低矮果园环流式循环风送喷雾机设计与试验
2021-06-02孙玉慧廖洋洋周良富闻桢杰
邱 威,孙 浩,孙玉慧,廖洋洋,周良富,闻桢杰
低矮果园环流式循环风送喷雾机设计与试验
邱 威1,孙 浩1,孙玉慧1,廖洋洋1,周良富2,闻桢杰1
(1. 南京农业大学工学院,南京 210095;2. 南京工业职业技术大学工程技术实训中心,南京 210023)
传统果园风送施药气流输送模式为出风口到冠层的一维流动,气流经过冠层时会衰减、停滞,存在穿透难、内膛与叶片背面沉积难等问题。该研究采用顶置风机方式,利用风机负压吸风引导气流在冠层内改变运动方向,实现雾滴由外及内、再由下而上运动。在分析环流作用下雾滴运动的基础上,设计一种适应于低矮果园的环流循环风送喷雾机,并开展气流场的分布规律分析与田间试验。试验结果表明:在冠层内膛(高度0.8~1.8 m)、树干中心线两侧0.25 m的中心区域气流角度变化较大,气流环绕对内膛平均风速有显著性影响(<0.05)。相较于无气流环绕模式,气流环绕风送施药的冠层总体叶片背面雾滴平均覆盖率提高了33.7%;冠层内膛叶片正面雾滴平均覆盖率提高了42.9%,叶片背面雾滴平均覆盖率提高了40.4%。研究结果可为果园风送式施药提供新的思路。
喷雾;设计;环流式;辅助气流;气流运动;果树冠层
0 引 言
病虫害防治作为果园中重要的管理作业,每年喷施农药次数多达8~15次。频繁的化学防治有效控制病虫害发生的同时,也造成施药量过大、污染严重与农药残留等诸多问题[1-3]。风送式喷雾技术借助高速气流将雾化药液输送到冠层,显著提升了雾滴在果树冠层的沉积效果,是现阶段果园农药“增效减施”的最重要技术措施之一[4-5]。Zhu等[6]设计了一种五指风送喷雾装置,可以使幼苗期作物的上中下部都能达到很好的雾滴沉积。董祥等[7]综合超声波靶标探测、多柔性出风管风送施药等技术,成功研制了3WPZ-4型葡萄喷雾机,相比较无风送模式其药液平均沉积率提高了17.2%,平均地面流失率降低了16.56%,平均飘移率降低了28.87%。曲峰等[8]对传统的果园风送喷雾进行了改进设计,实现了靶标边界气流速度仿形化分布。姜红花等[9]设计了一种单风机多风管旁路调风系统,实现了基于果树冠层特征的风量实时调整,相比较自动对靶风送喷雾模式,冠层表面沉积量提高了17.3%。Qiu等[10]开发了一种适应于丘陵果园的履带式多通道风送喷雾机,实现了机具在丘陵果园作业的高稳定性与气雾流多通道单元化控制及流场仿形化分布。相比于传统漫射型风送式喷雾机,雾滴覆盖均匀度提高了19.4%,地面沉积量和空中飘移量降低了26.8%。
但目前果树风送施药依然存在“冠层外侧雾滴沉积过量,而病虫害多发区域的内膛与叶片背面雾滴沉积不够”等问题[11-14]。究其原因,可以归纳为:1)受冠层幅宽和生物量密度影响,气流在冠层内膛的末速度较弱、扰动不够,雾滴在冠层内膛与叶片背面沉积不够[15-16];2)现阶段冠层需风标准仍然沿用多年前提出的末速度原则,只考虑到达冠外的气流速度[17-19]。气流经过冠层时,其能量必会发生变化,也势必影响雾滴在冠层沉积分布。所以,提高冠层内膛风速,引导气流在冠内的多维流动与扰动,使冠内各区域气流速度与内膛、叶片背面雾滴沉积满足喷雾要求,对进一步改善施药效果和减少药液喷施量有重要意义。
基于此,本文采用顶置风机方式,利用风机进风口负压实现雾滴由外及内、再由下而上运动,设计一种低矮果园环流式循环风送喷雾机并进行性能测试,旨在探索果树气流环绕风送施药技术方法,解决冠层内膛与叶片背面雾滴沉积难的困境,推进果园植保作业的减量增效。
1 整机结构与工作原理
1.1 整机结构
为了实现雾滴由外及内、再由下而上运动与脱靶雾滴的回收,本文设计的低矮果园环流式循环风送喷雾机主要由气流环绕型风送系统、药液喷施及回收系统、液压驱动系统、履带式底盘组成,机具整体呈“门”型结构,如图1所示。
1.2 工作原理
