APP下载

华北西部千里山地区长城系黄旗口组碎屑锆石U-Pb年龄及其地质意义

2021-06-15乔恒忠

四川地质学报 2021年1期
关键词:碎屑锆石华北

乔恒忠

华北西部千里山地区长城系黄旗口组碎屑锆石U-Pb年龄及其地质意义

乔恒忠

(乐山师范学院,四川 乐山 614000)

千里山地区中元古代长城系黄旗口组碎屑沉积岩保存完好,是研究华北克拉通西部长城系物质来源和沉积时代的理想对象。本文报道了千里山地区长城系黄旗口组底部的2个石英砂岩样品碎屑锆石LA-ICP-MS U-Pb定年结果。研究表明,样品20QL22最重要的碎屑锆石年龄区间为1910~2074 Ma,峰值年龄为1986 Ma。另外两个次重要的年龄段为1829~1872 Ma与2347~2486 Ma,峰值分别为1860 Ma与2387 Ma。样品20QL15碎屑锆石年龄呈现单峰分布的特征,主要集中于1733~1894Ma,峰值年龄为1820 Ma。结合前人研究成果,本文认为千里山地区长城系黄旗口组碎屑沉积物质主要来自华北克拉通西部陆块内的孔兹岩带,阴山陆块与鄂尔多斯陆块也提供了部分物源。华北克拉通西部千里山地区长城系底界年龄小于1.73 Ga。

华北克拉通;中古元古代;长城系;黄旗口组;碎屑锆石U-Pb定年

华北克拉通广泛发育着中元古代长城系盖层,它们是吕梁运动(2.0~1.85 Ga)后华北克拉通响应Columbia超大陆裂解过程的重要沉积记录(万渝生等,2003;Zhao et al., 2012;翟明国,2019)。华北克拉通西部千里山地区长城系黄旗口组形成于贺兰山裂陷槽东侧(史晓颖等,2008;李明涛等,2014;杨宝忠等,2018),这套地层不整合覆盖于孔兹岩带千里山群高级变质杂岩体上(卢良兆等,1996;Yin et al., 2020),其沉积时代及物源区特征研究能够为理解华北克拉通西部陆块早前寒武纪构造演化提供有效信息。本文对千里山地区长城系黄旗口组底部的石英砂岩开展碎屑锆石LA-ICP-MS U-Pb定年分析工作,并结合前人成果对研究区长城系物质来源及其底界年龄等问题进行探讨。

图1 华北克拉通前寒武纪基底构造划分图(据Zhao et al. 2012修改)

1 地质背景与样品信息

千里山地区位于华北克拉通西部陆块西北侧(图1),研究区内中元古代沉积盖层自下而上包括长城系黄旗口组和蓟县系王全口组,它们主要出露于研究区南部的桌子山和北部的哈让贵乌拉一带(图2);(内蒙古自治区地质矿产局,1991)。千里山地区黄旗口组岩性以中-细粒石英砂岩为主,局部夹紫红色页岩,底部发育有紫红色底砾岩。前人根据岩石组合、沉积构造与层序地层学等资料,认为研究区内黄旗口组整体形成于滨-浅海环境,区域上能够与华北克拉通东部燕辽裂陷槽内的长城系大红峪组进行对比(史晓颖等,2008;李明涛等,2014;杨宝忠等,2018)。值得注意的是,千里山地区黄旗口组不整合覆盖于古元古代千里山群高级变质杂岩体之上,并与上覆的王全口组呈整合接触关系(图2);(Yin et al., 2009, 2020; Qiao et al., 2016; 李文静,2018;Wu et al., 2020)。

图2 千里山地区地质简图及岩石单元组合(据Yin et al. 2020修改)

