64],水热条件较好。SSYZ剖面的孢粉记录则显示松科花粉含量在早期经历了一个增加的过程,而陆生草本和湿生草本花粉含量在早期均经历了一个减少的过程(图4),森林植被逐渐恢复。此时,土壤有机碳含量较高(图3),植物生产力和土壤肥力较高,植物生长和驯化条件良好。由于文化发展水平及人口数量等原因,上山文化早期人类活动对植被的破坏和使用还不是非常明显。到了考古学文化后期,乔灌木花粉出现一个小幅减少过程,松科花粉含量呈减少趋势,这可能是先人住房、烧饭等需要砍伐森林的结果;与此同时,陆生草本等先锋植物明显增加,应是人类破坏森林的结果,且陆生草本也给先人提供了更多的植物资源;而湿生草本的增加,可能是人类活动强度的增加,以及对出现在水道等集水区植物资源更充分的利用。此外,遗址西侧的古河道有利于上山先民的生产生活,石料也可经河流搬运至遗址区,为先民提供石器制作原料。其中石器以石片石器为主且石片占最大比例(表2),主要功能是动植物的加工、切割等,可能侧面反映了当时生存条件良好,可供燃料、食物的植物资源丰富。上山遗址区环境逐渐适合人类生活,并最终孕育了中国早期的稻作农业文化。

表2 上山遗址上山文化早期阶段的陶器和石器统计表[7]Table 2 Pottery and stone tool statistics from the Shangshan Site during the early period of the Shangshan Culture[7]

4 结论

(1)SSYZ剖面沉积物记录了遗址区130 ka以来环境演变的3个时期4个阶段:约130~11 ka,包括沉积的第一阶段与第二阶段。其中,第一阶段(202~142 cm,年代约为130~80 ka)以粉砂为主,颗粒整体较粗,粒度频率曲线形态呈单峰正偏且拖有粗尾。在野外观察到剖面下部为砾石层,且网纹层见砾石,反映水动力较强的河漫滩沉积环境。第二阶段(142~72 cm,下部年代在80 ka之前,上部的年代在80~11 ka)平均粒径为7.22ϕ,颗粒整体变细,以黏土质粉砂为主,反映风成沉积。孢粉浓度先增加后减少,陆生草本花粉含量波动剧烈但其平均值呈增加趋势,气候条件整体较好但呈恶化趋势,植被覆盖条件较好但呈退化趋势。此外,炭屑浓度呈减小趋势但出现较多峰值且曲线震荡明显,表明该区域火灾事件发生的频率逐渐减小。以上代用指标的变化特征,反映了研究区为后续人类活动的产生奠定了较好的气候、食物来源、地貌等方面的条件。第三阶段(72~24 cm)为文化层,平均粒径较粗。粒度频率曲线呈单峰正偏,在粗端有拖尾,分选差;概率累积曲线为三段式与五段式混合,平均搬运动能相对稳定,可能反映了遗址区的沉积环境因受人为干扰而变得复杂。当时孢粉浓度微弱增加,乔灌木花粉含量较高且呈减小趋势,炭屑浓度整体上变化较为平稳但出现一个明显的峰值,整体反映了全新世气候好转。而文化层中乔灌木、陆生草本、湿生草本及松科、禾本科花粉含量的变化,也反映了人类活动对植被的影响。第四阶段(24~0 cm)为现代耕作层,孢粉浓度达到剖面的最大值,与现生植被及当地的农业活动较为吻合。粘粒与粉砂含量减少,砂含量为剖面最高值,分选很差,也表现出农耕等人为活动的强烈影响。

(2)SSYZ剖面磁化率自下而上增高,χlf平均值为74×10-8m3/kg,χfd平均值8.2%。沉积的第三阶段χlf与χfd在整个剖面中达到最大峰值,波动剧烈,振幅大。这与探方文化层磁化率变化趋势一致,且当时土壤有机碳含量较高,反映了人类活动的影响增强,及SSYZ剖面发育有上山文化阶段文化层。

(3)二级阶地的形成为上山先民在此定居提供了平坦开阔的空间和更为稳定的生存环境,而第二沉积阶段的粉尘堆积物使地形进一步增高,并逐步脱离洪水的影响。同时,这一阶段的物质组成以粉砂为主,为上山先民提供耕作和制陶资源。全新世以来海平面上升,河流以堆积为主,遗存的河漫滩成为重要的生存场所,且近河的地理位置便于上山先民获取灌溉水源及石器原料。可见,遗址区沉积环境的演变是上山先民开始定居生活的重要前提条件。

猜你喜欢

孢粉磁化率上山
上山走“之”字
即将上山的驱熊犬
孢粉在流域生态环境中的指示作用及研究进展
西藏仲巴县隆格尔地区渐新统日贡拉组孢粉组合的发现及其意义
上山的路
上海师范大学揭示花粉壁孢粉素合成的调控机制
基于超拉普拉斯分布的磁化率重建算法
岩(矿)石标本磁化率测定方法试验及认识
植物孢粉的研究方法在司法鉴定中的应用
温度对不同初始状态ising模型磁化强度和磁化率的影响