喷雾机跨行自走作业,由柴油发动机提供动力,通过多联齿轮泵将动力传输给各系统,使风机、液泵、行走装置、尺寸调节装置等按设计的功率与速度协调工作。液压油缸实现支撑门架的尺寸调节,以适应于不同的果园种植模式。风机进风口面向冠层顶部,出风口连接风道,将气流输送至8个出风口;同时通过风机进风口产生负压,促使气流在冠层内由下而上运动。挡罩下方布置承液槽,承接部分飘失的药液,药液回收泵将回收的药液输送到副药箱中,以减小雾滴飘失带来的环境污染。喷雾机主要技术参数如表1所示。
2 关键部件设计
2.1 风机进风口设计与风量确定
为保证喷雾机门型工作空间存在气流环绕效果,要求轴流风机进风区囊括整个门型工作空间。轴流风机工作时,门型工作空间内的气体按一定收缩角被吸入风机,如图2所示,气流收缩直径沿射程变化规律如下:
置换原则是普遍采用的一种计算果园风送喷雾机风量的方法[20-21],其原理为:喷雾机以一定速度工作时,喷出的带有药滴的气流能完全驱除并置换作业区内包含的全部空气,如图2。根据下式进行喷雾机风量的计算。
式中为轴流风机风量,m3/h;为气体损失系数,=1.2~1.6[21]。
注:h为两侧出风口之间距离的一半,m;为进风口到最底端出风口的垂直距离,m;R为风机进风口半径,m;F为作业速度,m·s-1;α为射流极角,(°)。 Note: h is the half the distance between the two sides relative to the air outlet, m; is the vertical distance between the inlet and the lowest outlet, m; R is the inlet radius of the fan, m; F is the operation speed, m·s-1; α is the jet cone angle,(°).
2.2 基于冠层内气流衰减的喷雾机出风口参数确定
出口风速是果园风送式施药的重要参数,决定施药作业质量。目前风送式喷雾机出口风速多采用“到达冠层表面的气流速度”作为评价依据。通过前期试验发现,雾滴群到达冠层内膛的水平气流速度2=1.0~2.0 m/s,气流具备一定能量扰动枝叶,使雾滴有效沉积于叶片上。由于本文中喷雾机出风口到冠层边缘距离较短,冠层外气流能量衰减可忽略不计。将冠层等效为多孔介质[22],通过动量附加源项S修正的动量方程,用来表征气流沿水平轴经过冠层后的动量损失,如式(3)所示。
化简式(5)~(6)可得:
2.3 风机风压确定
环流风送施药既要求出口气流具备一定动能,以到达冠层内膛,也要求进风口具备一定负压,引导气流由下而上运动。图3为环流风送系统气流阻力分布示意图,气体在门型工作空间内的环绕流动依靠风机提供压力实现,风机压力一部分用来克服沿程摩擦压力损失,另一部分提供风机进风口的动压。
联立式(8)~(9)可得,为使气体在门型工作空间内呈环绕流动效果,轴流风机所提供的压力应不小于857.8 Pa。
2.4 门型机架
门型机架整体尺寸为2.3 m×1.0 m×2.0 m。顶部转角处用钢管支撑形成“四面体”结构,两侧钢管之间焊接横向钢管,以增强门型机架的抗弯和抗扭能力,门型机架顶部使用锰钢方管,长度2.3 m,规格8 cm×8 cm,许用应力160 MPa。
2.5 药液回收装置
药液喷施与回收系统由主药箱、柱塞泵、分配阀、喷头组、承液槽、回流导管、副药箱、回收液泵等组成。施药作业时,未喷施到果树冠层的药液经两侧门型挡罩的阻隔被收集到承液槽,通过回收液泵将承液槽内的药液回收到副药箱中。药液喷施及回收流程如图4所示。
为了防止机具运行触碰果树,根据机具整体尺寸确定承液槽长度为1.2 m,宽度为0.45 m,深度3 cm;门型挡罩与承液槽焊接一起,长度为1.2 m,高度为1.4 m,如图5所示。
1.主药箱 2.喷头 3.承液槽 4.回收液泵 5.压力表 6.分配阀 7.柱塞泵 8.副药箱
3 气流场分布测试试验
为了明晰气流流向与速度分布规律,在南京农业大学植保机械工程技术实验室(2020年9月22-24日)与南京市六合区祝玉三和家庭农场(2021年3月20-21日)利用TSI 9565风速仪(TSI Inc.,Minnesota,USA,量程:1.27~78.7 m/s,精度:读数的± 2%,分辨率:0.01 m/s)开展气流场分布试验。