本文采集了两个来自黄旗口组底部的石英砂岩样品,它们均位于不整合面之上约1~2m,采样点位置见图2。样品20QL22采自桌子山地区摩尔沟内(GPS:39°39′33.02″ N,107°1′21.59″E),野外露头可见黄旗口组石英砂岩层理产状为29°∠9°,而不整合面之下的千里山群石榴夕线片麻岩产状为188°∠70°(图3)。样品20QL15采自哈让贵乌拉北侧山坡(GPS:39°59′35.02″N,106°57′16.28″E),该露头黄旗口组石英砂岩层理产状为350°∠18°(图4)。这些石英砂岩成熟度较高,石英颗粒整体磨圆和分选很好,同时还发育有交错层理和波痕等构造(图3e)。

图3 (a)千里山地区南部长城系黄旗口组不整合覆盖于古元古代千里山群高级变质杂岩体之上;(b)千里山群石榴夕线片麻岩;(c-e)长城系黄旗口组底部发育的石英砂岩与底砾岩

2 锆石U-Pb定年方法与结果

本次研究样品20QL22和20QL15经过传统的重选与磁选等技术挑选出锆石颗粒,将它们制作成锆石靶并适当地抛光,然后对这些锆石进行透、反射光及阴极发光(CL)照相,以确定其内部结构特征与最佳测试点位。锆石U-Th-Pb同位素分析在广州拓岩测试技术有限公司利用激光剥蚀-电感耦合等离子质谱仪(LA-ICP-MS)完成,激光束斑直径约为30 μm,同位素比值校正和质量监控分别采用标准锆石91500与Plešovice(Sláma et al., 2008)。实验数据处理分析使用ICPMSDataCal和Isoplot程序完成(Ludwig, 2003; Liu et al., 2010)。本文所有锆石测试点均以207Pb/206Pb年龄进行分析,单个年龄数据误差为1σ。

图4 (a)千里山地区北部长城系黄旗口组与千里山群之间的不整合面;(b)不整合面之上的黄旗口组石英砂岩与底砾岩

样品20QL22锆石形态主要呈椭圆状或浑圆状,整体粒度约为80~250μm,显示出较好的磨圆和分选。CL图像表明(图5a),大多数锆石内部可见清晰的振荡环带,指示它们是典型的岩浆成因锆石。部分锆石经历了变质重结晶的改造,发育有明显的变质增生边,另有少数锆石为无规律分带的变质锆石。本次研究对石英砂岩样品20QL22中的55颗锆石进行了57个测试点分析,实验测试结果详见表1。这些数据点的不谐和度均小于10%,基本分布于谐和线上或附近(图6a),其207Pb/206Pb年龄变化范围为1776~2486 Ma,Th/U比值为0.13~4.58,绝大多数大于0.20。碎屑锆石年龄谱图显示(图6b),样品20QL22最重要的年龄区间为1910~2074 Ma,峰值年龄为1986 Ma。另外两个次重要的年龄段为1829~1872 Ma与2347~2486 Ma,峰值年龄分别为1860 Ma与2387 Ma。

样品20QL15锆石外形以短柱状至椭圆状为主,颗粒大小约为100~200μm,整体分选和磨圆程度较好。CL图像显示,这些锆石绝大多数都是具有清晰的振荡环带或板状环带的岩浆成因锆石(图5b),个别锆石为无环带结构的变质成因锆石。本文对石英砂岩样品20QL15中的52颗锆石进行了52个数据点分析(表2),所有数据基本都沿着谐和线分布(不谐和度<10%;图6c),获得的最小碎屑锆石207Pb/206Pb年龄为1733±39 Ma,最大年龄为1946± 29 Ma。这些锆石Th/U比值为0.33~1.43,说明它们可能主要来自于岩浆岩物源区。同时,样品20QL15数据在碎屑锆石年龄谱图中明显呈现单峰分布的特征,主要集中于1733~1894Ma,其峰值年龄为1820 Ma(图6d)。