3.1 气流流向分布测试试验
根据机具最下侧出风口离地高度,在离地0.8 m高度上设置一平行于地面的水平采样层,沿高度方向向上每隔0.4 m布置一个水平采样层,共设置4个水平采样层。在每个水平采样层上,选取轴流风机进风口正下方投影点为中心采样点,并沿着两侧出风口的连线方向,在中心采样点左右两侧每间隔0.14 m设置一个采样点,每侧设置5个,每层11个,共计44个。如图6所示。
1.风道 2.轴流风机 3.挡罩 4.喷头 5.五孔测针 6.可移动支架
由图7可知,气流从喷嘴射出后,受到门型工作空间外部大气压的影响,出风口风向非水平吹出,出风口风向与树干方向的夹角的平均绝对值为74°。从出风口至中心区域气流夹角的平均绝对值总体逐渐减小,气流风向与竖直方向的夹角在不断缩小,呈现竖直变化的趋势,说明进风口负压区产生的轴向吸力使气流方向趋于竖直状态。在冠层内膛即高度(0.8~1.8 m)、树干中心线两侧0.25 m的中心区域气流角度变化较大,变化范围为7~12°。综合气流的运动轨迹可知,在进风口的负压吸力作用下,气流实现了由外及内、再由下而上的运动。
采用丝带法(即在各布样区域布置丝带,通过高速摄像方式记录丝带初始位置角度与风送作业状态下的最大角度)对有无气流环绕的气流流向进行对比试验,将丝带竖直放置在冠层的不同区域,通过翻转顶部轴流风机设置有无环绕气流,比较有无气流环绕的气流下丝带的角度改变量,结果如图8所示。
试验结果表明,有、无气流环绕的2种模式下,顶端3个点(1,2,3)的平均角度变化量分别为107°与1.67°,中部3个点(4,5,6)的平均角度变化量为27.33°与15.67°,底部3个点(7,8,9)的平均角度变化量为54°与24.33°。对比2种气流模式下的角度变化可以看出,相比于无气流环绕模式,气流环绕可以使各区域丝带产生更大扰动,尤其顶部区域丝带产生垂直向上的运动,说明气流在冠层内由下向上运动。
3.2 气流速度分布测试试验
为了进一步验证有无气流环绕对冠层内气流速度分布的影响,将冠层划分为8个区域(图9),其中内膛包括4个测量区域(1、4、5、8)。冠层下端采样点区域的中心距离地面高度为1.0 m,沿着高度方向每隔0.4 m布置一个采样区域。
设置风机转速为800、1 000和1 200 r/min,利用TSI 9565风速仪(TSI Inc.,Minnesota,USA)测量气流环绕状态下3个风机转速下冠层内各采样点风速。同时,记录冠层内各样点位置信息,继续测量无气流环绕状态下的各采样点风速。每个采样点测3次取平均值。
利用Matlab对冠层内气流速度进行方差分析,结果如表2。可以看出,提高风机转速能显著提升冠层内平均风速,<0.05,气流环绕对风速有显著影响。
表2 冠层内气流速度方差分析
4 田间试验
2019年8月在南京逸夫农业发展有限公司的山楂园进行田间试验,如图10。该果园种植行距5 m、株距3 m、果树冠形为纺锤形,平均冠幅1.6 m、平均树高2.0 m。喷雾机横跨果树,通过调节支撑门架,使出风口到冠层的距离1 m,且进风口面向冠层顶部。同时设置无气流环绕组(风机进风口朝向天空)为对照组。
雾滴覆盖率试验采样点布置同气流速度分布试验(图9),每个采样点选取一片叶子,在正、反面放置纸卡(76 mm×76 mm,M&G Stationery Inc.,Shanghai,China)。
试验时机具参数为行驶速度1 m/s左右,喷雾压力0.5 MPa,喷雾流量1.5 L/min,喷施质量分数为0.5%的丽春红2R水溶液(SSS Reagent Co.,Ltd.,Shanghai,China)。试验发现风机转速为800 r/min,气流对叶片的扰动较小,风机转速为1 200 r/min时,冠层顶部的叶片翻转幅度较大,不利于1、2、3分区药液的沉积,故将风机转速调至1 000 r/min进行雾滴覆盖率试验,每组试验测试3棵山楂树。喷雾试验结束后用高拍仪(Microtek Technology Co.,Ltd.,Shanghai,China)采集纸卡上的图像信息,结合Matlab处理得到冠层内各采样点的雾滴覆盖率,结果如图11。