图5 (a)样品20QL22和(b)20QL15代表性碎屑锆石阴极发光图像及其年龄

3 讨论

3.1 千里山地区长城系物质来源

千里山地区长城系黄旗口组碎屑锆石U-Pb年代学数据能够为认识其物质源区提供重要信息。现有统计资料显示,千里山地区及贺兰山北段黄旗口组碎屑锆石峰值年龄主要分布于1.78~1.85 Ga、1.95~2.0 Ga与2.4~2.5 Ga(Darby and Gehrels, 2006; Pang et al., 2020; Zhang et al., 2020)。本次研究也获得了相似的特征年龄峰值,样品20QL22和20QL15碎屑锆石年龄主要集中于1.73~1.89Ga、1.91~2.07Ga与2.35~2.49Ga,峰值年龄分别为1820 Ma、1860 Ma、1986 Ma及2387 Ma(图6)。这些年龄数据与华北克拉通古元古代构造热事件的时间能够较好的对应,反映了千里山地区长城系与华北克拉通其他地区的长城系沉积盖层类似(张健等,2015;白文倩等,2019),其碎屑物质主要来自于华北克拉通内部的变质基底岩石。

需要提出的是,千里山地区长城系直接不整合覆盖于孔兹岩带千里山群高级变质杂岩体之上(图3和4),是阴山陆块和鄂尔多斯陆块沿着孔兹岩带拼合形成西部陆块后的第一套稳定的沉积盖层(卢良兆等,1996;万渝生等,2003;Zhao et al., 2012)。孔兹岩带经历长期的碰撞造山过程,带内广泛发育多期古元古代(1.8~2.1 Ga)岩浆活动与变质作用(Zhao et al., 2012; Yin et al., 2020)。本次研究石英砂岩样品中的碎屑锆石结构与年龄谱特征与千里山群十分吻合(Yin et al., 2009, 2020; Qiao et al., 2016; 李文静,2018;Wu et al., 2020),表明孔兹岩带为研究区内长城系黄旗口组提供了最重要的物质来源。此外,阴山陆块和鄂尔多斯陆块也是千里山地区长城系黄旗口组潜在的碎屑物质源区(Darby and Gehrels, 2006; Pang et al., 2020; Zhang et al., 2020)。

3.2 千里山地区长城系底界年龄

华北克拉通西部长城系黄旗口组的时代问题存在着一定的争议。前人曾报道过该组底部砂岩中的海绿石K-Ar年龄为1291 Ma,并据此将其归入蓟县纪(陈晋镳等,1999)。然而,部分学者通过微古生物沉积构造与区域地层对比等研究,认为本区内黄旗口组时代归属于长城纪,并与华北克拉通东部的长城系大红峪组是可对比的,它们共同反映了古元古代末期华北克拉通构造体制由碰撞造山转向伸展构造(万渝生等,2003;史晓颖等,2008;李明涛等,2014;白文倩等,2019)。近年来,前人对千里山地区南部黄旗口组开展过一些碎屑锆石U-Pb定年分析,先后获得了1879 ± 32 Ma(Darby and Gehrels, 2006)、1800 ± 19 Ma(Pang et al., 2020)和1765 ± 30 Ma(Zhang et al., 2020)的最小碎屑锆石年龄。相似地,本次研究中石英砂岩样品20QL22也发现了1776 ± 7 Ma的年龄信息(表1)。同时,本文对千里山地区北部不整合面之上长城系最底部石英砂岩样品20QL15的定年结果显示,最年轻的3颗碎屑锆石年龄分别为1733 ± 39 Ma、1739 ± 48 Ma与1740 ± 34 Ma(表2),它们较好地约束了研究区内长城系黄旗口组沉积时代的下限。这些数据也与贺兰山北段黄旗口组报道的1735 ± 45 Ma最小碎屑锆石年龄能够相互佐证(Zhang et al., 2020)。因此,本文认为华北克拉通西部千里山地区长城系底界年龄应该小于1.73 Ga。

图6 (a-b)样品20QL22和(c-d)20QL15锆石U-Pb年龄谐和图与频率分布直方图

4 结论

1)华北克拉通西部千里山地区长城系黄旗口组碎屑锆石年龄主要集中于1.73~1.89 Ga、1.91~2.07 Ga与2.35~2.49 Ga,峰值年龄分别为1820 Ma、1860 Ma、1986 Ma及2387 Ma,其碎屑物质主要来自华北克拉通西部陆块内的孔兹岩带,阴山陆块与鄂尔多斯陆块也提供了部分物源。