由图11可知,风机转速为1 000 r/min时,冠层叶片的雾滴覆盖率在有、无气流环绕的影响下差异较大,其中冠层内膛(1、4、5、8分区)雾滴覆盖率提升效果较为明显,叶片正面雾滴覆盖率平均提高了42.9%,叶片背面雾滴覆盖率平均提高了40.4%;冠层总体叶片背面雾滴覆盖率,平均提高了33.7%。气流环绕能够有效提高果树冠层各区域的雾滴覆盖率。
无气流环绕时,4、5、8分区的叶片正面覆盖率较低,分别为36.1%、36.5%、24.1%,主要由于4、5、8分区处于冠层内膛,雾滴难以穿透沉积,而其他分区处于冠层外侧,雾滴容易沉积。对于叶片背面,6、7、8分区处于冠层最底部,位于气流场边缘位置,路面高度不平等因素会影响出风口气流的喷施角度,导致底部区域的个别采样点雾滴沉积较少,造成叶片背面雾滴沉积率较低。可以看出在无气流环绕时雾滴在各区域的沉积不均匀。有环绕气流时,8个分区的叶片正背面的雾滴沉积均得到了不同程度的提高。尤其8分区正面覆盖率提升最为明显,提高了95.4%。
结合气流流向与速度分布试验可以看出,在风机进风口负压吸力的作用下,气流运动在冠内发生了改变,冠层内气流速度也得到了明显增强,气流产生了由下而上的运动,冠层各区域叶片正、反面的雾滴沉积率明显提高。
5 讨 论
果园风送式施药气流运动包含冠层外与冠层内2部分,目前大多研究多聚焦冠层外气流运动[7,20,23,25],以到达果树冠层表面的气流速度为依据来评价气流辅助效果,虽然总体雾滴沉积覆盖满足作业要求,但冠层外侧雾滴沉积过量、而内膛与叶片背面明显不足。冠层内气流运动的调控可以促进雾滴与冠层深度融合,进而提高冠层内膛和叶片的背面雾滴沉积率。本文以低矮果树为研究目标,设计了一种果园环流式循环风送喷雾机,通过顶置风机负压吸风调控冠层内气流运动,并实现脱靶药液的回收,取得了较好的试验效果。该研究验证了气流环绕风送施药技术方案的可行性与有效性,但环绕气流与冠层间定量作用关系及喷雾机结构设计还存在一些要完善的地方,团队也将在后续的研究中还应重点关注以下问题:
1)气流环绕风送施药时,冠层特征会显著影响气流在冠层内阻力与衰减。风机进口负压能否有效克服冠层阻力实现气雾流环绕运动受果树冠层密度、叶柄力学特性及冠层大小等诸多因素影响。所以,需进一步探明气流环绕风送施药技术的限制因素与适应场景,明确气流在冠层内衰减规律与进出口气流配比策略。
2)由于该机具采用门型结构与跨置式作业模式,难以满足大型果树的施药要求,机具体积增大也带来结构抗扭强度的挑战,所以还需进一步完成门型框架结构的轻量化设计,实现风送雾化装置与拖拉机配套的悬挂式作业。
3)需要进一步研究适于近距离施药的风送雾化系统,保证雾滴到达靶标前有良好的分散度,例如调整出风口形状与进、出风口之间相对位置等。
综上所述,气流环绕风送施药本质上是改变传统气流由出风口到靶标的运动模式,引导气流在冠层内部的运动,对改善冠层内膛与叶片背面雾滴沉积效果有显著优势,但是环绕气流形成的制约因素及多场景适应性还需进一步被探明与验证。在本研究基础上,还可以进一步研究气流在冠层内衰减规律、气流环绕风送雾化技术、多角度风送施药[26]与仿形风送技术[17,27]等,以完善果树风送施药基础理论与技术体系,为果园风送喷雾技术提供新的思路,提升果园植保作业装备水平。
6 结 论
1)设计了一种低矮果园环流式循环风送喷雾机,机具作业空间尺寸在一定范围内可调节,适应于不同种植模式的果园。同时,药液回收装置可回收脱靶药液。
2)通过顶置风机负压吸风,实现了果树施药气流由外及内、再由下而上的运动,在冠层内膛即高度(0.8~1.8 m)、树干中心线两侧0.25 m的中心区域气流角度变化显著,气流环绕对内膛平均风速有显著影响。
3)相较于无气流环绕模式,气流环绕风送施药的冠层叶片背面雾滴平均覆盖率提高了33.7%,冠层内膛叶片正面雾滴平均覆盖率提高了42.9%,叶片背面平均覆盖率提高了40.4%,气流环绕能够有效提高果树冠层内膛、叶片背面等病虫害多发区域的雾滴覆盖率。
[1]董晶. 果树病虫害防治现状与对策[J]. 农业开发与装备,2019(3):75.