2)华北克拉通西部千里山地区长城系底界年龄小于1.73 Ga。

表1 样品20QL22锆石LA-ICP-MSU-Pb定年分析结果

3027.7237.460.740.14230.00358.71370.21180.44360.00662255432309222367304.74 3193.91165.490.570.11290.00225.59440.11880.35680.00451856351915181967215.67 3245.7742.421.080.13750.00288.35360.17590.43860.00482196352270192344226.33 3397.52128.040.760.11420.00215.72970.10660.36210.00361933331936161992172.96 3452.82113.140.470.11270.00195.68460.10660.36370.00361843301929161999177.83 3555.85145.350.380.11360.00215.66110.11020.36000.00421858381925171982206.28 36215.9647.194.580.10850.00245.21280.11970.34740.0037177671855201922187.61 3720.3266.500.310.11150.00225.49680.11730.35630.00391833371900181964196.67 38140.90125.171.130.11180.00224.72410.10510.30530.0037182935177219171718-6.52 3955.71154.590.360.11390.00215.68030.11080.36080.00391862331928171986196.25 4058.55152.430.380.11340.00185.69820.09530.36340.00351855281931151998177.18 4158.7166.250.890.15080.00269.61990.16710.46330.00502355302399162454224.03 4241.7864.730.650.12820.00246.58630.12820.37170.0037207432205817203717-1.79 43105.8179.901.320.11260.00215.26190.10300.33860.00391843331863171880191.99 4462.7457.161.100.15770.00219.18940.10250.42300.0045243122235710227420-6.90 45172.2591.031.890.15330.00179.60260.10760.45410.00402383192397102414181.26 4648.8982.230.590.15990.001910.54950.12860.47790.00402455202484112518182.50 4746.32120.190.390.12780.00186.62470.09080.37570.0037206925206312205617-0.61 4835.8588.820.400.15010.00169.44580.12080.45620.00472347192382122423213.15 4988.8897.220.910.15330.00209.16690.12300.43350.0046238322235512232121-2.65 5054.63172.750.320.11950.00126.03620.06480.36600.0033195017198192011153.01 51109.9595.471.150.16290.001610.52710.12460.46830.0048248617248211247621-0.40 52109.9493.011.180.15890.001810.01550.11880.45770.0051245620243611242923-1.08 5332.3662.670.520.11690.00155.46970.07360.33950.0038191023189612188418-1.35 5497.40123.050.790.11710.00135.60930.06660.34720.0031192220191810192115-0.05 5549.01176.540.280.12290.00125.92810.05800.34950.003019981819659193214-3.42 56109.62117.640.930.11880.00125.68720.06590.34650.0033193923192910191816-1.08 5745.42126.170.360.12120.00136.16320.07330.36790.00351976201999102020172.17

表2 样品20QL15锆石LA-ICP-MS U-Pb定年分析结果

3059.12102.620.580.10720.00194.90450.09670.33200.00431754321803171848215.10 3180.35115.930.690.11070.00185.08190.09750.33220.00411813291833161849201.94 3268.5498.500.700.11070.00205.21450.10360.34200.00471813391855171897234.41 3349.6251.480.960.10640.00274.86770.12350.33300.00451739481797211853226.14 3494.3598.660.960.10880.00225.20230.11230.34650.00401789371853181918196.72 3577.4494.450.820.11170.00224.99610.10930.32440.0044182837181919181121-0.92 36198.83158.221.260.11060.00215.02910.10300.33000.00471809351824171839231.60 37141.32206.990.680.10880.00214.91320.10350.32660.00411779351805181822202.34 38112.12198.380.570.11240.00205.22820.10840.33640.00481839331857181869231.63 3931.0441.130.750.11170.00245.13840.11130.33420.00411828391842181859201.67 4047.5765.570.730.11590.00235.20350.10830.32610.0044189435185318181922-4.12 4153.7085.560.630.11360.00205.20040.09470.33150.0039185836185316184619-0.66 4262.8493.290.670.11200.00225.20370.10360.33570.00341832681853171866171.80 43171.06252.460.680.11340.00195.17570.08880.32990.0037185531184915183818-0.94 4466.3964.981.020.10960.00264.80010.12200.31570.0043179443178521176821-1.47 4599.99114.580.870.11340.00234.94360.09690.31530.0039185537181017176719-4.98 4648.6862.490.780.11380.00225.24640.10800.33310.0040186135186018185319-0.40 4750.8464.830.780.10810.00235.11560.10290.34230.00361769381839171898186.80 48126.42186.300.680.11190.00245.22950.10560.33810.00481831711857171877232.45 4940.7154.240.750.11320.00235.16410.11210.32910.0044185236184719183421-0.95 5086.97114.310.760.11240.00205.25190.09660.33730.00421839331861161874201.85 5125.1959.560.420.11000.00285.48250.15000.36030.00561799521898241983279.29 5284.45119.690.710.10970.00185.11730.09150.33700.00411794291839151872204.15

Darby B J, Gehrels G. 2006. Detrital zircon reference for the North China block[J]. Journal of Asian Earth Sciences, 26(6): 637-648.

Liu Y S, Hu Z C, Zong K Q, Gao C H, Gao S, Xu J, Chen H H. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546.

Ludwig K R. 2003. User’s Manual for Isoplot 3.00, A Geochronological Toolkit for Microsoft Excel. Special Publication No.4[M]. Berkeley: Berkeley Geochronology Centre.

Pang L Y, Zhu X Y, Hu B, Wang W, Sun Q Y, Zhao T P. 2020. Detrital zircon U-Pb age and Hf isotopic composition and whole-rock geochemical characteristics of the Statherian Huangqikou Formation, western margin of the North China Craton: Implications for provenance and tectonic evolution[J]. Precambrian Research, 347: 105840.

Qiao H Z, Yin C Q, Li Q L, He X L, Qian J H, Li W J. 2016. Application of the revised Ti-in-zircon thermometer and SIMS zircon U-Pb dating of high-pressure peliticgranulites from the Qianlishan-Helanshan Complex of the Khondalite Belt, North China Craton[J]. Precambrian Research, 276: 1-13.

Sláma J, Košler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plešovice-a new natural reference material for U-Pb and Hf isotopic analysis[J]. Chemical Geology, 249: 1-35.

Wu S J, Yin C Q, Davis D W, Zhang J, Qian J H, Qiao H Z, Xia Y F, Liu J N. 2020. Metamorphic evolution of high-pressure felsic and peliticgranulites from the Qianlishan Complex and tectonic implications for the Khondalite Belt, North China Craton[J]. Geological Society of America Bulletin, 132(11-12): 2253-2266.

Yin C Q, Qiao H Z, Lin S F, Li C C, Zhang J, Qian J H, Wu S J. 2020. Deformation history of the Qianlishan Complex, Khondalite Belt, north China: Structures, ages and tectonic implications[J]. Journal of Structural Geology, 141: 104174.

Yin C Q, Zhao G C, Sun M, Xia X P, Wei C J, Zhou X W, Leung W H. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Precambrian Research, 174(1-2): 78-94.

Zhang T R, Myrow P M, Fike D A, McKenzie N R, Yuan J L, Zhu X J, Li W J, Chen J T. 2020. Sedimentology, stratigraphy, and detrital zircon geochronology of Mesoproterozoic strata in the northern Helan Mountains, western margin of the North China Block[J]. Precambrian Research, 343: 105730.

Zhao G C, Cawood P, Li S Z, Wilde S A, Sun M, Zhang J, He Y H, Yin C Q. 2012. Amalgamation of the North China Craton: Key issues and discussion[J]. Precambrian Research, 222-223(12): 55-76.

白文倩, 董春艳, 颉颃强, 万渝生. 2019. 鄂尔多斯盆地长城系碎屑锆石SHRIMP U-Pb定年和Hf同位素研究[J]. 岩石学报, 35(8): 2363-2376.

陈晋镳, 张鹏远, 高振家. 1999. 中国地层典——中元古界[M]. 北京: 地质出版社.