[2]韩景红. 我国植保机械和施药技术的现状问题及对策[J]. 农业与技术,2018,38(12):91.
[3]Se-Woon Hong, Lingying Zhao, Heping Zhu. CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers[J]. Computers and Electronics in Agriculture, 2018, 149: 121-132.
[4]Marchesini E, Montepaone G, Schiatti P, et al. Habitat management of organic vineyard in Northern Italy: The role of cover plants management on arthropod functional biodiversity[J]. Bulletin of Entomological Research, 2016, 106(6):1-10.
[5]周良富,丁为民,周晴晴,等. 3WQ-400型双气流辅助静电果园喷雾机设计与试验[J]. 农业工程学报,2016,32(16):45-53. Zhou Liangfu, Ding Weimin, Zhou Qingqing, et al. Design and experiment of 3WQ-400 double air-assisted electrostatic orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 45-53. (in Chinese with English abstract)
[6]Zhu H, Brazee R D, Derksen R C, et al. A Specially designed air-assisted sprayer to improve spray penetration and air jet velocity distribution inside dense nursery crops[J]. Transactions of the ASAE, 2006, 49(5): 1285−1294
[7]董祥,张铁,燕明德,等. 3WPZ-4型风送式葡萄喷雾机设计与试验[J]. 农业机械学报,2018,49(S1):205-213. Dong Xiang, Zhang Tie, Yan Mingde, et al. Design and experiment of 3WPZ-4 type air-assisted grape sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 205-213. (in Chinese with English abstract)
[8]曲峰,盛希宇,李熙,等. 3WZF-400A型果园风送喷雾机改进设计[J]. 农业机械学报,2017,48(S1):15-21. Qu Feng, Sheng Xiyu, Li Xi, et al. Improved design of 3WZF-400A orchard air-assisted sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 15-21. (in Chinese with English abstract)
[9]姜红花,牛成强,刘理民,等. 果园多风管风送喷雾机风量调控系统设计与试验[J]. 农业机械学报,2020,51(S2):298-307. Jiang Honghua, Niu Chengqiang, Liu Limin, et al. Design and experiment of air volume control system of orchard multi-pipe air sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 298-307. (in Chinese with English abstract)
[10]Qiu W, Li X L, Li C, et al. Design and test of a novel crawler-type multi-channel air-assisted orchard sprayer[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(6): 60–67.
[11]顾家冰,丁为民,邱威,等. 果园变量施药机械及施药技术研究现状与趋势[J]. 果树学报,2014,31(6):1154-1157. Gu Jiabing, Ding Weimin, Qiu Wei, et al. Current research situation and development trend of equipment and technology for orchard spraying[J]. Journal of Fruit Science, 2014, 31(6): 1154-1157. (in Chinese with English abstract)
[12]苑进,赵新学,李明,等. 高地隙喷杆式与隧道式一体喷雾机的设计与试验[J]. 农业工程学报,2015,31(增刊2):60-68. Yuan Jin, Zhao Xinxue, Li Ming, et al. Design and test of high clearance boom-tunnel type sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 60-68. (in Chinese with English abstract)
[13]魏新华,邵菁,解禄观,等. 棉花分行冠内冠上组合风送式喷杆喷雾机设计与试验[J]. 农业机械学报,2016,47(1): 101-107,90. Wei Xinhua, Shao Jing, Xie Luguan, et al. Design and experiment of air-assisted cotton boom sprayer with separating row and spraying in inside an upper canopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 101-107, 90. (in Chinese with English abstract)
[14]刘冬梅,杨杭旭,周宏平,等. 密植矮化茶园地面低容量仿形喷雾液滴沉积性能研究[J]. 农业机械学报,2019,50(10):96-105. Liu Dongmei, Yang Hangxu, Zhou Hongping, et al. Droplet deposition performance of low-capacity profiling spray in densely planted dwarf tea plantation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 96-105. (in Chinese with English abstract)
[15]贾卫东,胡化超,陈龙,等. 风幕式静电啧杆喷雾喷头雾化与雾滴沉积性能试验[J]. 农业工程学报,2015,31(4):53-59. Jia Weidong, Hu Huachao, Chen Long, et al. Performance experiment on spray atomization and droplets deposition of wind-curtain electrostatic boom spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 53-59. (in Chinese with English abstract)
[16]翟长远,赵春江,Ning Wang,等. 果园风送喷雾精准控制方法研究进展[J]. 农业工程学报,2018,34(10):1-15. Zhai Changyuan, Zhao Chunjiang, Ning Wang, et al. Research progress on precision control methods of air-assisted spraying in orchards[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 1-15. (in Chinese with English abstract)
[17]邱威,何家敏,孙玉慧,等. 多通道农药喷施角度对果树靶标仿形气、雾流场的影响[J]. 南京农业大学学报,2020,43(2):379-386. Qiu Wei, He Jiamin, Sun Yuhui, et al. Effect of spray angles on profiling-flow field distribution from a multi-channel air-assistant sprayer in fruit tree applications[J]. Journal of Nanjing Agricultural University, 2020, 43(2): 379-386. (in Chinese with English abstract)
[18]Ashenafi T, Ruysen K, Dekeyser D, et al. Spray deposition profiles in pome fruit trees: effects of sprayerdesign, training system and tree canopy characteristics[J]. Crop Protection, 2015, 67: 200-213.
[19]龙天渝,流体力学[M]. 北京: 中国建筑工业出版社,2004.
[20]丁素明,傅锡敏,薛新宇,等. 低矮果园自走式风送喷雾机研制与试验[J]. 农业工程学报,2013,29(15):18-25. Ding Suming, Fu Ximin, Xue Xinyu, et al. Design and experiment of self-propelled air-assisted sprayer in orchard with dwarf culture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 18-25. (in Chinese with English abstract)
[21]戴奋奋. 风送喷雾机风量的选择与计算[J]. 植物保护,2008,34(6):124-127. Dai Fenfen. Selection and calculation of the air volume of the air blower sprayer[J]. Plant Protection, 2008, 34(6): 124-127. (in Chinese with English abstract)
[22]李波,杨庆山,徐志,等. 树木对低矮房屋风荷载的遮挡作用[J]. 建筑结构学报,2016,37(S1):33-38. Li Bo, Yang Qingshan, Xu Zhi, et al. Windbreak performance of tree on wind load on low-rise building[J]. Journal of Building Structures, 2016, 37(S1): 33-38. (in Chinese with English abstract)
[23]Maruyama T. Large eddy simulation of turbulent flow around a windbreak[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96 (10/11 ) : 1998-2006.
[24]陈德敏,李柏均,吴益晓. 气体管道波纹型阻火器多孔隙阻力研究[J]. 煤矿机械,2018,39(8):13-15.
[25]丁天航,曹曙明,薛新宇,等. 果园喷雾机单双风机风道气流场仿真与试验[J]. 农业工程学报,2016,32(14):62-68. Ding Tianhang, Cao Shuming, Xue Xinyu, et al. Simulation and experiment on single-channel and double-channel airflow field of orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 62-68. (in Chinese with English abstract)
[26]Svensson S A, Brazee R D, Fox R D, et al. Air jet velocities in and beyond apple trees from a two-fan cross-flow sprayer[J]. Transactions of the ASAE, 2003, 46(3): 611-621.