李明涛, 王成, 马学东, 何庆志, 田景雄, 梁志荣, 黄生金, 夏红萍. 2014. 贺兰山中段黄旗口组特征及与华北地区地层对比[J].宁夏工程技术, 13(3): 201-203+211.

李文静. 2018. 华北克拉通贺兰山-千里山花岗岩年代学与地球化学研究[D]. 广州: 中山大学.

卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系[M]. 长春: 长春出版社.

内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志[M]. 北京: 地质出版社.

史晓颖, 王新强, 蒋干清, 刘典波, 高林志. 2008. 贺兰山地区中元古代微生物席成因构造——远古时期微生物群活动的沉积标识[J]. 地质论评, 54(5): 577-586.

万渝生, 张巧大, 宋天锐. 2003. 北京十三陵长城系常州沟组碎屑锆石SHRIMP年龄: 华北克拉通盖层物源区及最大沉积年龄的限定[J]. 科学通报, 48(18): 1970-1975.

杨宝忠, 金巍, 曾佐勋, 吴海辉. 2018. 贺兰山中段长城系黄旗口组地震岩的发现及意义[J]. 沉积学报, 36(2): 280-290.

翟明国. 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745.

张健, 田辉, 李怀坤, 苏文博, 周红英, 相振群, 耿建珍, 杨立功. 2015. 华北克拉通北缘Columbia超大陆裂解事件: 来自燕辽裂陷槽中部长城系碱性火山岩的地球化学、锆石U-Pb年代学和Hf同位素证据[J]. 岩石学报, 31(10): 3129-3146.

Detrital Zircon U-Pb Ages of the Huangqikou Formation of the Changcheng System in the Qianlishan Area, western North China Craton and Their Geological Implications

QIAO Heng-zhong

(Leshan Normal College, Leshan, Sichuan 614000)

Clastic sedimentary rocks of the Mesoproterozoic Huangqikou Formation of the Changcheng System are well-preserved in the Qianlishan area, and they can provide important information for understanding the provenance and depositional age of the Changcheng System in the western North China Craton. This paper reports LA-ICP-MS U-Pb ages for detrital zircons from two quartz sandstones collected from the bottom of the Huangqikou Formation. The results show that detrital zircon age pattern of sample 20QL22 is characterized by a major age range of 1910–2074 Ma and its peak is at ~1986 Ma. Another two important age ranges are 1829–1872 Ma and 2347–2486 Ma, with their peaks at ~1860 Ma and ~2387 Ma, respectively. Meanwhile, detrital zircon U-Pb age values of sample 20QL15 mainly range from 1733 to 1894 Ma and yield a prominent peak at ~1820 Ma. Combined with previous studies, these new data suggest that detrital sediments of the Huangqikou Formation in the Qianlishan area were mainly derived from the Khondalite Belt, as well as a small amount of basement rocks in the Yinshan and Ordos blocks. Additionally, the oldest depositional age value of the Changcheng System in the Qianlishan area of the western North China Craton is younger than ~1.73 Ga.

North China craton; Mesoproterozoic; Changcheng System; Huangqikou Formation; Detrital zircon U-Pb dating

2020-11-22

四川省科技计划项目(2020YJ0121);四川旅游发展研究中心项目(LYX-06);乐山师范学院科研启动项目(RC202009)

乔恒忠(1991—),男(壮族),广西河池人,博士,讲师,研究方向:构造地质学

P548

A

1006-0995(2021)01-0033-07

10.3969/j.issn.1006-0995.2021.01.006

猜你喜欢

碎屑锆石华北
Sweet Carrots甜甜的胡萝卜
锆石的成因类型及其地质应用
华北玉米市场将进入筑底期
俄成功试射“锆石”高超音速巡航导弹
锆石 谁说我是假宝石
清洁搅拌机的小妙招
Literature Review on Context Translation Mode
Review on Register Theory and Its Application in Translation
滑坡-碎屑流物理模型试验及运动机制探讨
碎屑粉煤灰在管桩中的应用