[27]吕晓兰,张美娜,常有宏,等. 果园风送喷雾机导流板角度对气流场三维分布的影响[J]. 农业工程学报,2017,33(15):81-87. Lyu Xiaolan, Zhang Meina, Chang Youhong, et al. Influence of deflector angles for orchard air-assisted sprayer on 3D airflow distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 81-87. (in Chinese with English abstract)
Design and test of circulating air-assisted sprayer for dwarfed orchard
Qiu Wei1, Sun Hao1, Sun Yuhui1, Liao Yangyang1, Zhou Liangfu2, Wen Zhenjie1
(1.,,210095,; 2.,,210023,)
Conventional air-assisted spraying declines rapidly to stagnate in general, particularly when the droplets reach the canopy in an orchard. Unfavorable spray effects thus often occur, such as "difficult to penetrate" and "difficult to deposit inside the canopy and the back of leaves". In this study, a new idea was proposed to form multi-source wind disturbance for the direction change of airflow inside the canopy, namely, "from outside to inside, and then from bottom to top". Firstly, the movement tracking of droplet flow under the surrounding airflow was analyzed to determine the structure of a sprayer and the key parameters. The sprayer with a "door" type structure was composed of a surrounding air-assisted system, a spraying and recovery system, a hydraulic drive system, and a crawler chassis. An axial flow fan was placed at the top of the canopy. Specifically, the air inlet of the fan was facing the top of the canopy, whereas, the air outlet of the fan was connected with an air duct to transport the air into eight subsequent outlets. Meanwhile, the negative-pressure suction was generated through the air inlet of the fan, thereby moving the air flow "from bottom to top" in the canopy. Four flumes were arranged below the shields to receive the lost droplets. Two pumps were utilized to transfer the recovered droplets into the auxiliary tank for environmental protection. The size of the gate-type opening was adjusted in a certain range for various planting patterns in an orchard. The key parameters of the surrounding air-assisted system were also optimized using the displacement theory of air volume and jets. The air velocity of the outlet was determined to be 10-20 m/s, while, the wind pressure provided by the axial flow fan cannot be less than 857.8 Pa. Secondly, the stress of the gantry frame was analyzed under the service condition to meet the user needs, where the bending and torsion resistance were verified in the theoretical evaluation. Thirdly, the five-hole probes and ribbon method were selected to field test the distribution of flow direction in a prototype of the sprayer. Meanwhile, the velocity distribution of the airflow field was also measured to verify whether the sprayer can produce the droplets flow from the outside to the inside and from the bottom to the top. It was found that the airflow angle changed significantly inside the canopy, especially in the height of 0.8-1.8 m and the center area of 0.25 m on both sides of the center line of a trunk. There was an obvious increase in airflow velocity under the surrounding air-assisted spraying. Finally, the spraying effects with and without surrounding air-assisted were compared at the fan speed of 1 000 r·min-1, where the coverage rate of the droplet was selected as an evaluation index. The coverage rate of the droplet on the leaf face increased by 42.9%, while that of the leaf back increased by 40.4%, where the overall leaf back increased by 33.7%, compared with traditional air-assisted spraying. It infered that the surrounding airflow significantly improved the droplets deposition coverage in the center of a canopy and leaf back. The findings can provide an insightful design idea for the surrounding air-assisted sprayer to produce the airflow suitable for plant protection in an orchard with dwarfed fruit trees. Follow-up experiments can be performed on the canopies of different sizes and thicknesses to clarify the influence of boundary conditions on the surrounding air-assisted spraying.
spray; design; circulating type; air-assisted; airflow movement; fruit tree canopy
邱威,孙浩,孙玉慧,等. 低矮果园环流式循环风送喷雾机设计与试验[J]. 农业工程学报,2021,37(6):18-25. doi:10.11975/j.issn.1002-6819.2021.06.003 http://www.tcsae.org
Qiu Wei, Sun Hao, Sun Yuhui, et al. Design and test of circulating air-assisted sprayer for dwarfed orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 18-25. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.003 http://www.tcsae.org
2020-10-22
2021-02-10
国家自然科学基金项目(51805271);江苏省农业自主创新基金项目(CX181007);南京农业大学SRT专项计划(S20190037)
邱威,副教授,博士,主要研究方向为植保机械与施药技术。Email:qiuwei@njau.edu.cnz
10.11975/j.issn.1002-6819.2021.06.003
S147.2
A
1002-6819(2021)-06-0018-08